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Figure 1. Do dogs eat ice cream? While we humans have no trouble answering this question, existing text-based methods have
a tough time. In this paper, we present a novel approach that can visually verify arbitrary relation phrases.

Abstract

How can we know whether a statement about our world
is valid. For example, given a relationship between a
pair of entities e.g., ‘eat(horse, hay)’, how can we know
whether this relationship is true or false in general. Gath-
ering such knowledge about entities and their relationships
is one of the fundamental challenges in knowledge extrac-
tion. Most previous works on knowledge extraction have
focused purely on text-driven reasoning for verifying re-
lation phrases. In this work, we introduce the problem
of visual verification of relation phrases and developed a
Vis
¯

ual K
¯

nowledge E
¯

xtraction system called VisKE. Given
a verb-based relation phrase between common nouns, our
approach assess its validity by jointly analyzing over text
and images and reasoning about the spatial consistency
of the relative configurations of the entities and the rela-
tion involved. Our approach involves no explicit human
supervision thereby enabling large-scale analysis. Using
our approach, we have already verified over 12000 relation
phrases. Our approach has been used to not only enrich
existing textual knowledge bases by improving their recall,
but also augment open-domain question-answer reasoning.

∗This work was done while the author was an intern at the Allen Insti-
tute for AI.

1. Knowledge Extraction & Visual Reasoning
Do dogs eat ice cream? If you know the answer to

this question, then you either have witnessed dogs eating
ice cream or have observed either visual or textual record-
ings of this phenomenon. Extracting such knowledge has
been a long-standing research focus in AI, with a variety of
techniques for automatically acquiring information of our
world.

Vision is one of the primary modalities for us humans to
learn and reason about our world. We gather our everyday
basic knowledge such as horses eat hay or butterflies flap
wings by simply observing these phenomenon in our real
world. Yet when extracting knowledge for building intel-
ligent systems, most previous research has focused on rea-
soning primarily using language and text.

Why such a disconnect? This disparity has mainly
stemmed from the fact that we have had easier access
to copious amounts of text data on the web along with
well-performing feature representations and efficient unsu-
pervised learning methods for text. However this does not
hold true any more. Thanks to the proliferation of camera
phones and the popularity of photo-sharing websites, recent
years have witnessed a deluge of images on the web. Cou-
pled with the growing success of text-based image search
engines and the recent progress in weakly-supervised
object localization methods, we believe the time is ripe now
for extracting knowledge by reasoning with images.



Problem Overview: The key component of any knowl-
edge extraction system involves verifying the validity of a
piece of gathered information before adding it to a knowl-
edge base. The most typical format of the information being
considered is in the form of a relationship between a pair of
mentions e.g., eat(horse, hay), flutter(butterfly, wings), etc.

The primary focus of our work is to estimate the con-
fidence of such mentions-relation predicates by reasoning
with images. We focus our attention to verb-based relations
between common nouns. The input to our system is a re-
lation predicate e.g., ‘eat(horse, hay)’ and the output is a
confidence value denoting its validity. In order to correctly
validate a relation, we need to reason about the underlying
entities while grounding them in the relation being consid-
ered. Here, we present a novel verification approach that
reasons about the entities in the context of the relation be-
ing considered using webly-supervised models for estimat-
ing the spatial consistency of their relative configurations.

The attractive feature of our proposed framework is that
both our model learning as well as inference steps are per-
formed using no explicit human supervision. Most previ-
ous research on analyzing objects and their relationships
in computer vision have assumed a supervised setting i.e.,
images along with some annotations of the objects and ac-
tions involved are available at training. This limitation has
prevented these methods to scale to a large number of ob-
jects and relations. Our proposed approach overcomes this
limitation by carefully leveraging unlabeled images found
on the web, thereby enabling image-based reasoning for
knowledge extraction.

In summary, our key contributions are: (i) We introduce
the problem of visual verification of relation phrases for the
task of knowledge extraction. (ii) We present an unsuper-
vised approach for verifying relationships by analyzing the
spatial consistency of the relative configurations of the en-
tities and the relation involved. (iii) We empirically demon-
strate the utility of our approach on a large relation phrase
dataset and analyze the relative contributions of the differ-
ent system components. (iv) To date, we have verified over
12000 relation phrases and doubled the size of the Concept-
Net knowledge base [34] at a precision of 0.85. (v) We
released our data and system for enabling future research
and applications in this direction. (We invite the interested
reader to verify a relation phrase of their choice using our
online system.)

2. Related Work
The task of verifying relation phrases has received ex-

tensive attention in the field of information extraction. Phe-
nomenal progress has been achieved using a variety of
methods [1, 2, 4, 5, 11, 29, 36]. The core idea behind these
methods involves analyzing the frequency of occurrence
of a given relation predicate in large text corpora [2, 11].
While frequency of occurrence in text is a reasonable in-

dicator for the validity of a relation, it is not completely
fool-proof. Many high frequency relations occur in text but
are not true in the real world e.g., ‘pierce(pelican, breast)’.
Conversely many relations occur in text with low frequency
but are true in the real world e.g., ‘eat(chimpanzee, ice-
cream)’. This anomaly springs from the fact that we hu-
mans often fail to explicitly state (in text) several obvious
pieces of knowledge [18, 37] and therefore text-based meth-
ods can miss many basic relationships. Nonetheless these
phenomenon are captured in the photos that we take in our
daily life. Therefore by reasoning with images, we can
leverage complementary cues that are hard to gather purely
from text.

However, the task of relation verification has not yet re-
ceived much attention in computer vision. Most previous
research in this area has primarily focused on the tasks of
image classification [8], scene recognition [10, 27, 31, 38]
and object detection [12, 16, 17, 30] that form the funda-
mental building blocks for higher order visual reasoning
systems. Subsequent research has leveraged the success in
the classification and detection tasks to gather structured vi-
sual knowledge about objects, scenes and other concepts on
an Internet scale [6, 9]. Also, in [41] the problem of learning
common sense knowledge from clip art images was studied.

Recent years have also witnessed a surge in reason-
ing about human-object relationships [19, 39] as well as
more general object-object relationships [16, 23, 24, 25] and
object-attribute relationships [6, 15, 40]. However, almost
all works have studied this problem in the supervised set-
ting i.e., images along with some form of annotations for
the objects and the actions involved are assumed to be pro-
vided during training.

Quite related to our work is the work of [6], wherein the
goal was to extract common-sense relationships between
objects in an unsupervised setting. By analyzing the co-
detection pattern between a pair of objects, the relationship
between them was determined. Their focus was on two
types of relationships: ‘part of’ and ‘similar to’. In this
work, we attempt to generalize their goal by learning and
extracting more general relationships. We show it is pos-
sible to learn arbitrary relationships (such as ‘eat’, ‘ride’,
‘jump’, etc.,) by reasoning about the objects in the context
of the relation connecting them. We have used our method
to learn over 1100 relation types. Our work is complemen-
tary to the work of [40], where the utility of a knowledge
base of relationships for performing diverse set of visual in-
ference tasks was demonstrated. The knowledge gathered
by our work can help enrich their underlying knowledge
base, thereby facilitating more advanced inference tasks.

3. Visual Verification
Our key assumption in visual verification is that true re-

lation phrases are those that happen in our real world and
therefore there should exist enough visual recordings (im-
ages, videos) of them online. We consider visual verifica-
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Figure 2. Approach Overview. Given a relation predicate, such as fish(bear,salmon) VisKE formulates visual verification as the problem of
estimating the most probable explanation (MPE) by searching for visual consistencies among the patterns of subject, object and the action
being involved.

tion of a relation phrase as the problem of searching for
meaningful and consistent patterns in the visual recordings
of the relation. But what are these patterns of consistencies
for relation phrases?

For example, given a relation predicate, such as
fish(bear,salmon) (read as Do bears fish salmon?) in Fig-
ure 2, we observe an open-mouthed bear attempting to catch
hold of a leaping salmon, with the salmon appearing in front
of the bear. This observation leads us to the following valu-
able insights about the subject and object involved in a rela-
tionship.

First, the appearance of the subject as well as the object
may change during the relationship. In this example, we
see that the appearance of the bear while fishing salmon is
different from a canonical appearance of a bear (i.e., open-
mouthed). Similarly the appearance of a salmon when being
fished is different from its canonical appearance (i.e., leap-
ing). Therefore to find the occurrence of the subject and
the object pattern (i.e., bear or salmon) in the images, it is
important to search not only for their canonical patterns but
also for their patterns under the relationship in considera-
tion (i.e., ‘bear fishing’ and ‘fishing salmon’). This change
in the appearance due to interaction is aligned with the idea
of visual phrases [32].

Second, the spatial locations of the subject and the ob-
ject should be in a consistent behavior for the relationship
to hold. In this example, we see that the salmon consistently
appear in a specific location with respect to the bear for the
relationship of fishing to be valid. Therefore to validate a re-
lationship between a subject and an object, we need to check
for the spatial consistency between the subject (bear) and
the object (salmon) patterns and also between their modi-
fied versions (i.e., ‘bear fishing’, ‘fishing salmon’). In the
following, we present our formulation that generalizes these

intuitions.

We refer to a relation as V(S,O), where V denotes the
verb or the action connecting the subject S and the object
O). Based on our observations, participation in a relation-
ship changes the appearance of the participating entities in
different ways. For a relation V(S,O), we envision the fol-
lowing possibilities of meaningful patterns (R): First, a re-
lation (V) might form a visual phrase and change the ap-
pearance of the subject (S) i.e., (SVO,SV); Second, the
relation might affect the object (O) i.e., (S,VO); Third, the
relation might form a visual phrase and change the appear-
ance of both subject and object i.e., (VO,SV); Fourth, the
relation might impose specific visual characteristics on the
subject but the object is not affected i.e., (SVO,O); and
Fifth, the relation might impose specific visual characteris-
tics on the object but the appearance of the subject remains
intact i.e., (SVO,S). We ignored the V , SO variables as in
isolation they are highly visually ambiguous. We enforced
the participation of all the three S, V , O entities in patterns
and therefore avoide patterns like (S,SV) as it does not in-
volve the O.

Searching for consistencies among the above patterns re-
quire detectors for each of the elements of relations i.e., the
subject (S), the object (O), the subject-verb combination
(SV), the verb-object combination (VO), and the subject-
verb-object combination (SVO).

Assuming we have access to these individual detection
models (explained later), we formulate visual verification
as the problem of estimating the most probable explanation
(MPE) of the multinomial distribution that governs R. We
factorize the marginalization of the joint distribution of R
and the relation elements using a factor graph (depicted in
Figure 2):



P (R,S,O,SV,VO,SVO) ∝
∏

x∈{O,S,SV}

Φ(R,SVO, x) ∗

∏
y∈{SV,S}

Φ(R,VO, y) ∗
∏

z∈{S,O,SV,VO,SVO}

Ψ(z), (1)

where R corresponds to the relation type and has a multi-
nomial distribution over the patterns of consistency, the rest
of the nodes correspond to relation element detectors. The
potential function Φ provides the maximum likelihood esti-
mates of each relation type. More specifically,

Φi(R, x, y) =

{
maxθ L(x, y, Ī; θ) R ≡ i
1 otherwise (2)

where Ī is the set of images collected for a relation phrase,
and L(x, y, Ī, θ) is the log likelihood of the parametric rela-
tions between detections of x and y on image set Ī parame-
terized by θ. For the parametric models we use Gaussians.
The Ψ(x) is the unary factor representing the maximum log
likelihood estimates of predictions of detector x. Referring
back to the example of bear fishing salmon, our factor graph
checks for at least one of the five patterns to hold i.e., either
‘bear fishing’ and ‘fishing salmon’, or ‘bear’ and ‘fishing
salmon’, or ‘bear fishing salmon’ and ‘bear’, ‘bear fishing
salmon’ and ‘salmon’ or ‘bear fishing salmon’ and ‘bear
fishing’ should have a highly consistent pattern for this re-
lationship to be valid.

The features to estimate the maximum likelihood
estimate L(x, y, Ī; θ) should capture the spatial relations
between the predictions of detectors x and y. Towards this
end, we use the following feature representation (See Fig-
ure 3): {dx, dy, ov, ov1, ov2, h1, w1, h2, w2, a1, a2}, where
dx, dy correspond to the translation between detections,
ov is the intersection over the union of the two detection
boxes, ov1 is the ratio of intersection over the area of the
bounding box x, ov2 is the ratio of the intersection over the
area of bounding box y, h1, w1 are the dimensions of the
bounding box x, h2, w2 are the dimensions of the bounding
box y and a1, a2 are the x and y bounding box areas. For
unary potentials we use a 4 dimensional representation
that encodes {h,w, x, y}, where h,w are the height and
width of the bounding box and x, y are its (mid-point)
coordinates. Under this model, visual verification is the
problem of MPE in our factor graph [28].

Implementation Details: We use the publicly-available
implementation of [9] for learning our S,O, SV , VO, SVO
detectors (without parts). For each detector, a mixture of
components Deformable Part Model (DPM) [16] is trained
using retrieved images from the web and the noisy com-
ponents are pruned in a separate validation step. 1 As our

1Using our current unoptimized linux-based Matlab implementation on
a Intel Xeon E5 CPU, the entire run-time per relation is around 30mins.
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Figure 3. Our feature representation used for estimating the para-
metric relation between two detection elements. This figure shows
the feature computed between ‘Horse jumping’ (SV) and ‘Fence’
(O). The ellipses on top show the distribution of spatial position
of ‘Horse jumping’(in pink) with respect to ‘Fence’(in blue) as
learned by our method. There is high horizontal variation in the
position of ‘Fence’ compared to its vertical variation while the spa-
tial position of Horse jumping is above ‘Fence’ and has small hor-
izontal and vertical variation.

individual detectors (i.e., SV , SVO, S,O, VO) are mixture
models, each of our factors (e.g., (SV,SVO)) incorporate
these mixtures.

4. Relation Phrase Dataset
To the best of our knowledge, there exists no gold-

standard dataset of relation phrases in the knowledge extrac-
tion community. Different extraction systems use different
strategies for extracting relational phrases [1, 2, 5]. To avoid
biasing our proposed approach to the idiosyncrasies of any
one of these methods, we have put together a generic dataset
of relation phrases.

Our relation phrases were gathered using the Google
Books Ngram (English 2012) corpus [26]. This corpus
contains parts-of-speech tagged Ngrams along with their
frequency of occurrence in books. To extract relations of
‘verb(subject, object)’ format, we considered all Ngrams
that have a <noun, verb, noun> pattern (ignoring any other
words in between). For the purpose of our experiments,
we focused our attention to the relations involving animals.
This resulted in a list of 6093 relations covering 45 different
subjects, 1158 different verbs (actions) and 1839 different
objects. To avoid biasing this list to contain only true re-
lations, we generated new relations by randomly permuting
the subjects, verbs and objects together yielding an addi-
tional 6500 relations (resulted in a total of 5776 pairs of SV
and 5186 pairs of VO in our dataset). We refer to these re-
lations as the ‘Permute’ set and the former as the ‘Base’ set.
Some of the sample relations can be seen in Figures 1 2 5 8.



Base Set Permute Set Combined Set
Visual Phrase [32] 49.67 14.12 42.49
Co-detection Model 49.24 14.65 43.14
Google Ngram Model [1] 46.17 NA NA
Language Model [22] 56.20 22.68 50.23
VisKE 62.11 20.93 54.67

Table 1. Results (M.A.P.) on the Relation Phrase Dataset. While
the language model achieves a higher accuracy on the ‘Permute’
set, VisKE gets the best result on the ‘Base’ set and the ‘Combine’
set.

For evaluating the performance of our method as well
as to compare different baselines, each relation phrase was
annotated with its ground-truth validity. The validity was
primarily decided based on whether a relations refers to a
phenomenon that commonly happens in our real-world. Out
of the total 12593 relations, 2536 statements were annotated
as true and the rest as false2.

5. Experimental Results & Analysis
We analyzed the efficacy of our approach by conduct-

ing experiments on the relation phrase dataset. The input
to our approach is a relation phrase e.g., ‘eat(horse, hay)’
and the output is a confidence score denoting its validity
(i.e., larger value indicates greater confidence in being true).
We use these scores along with their corresponding ground-
truth labels to compute a precision-recall curve and use the
area under the precision-recall curve (Average Precision,
A.P.) metric [12] as a principal quantitative measure. We
computed the A.P. independently for each subject and then
averaged the A.P. across all subjects (Mean A.P., M.A.P.).
Table 1 summarizes the key results obtained using our ap-
proach. We separately evaluated the A.P over the ‘Base’ set
and the ‘Permute’ set to analyze the impact in the differ-
ent scenarios. Our proposed approach achieves an M.A.P.
of 62.11% on the ‘Base’ set, and 20.93% on the ‘Permute’
set, indicating the difficulty of the latter compared to the
former. Validating 12593 relations involved training over
26739 detectors and processing around 9 million images.
Our experiments were run on a computer cluster. We also
compared our results to the following baseline models to
analyze different aspects of our system.
Co-detection model: We first compared against a simple ap-
proach that trains separate detection models for the entities
and the relation involved (using the web images) and then
analyzes the pattern of their co-detections. For example, in
the case of ‘eat(horse, hay)’, separate detection models were
trained for horse and hay as well as a detector for the rela-
tion eat (using their corresponding web images) and then
reasoned about the pattern of their co-detections on ‘horse
eating hay’ images. This approach is most similar to that
of [6]. As seen in Table. 1 (row2), this approach fails to
perform well as it considers each constituent of the rela-

2We have released our list of relational relations along with their anno-
tations in our project website (http://viske.allenai.org/).

tion phrase independently and thereby fails to account for
the changes in appearance of the entities when involved to-
gether in an action [32]. For example, in case of the horse
eats hay example, the appearance of the ‘eating horse’ is
different from that of a canonical horse.
Visual Phrase model: We next compared our approach to
the visual phrase model of [32], where a single SVO detec-
tor is trained and its performance on predicting its unseen
samples is evaluated. As seen in Table. 1 (row1), this model
fares poorly. We found it to classify several incorrect rela-
tions to be true as it does not validate the pattern of its con-
stituent entities. For example, in case of ‘horse read book’,
the retrieved images contain cover pages of books (about
horses) all having a picture of horse3. Validating a detector
on these images would lead to falsely claiming this relation
to be true as it just analyzes the consistency of the overall
pattern without reasoning about the action of horse reading.
Language model: Of course our task of visually verify-
ing relation phrases has been motivated from the domain
of text-driven knowledge extraction. It is therefore inter-
esting to compare our method to contemporary text-driven
methods for verifying relation phrases. We evaluated the
performance of two popular industrial-sized language mod-
els (Bing, Google). The method of [22] estimates the real-
world plausibility of any relation phrase using a sophisti-
cated statistical language model learned from a large text
corpora, while the method of [1] estimates the probabili-
ties using a language model trained on the GoogleNgram
corpus. As seen in Table. 1, although the language model
of [22] outperforms the co-detection and phrasal baselines,
it does not perform as well as our proposed approach.

To analyze performance per subject, in Figure. 4, we dis-
play the individual relative differences in A.P. Out of the 45
subjects, our approach does better on 27 of them, while the
language model of [22] does better on 14. For subjects like
‘pelican’, ‘lizard’ etc., our approach does better, while for
subjects like ‘pig’, ‘monkey’, language model does better.
We hypothesize this to the fact that classes like monkey are
more common than classes like pelican and therefore the
language model has more data for these classes. This differ-
ence in performance between our model and the language
model hints at the complementarity of the vision and lan-
guage methods. To validate this hypothesis, we ran a sepa-
rate evaluation (on the Permute set) by linearly combining
the confidences produced by these two methods. This com-
bined model indeed produced a higher M.A.P. of 24.25%4,
ascertaining the fact that reasoning with images offers cues
complementary to text for relation phrase verification. As
the number of relation phrases per subject in our dataset is

3This phenomenon happens as image-search engines predominantly
rely on auxiliary text (around the image) in the documents for retrieving
images.

4The performance on the Base set did not improve. We hypothesize this
due to our simple linear combination strategy. Given the different score
calibrations of the visual and language model, it is a challenge to combine
them meaningfully in an unsupervised setting.

http://viske.allenai.org/
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Figure 4. Performance improvement by VisKE over the language
model [22] (x-axis: 45 subjects, y-axis: difference in A.P.). Blue
indicates our approach does better than [22] (27/45 classes), while
red indicates vice versa (14/45 classes).

Model M.A.P.
VisKE (All Factors) 62.11
Without Φ(R,VO,SV) 60.41
Without Φ(R,VO,S) 61.16
Without Φ(R,SVO,S) 60.40
Without Φ(R,SVO,O) 59.55
Without Φ(R,SVO,SV) 59.55
Without binary terms 60.61
Without unary terms 58.52
CRF 58.01

Table 2. Ablation analysis: while each of the factors help improv-
ing the overall performance, removing any of them does not drasti-
cally hurt its performance, indicating the robustness of our overall
model. Removing either of the binary or unary terms hurts the
performance. Using a CRF model results in poorer performance.

imbalanced, we also evaluated the performance over the en-
tire set of relation phrases (across all subjects) on the ‘Base’
set. This yielded an A.P. of 44.6% for our method, while the
LM [17] obtained 40.2%.
Ablation Study: To understand which factors within our
model are critical towards the final performance, we ana-
lyzed results by running experiments with the different fac-
tors turned off/on. As displayed in Table. 2, while each of
the factors helps in improving the overall performance, re-
moving any one of them does not drastically hurt the per-
formance, indicating the robustness of our overall model.
Also, as observed in Table 2, both the unary and the bi-
nary factors contribute towards the final performance. We
also ran a separate experiment where we used a simple
CRF based pooling strategy to combine the responses of the
different pattern relationships i.e., (SVO,SV), (VO,SV),
etc., which resulted in poorer performance.

What are the sources of errors that prevent our model in
correctly verifying some of the relationships? We found a
couple of issues. First, our method is dependent on web im-
age search engines to gather the relevant set of images. For
some relations, e.g. make(fox,den), the retrieved images are
not relevant, while for some other relations, e.g. shed(cow,
horn), the images are misleading. Second, our method uses
the webly-supervised approach of [9] for training the detec-
tors, which sometimes fails either when the variance within
the set of retrieved images is large, e.g. eat(horse, fruit), or

if the relation involves complex visual characteristics, e.g.
drink(hedgehog, milk). Finally, the inherent spatial rela-
tionships in case of certain relation phrases is complex, e.g.
cross(horse, road). Verifying such relations require deeper
understanding of spatial relations. Future work could ex-
plore leveraging (textual) prepositions to better understand
complex spatial relationships.

5.1. Application: Enriching Knowledge Bases
Current knowledge bases such as WordNet, Cyc, Con-

ceptNet, etc., seldom extract common-sense knowledge di-
rectly from text as the results tend to be unreliable and need
to be verified by human curators. Such a manual process is
both labor intensive and time consuming. A nice feature of
our method is that it offers complementary and orthogonal
source of evidence that helps in discovering highly confi-
dent facts from amongst the pool of all facts extracted from
text. This feature helps us towards automatically improving
the recall of knowledge bases. We demonstrate this feature
on the popular ConceptNet knowledge base.

ConceptNet is a semantic network containing common-
sense knowledge collected from volunteers on the Internet
since 2000 [34]. This knowledge is represented as a directed
graph whose nodes are concepts and edges are assertions of
common sense relations about these concepts. The set of
possible relations is chosen to capture common informative
patterns, such as ‘IsA’, ‘PartOf’, ‘HasA’, ‘MemberOf’, ‘Ca-
pableOf’, etc.

In our analysis, we measured the number of relation
predicates our visual approach could add to this resource.
More specifically, for each of the 45 subjects in the relation
phrase dataset, we measured the precision of correct rela-
tionships (that are unavailable in ConceptNet) added at dif-
ferent levels of recall. While some of the relationships (e.g.,
‘IsA(horse, animal)’, ‘PartOf(wheel, car)’, ‘HasA(horse,
leg)’) are easier to acquire and have been previously ex-
plored in computer vision [35, 25, 6], more complex action-
centric relationships (e.g., ‘CapableOf(horse, jump fence)’)
have not received much attention. In fact, to our surprise,
across the 45 concepts there were only 300 ‘CapableOf’ re-
lation facts within ConceptNet5. In our analysis, we primar-
ily focused on increasing the number of facts pertaining to
this relationship.

Figure. 6 summarizes the key results of our analysis. It
displays the number of relations added at various precision
levels for four (of the 45) subjects. For example, in case
of ‘cat’, we have added 10 new relations to ConceptNet
at a precision of 0.8. Some of the newly added relations
are (i.e., unavailable in ConceptNet): ‘CapableOf(cat, lick
kitten)’, ‘CapableOf(cat, carry mouse)’, ‘CapableOf(cat, sit
basket)’, ‘CapableOf(cat, chase bird)’, and ‘CapableOf(cat,
lay cushion)’. On average, at a precision of .85, we doubled
the size of the ‘CapableOf’ relations in ConceptNet (related

5ConceptNet is an everchanging repository. The results here corre-
spond to the latest version downloaded on September 26 2014.
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Figure 5. Examples of detected entities in a few of the relation phrases verified by VisKE. Entities are color coded within pattern.
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Figure 7. Relative difference of the number of added relations to
ConceptNet using VisKE over the language model [22] (x-axis: 45
subjects, y-axis: difference in number of relations). Blue indicates
that VisKE adds more relations than [22] (28/45 classes), while
red indicates vice versa (14/45 classes).

to our subjects). In Figure. 7, we compare the number of re-
lations added by our approach with respect to the language
model [22]. Out of the 45 subjects, our approach adds more
relations on 28 of them, while the language model [22] does
better on 14. This visualization again reveals the the com-
plementarity in performance between our model and the
language model.
OpenIE: We conducted a similar analysis on Ope-
nIE [2, 13], a popular web-scale information extraction
system that reads and extracts meaningful information from

Model M.A.P.
OpenIE [13] 73.03
Co-detection Model 76.65
Visual Phrase [32] 78.45
Language Model [22] 83.65
VisKE 85.80

Table 3. Results on the OpenIE dataset.

arbitrary web text. We selected the relations corresponding
to the 45 subjects of interest within their extractions [13]
and ran our approach to compute the confidences. Table. 3
summarizes our results. Our approach helps in improving
the extractions obtained by OpenIE as well.

Towards Higher-order Reasoning: An interesting feature
enabled by our approach is reasoning about higher-order
relationships. Figure. 9 shows the relation graph learned
by our approach based on the learned spatial models for
the different relation phrases involving the relationship of
‘pushing’. These higher-order relations were estimated by
computing the cosine similarity of the different pairs of rela-
tions based on the maximum similarity of their correspond-
ing patterns (i.e., (SVO,SV), (VO,SV), etc.,) in the factor
graph. The cosine similarity is computed using the feature
representation as explained in section 3. The relation graph
reveals that the action of ‘man pushing box’ is very sim-
ilar to ‘woman pushing cart’, but not to ‘person pushing
bicycle’. Such reasoning about similarities and dissimilari-
ties between relationships (in the context of the entities in-
volved) is valuable for several tasks in vision and language.

5.2. Application: Question Answer Reasoning

Question-Answering is an important AI problem where
the goal is to answer questions by querying large knowledge
bases [3, 14]. The visual knowledge that we have gathered
using our approach can help improve the reasoning within
question-answering systems. For example, as shown in Fig-
ure. 8, it could be possible for users to explore and discover
a variety of interesting facts about concepts and their rela-
tionships, such as:
What do dogs eat? Given a query of the form
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Figure 8. Diverse Question Answering: VisKE is capable of answering diverse questions about subjects, objects or actions. In comparison
to the Language model [22], VisKE obtains richer and more precise answers to the questions.
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Figure 9. Higher-order reasoning of relationships: This relation
graph reveals to us that the action of ‘man pushing box’ is very
similar to ‘woman pushing cart’, but not to ‘person pushing bicy-
cle’. The edge thickness shows the strength of a relation. Darker
edge indicates higher similarity.

‘verb(subject,?)’, we can use our approach to retrieve the
top set of objects relevant to it. For e.g., our approach re-
veals that dogs typically eat rabbit, grass, fruit, etc. In con-
trast, the LM has produced high probability for ‘contest’ as
it is confused by ‘hot dog eating contest’.
What lays eggs? Given a query of the form ‘verb(?, object)’,
we can use our approach to retrieve the top set of subjects
relevant to it. For e.g., our approach reveals that the most
probable animals that can lay eggs are turtle, snake, etc.
What do horses do with river? Given a query of the form
‘?(subject, object)’, our approach can retrieve the top set of
relations between the subject and object. For e.g., our ap-
proach reveals that the most probable relationship between
butterfly and wings are flutter and flap, and between man
and sofa are sit, carry, sleep, push, etc.
Towards Answering Elementary-level Science Ques-
tions: Apart from answering generic questions, our ap-
proach can be useful for answering more specific ques-

tions such as those related to elementary-level general sci-
ence [7, 21, 33, 20]. To demonstrate this, we ran a prelimi-
nary experiment using our approach on a small subset of the
NewYork Regents’ 4th grade science exam [7] that were vi-
sually relevant. Given a question such as ‘What part of a
plant produces seeds? (a) Flower, (b) Leaves, (c) Stem, (d)
Roots’, it is decomposed into its constituent relations6 i.e.,
‘produce(flower, seeds)’, ‘produce(leaves, seeds)’, ‘pro-
duce(stem, seeds)’, ‘produce(roots, seeds)’. Our approach
validates each of the relations and outputs a confidence
value for them. This confidence is used to pick the right
answer. Our approach achieved an accuracy of 85.7% (com-
pared to 71.4% by a text-driven reasoning approach [7])
highlighting the benefit of our visual reasoning based ques-
tion answering approach.

6. Conclusion
Relation verification constitutes a fundamental compo-

nent within any knowledge extraction system. In this pa-
per, we have highlighted the importance of visual reasoning
for relation phrase verification. We have presented a novel
approach for visual verification that reasons about the enti-
ties in the context of the relation being considered, by es-
timating the spatial consistency of their relative configura-
tions using webly-supervised models. Using our approach,
we have demonstrated impressive results on a large relation
phrase dataset and also highlighted the complementarity of
the cues provided by our approach in comparison to exist-
ing linguistic models. Further we have also demonstrated
the utility of our approach in enriching existing knowledge
bases and visual question answering.
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6The relations for the questions were manually created. Automatic re-
lations generation is a challenging research problem [7].
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