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Abstract

Motivated by reasons related to data security and priva-
cy, we propose a method to limit meaningful visual contents
of a display from being captured by screenshots. Tradition-
al methods take a system architectural approach to protect
against screenshots. We depart from this framework, and in-
stead exploit image processing techniques to distort visual
data of a display and present the distorted data to the view-
er. Given that a screenshot captures distorted visual con-
tents, it yields limited useful data. We exploit the human vi-
sual system to empower viewers to automatically and men-
tally recover the distorted contents into a meaningful form
in real-time. Towards this end, we leverage on findings from
psychological studies which show that blending of visual in-
formation from recent and current fixations enables human
to form meaningful representation of a scene. We model
this blending of information by an additive process, and ex-
ploit this to design a visual contents distortion algorithm
that supports real-time contents recovery by the human vi-
sual system. Our experiments and user study demonstrate
the feasibility of our method to allow viewers to readily in-
terpret visual contents of a display, while limiting meaning-
ful contents from being captured by screenshots.

1. Introduction
Print-screen key and screen grabber tools (e.g. Windows

snipping tool) present a convenient way to capture a bitmap
of the contents displayed on a computer monitor. Taking a
screenshot of contents seen on a mobile device (e.g. smart-
phone) can also be readily achieved. As enterprises exploit
electronic devices to share documents/images, there is an
increasing need from business and social domains for tech-
nologies which protect documents/images (especially those
whose contents are sensitive e.g. business plans and private
chat messages) from being illegally copied by screenshots
and thereby comprising the privacy of the data.

Traditional methods to protect against screenshots take a
system architectural approach. In methods like [18, 15],

a multilevel security operating environment is developed
either with dedicated hardware or virtual machines to for-
bid the saving of screenshots. While this protects against
screenshots, it is unrealistic to expect users to modify their
hardware architecture or use virtualization technology when
viewing copyright data. Hence, such approaches are limit-
ed to on-site viewing of data. Other methods [17, 10] install
software on users’ machines to continually poll for screen-
shots events, and remove the screen dump bitmap when
such events are detected. Such methods do not require ex-
pensive changes to system architecture of users’ machines.
A key issue is on the prevention of the installed software
from being overridden by third party drivers. A mobile ap-
plication that was recently developed to support secure ex-
change of messages/images is SnapChat [1] which delivers
more than 150 million messages/images daily. SnapChat
automatically notifies the sender if a screenshot event is de-
tected at the recipient’s mobile device.

In this paper, we exploit image processing techniques,
coupled with human biological vision, to limit meaningful
contents of data presented on a display from being captured
by screenshots. Our method takes visual data of the display
as input, distorts the visual data, and then presents the dis-
torted data back to the viewer. Given that visual data shown
on the display is distorted, screenshots yield little meaning-
ful visual information. A novelty here is that rather than us-
ing dedicated hardware or software to recover the distorted
contents into a meaningful form, we instead rely solely on
human biological vision for direct and automatic recovery.

The underlying idea of our method lies in the findings
that humans process visual data as a series of visual snap-
shots [3, 5]. More importantly, pioneering works on visual
scene memory by Pottet et al. [13, 12] showed that there
is a brief persistence of visual information in the short-term
memory of a viewer, in which the viewer exploits carry-
over information from recent fixations to construct a co-
herent representation of the current scene. Similar conclu-
sions have also been reported by other psychological stud-
ies [7, 11, 6]. In this aspect, what we see at an instance
in time is a subtle blend of the preceding and present fixa-
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tions. This phenomenon is well known and has been deftly
exploited in various display devices e.g. flipbooks [9] and
persistence-of-vision displays [2, 16].

We exploit this persistence (albeit briefly) of visual in-
formation in the short term memory to develop a visual
contents distortion algorithm in which distorted visual data
can be directly and mentally recovered by the viewer into a
meaningful form. Towards this end, we model the blending
of information from preceding and present fixations by an
additive process, and exploit this in our design of the dis-
tortion algorithm. We do not claim our method complete-
ly eliminates the threat that visual contents displayed on a
screen are stolen. In particular, we note that no method can
prevent a committed adversary from recording visual con-
tents of a screen with another imaging device. Nevertheless,
we believe the proposed method increases the difficulty of
stealing meaningful data with screenshots, and introduces a
novel paradigm to limit useful visual information from be-
ing captured by screenshots.

1.1. Related Work

A common approach to protect against screenshots is to
use application specific plugins to poll for screenshot events
e.g. pressing of the print-screen key. Stamp [17] used low
level utility functions to intercept and to filter illegitimate
screen capture operations. A similar approach was pro-
posed by Okhravi and Nicol [10] where they developed a
graphics subsystem which masks surface pixels of adminis-
trator windows when the print-screen key is pressed. A cen-
tral issue here is that presented data on the display is in its
undistorted form, and hence such approaches are complete-
ly reliant on the integrity of the plugins to detect screenshot
events. We depart from this framework and instead present
only distorted data on the display. Thus, screenshots of the
display yield limited meaningful data.

Gasmi et al. [4] took an Enterprise Right Managemen-
t (ERM) approach to protect against screenshots, in which
applications that are not registered with the ERM controller
cannot be executed. Warren [18] proposed a secured op-
erating system which defines the rules an application must
abide by (e.g. no screenshots during video playback). The
use of virtualization technologies to access copyright data
could be used to protect against screenshots and has been
advocated by Schmidt et al. [15] and Yu et al. [19, 20].
While such approaches offer protection against screenshot-
s, they demand either the addition of dedicated hardware or
modification to existing system architecture and hence can-
not be readily implemented on end-user’s machines.

To identify screenshots of videos, Scarzanella and
Dragotti [14] exploited video jitter as a recognition cue. Lee
et al. [8] extracted combing features from video frames and
used these features to train a support vector machine to iden-
tify if an input image is a screen capture of a video. A weak-

ness of their work is that they learned artifacts that arise
from interlaced recordings and is thus ineffective on record-
ings obtained with more modern progressive devices. S-
napChat [1] was recently developed as a mobile application
for secure exchange of messages/images. To inhibit recipi-
ents from taking screenshots, SnapChat requires recipients
to maintain physical contact with the mobile device’s touch-
screen while viewing the received message/image. Impor-
tantly, SnapChat notifies the sender if a screenshot event is
detected at the recipient’s device. Implicitly, this notifica-
tion serves as a social deterrence to discourage recipients
from taking screenshots. Our method provides a techno-
logical solution to deter users from taking screenshots, and
has important application in empowering users to securely
exchange messages/images. We note here that, unlike our
method, [8, 14, 1] are restricted to checking if copyright
violation has occurred and cannot actively limit meaningful
visual data from being captured by screenshots.

2. Our Approach

Our objective is to distort visual contents of static data
(e.g. text) shown on a screen with a focus that humans can
automatically recover the distorted contents into its mean-
ingful visual form in real-time. This poses a challenge to
conventional visual contents distortion/recovery paradigm:
Can a human be directly incorporated into a process to re-
cover distorted visual contents? Recent psychological stud-
ies [13, 12, 7, 11, 6] have demonstrated that there is a brief
persistence of visual information in a viewer’s short term
memory. This carryover of visual information from recent
fixations helps a viewer constructs a coherent representation
of the current scene over several fixations. In the followings,
we exploit this persistence of visual information to design
a visual contents distortion algorithm, where we model the
smooth blending of visual information from previous and
present fixations by an additive process.

Fig. 1 outlines our method. Given visual data of the
screen, we first compute a set of intermediate distorting
planes. Values within these planes are randomly generat-
ed and support lossless recovery of the distorted data. We
use these planes to generate a set of final distorting planes,
and distort the visual data with these planes. The distorted
data are then presented in quick succession to the viewer,
where meaningful contents of the screen are automatically
and mentally recovered by the viewer. While visual quality
of the distorted data is weaker than the original unprotected
data, we note that there exist numerous business and so-
cial settings where adversaries may find the contents of the
copied documents to be more important than visual quality
of the documents. Given that our framework presents data
that is distorted to the viewer, a screenshot yields limited
meaningful representation of the visual data.



  
Image from 

display 

device 

 

Viewer 
Recovering 

visual 

information         

Sect. 2.3 

  

  

Set of final distort planes 

Distortion of Visual Information 

  

  

Set of intermediate distort planes 

 

Input image �  

Computing 

intermediate               

distort planes                    

Sect. 2.1 

Distorting  

visual 

information                                       

Sect. 2.2 

Computing 

final distort 

planes                             

Sect. 2.2 

    

Set of distorted images  

  

  

Set of distorted images  

Automatic Recovery of Visual Information 

… 

 

Figure 1: System overview of our method to limit meaningful data from being captured by screenshots. Illustrations shown are obtained
with n = 4 distort planes. In practice, we use around n = 22 distort planes, which increases the method’s ability to protect against
screenshots.

2.1. Distortion by Random Values

We term a static display of the screen as image I , and
denote the intensity at (x, y) coordinate of the screen as
I(x, y). Let α and β be respectively the minimum and max-
imum intensity that can be displayed on the screen. We seek
n distorting planesD1, . . . , Dn (each with the same dimen-
sion as I) that can be arithmetically added to I to hide its
contents. In the followings, we termDj(x, y) as a distorting
value and Dj(x, y) + I(x, y) as a distorted value. Impor-
tantly, we desire set {Dj} to satisfy the following equations,

Dj(x, y) = random number, j = 1, . . . , n (1)

α ≤ Dj(x, y) + I(x, y) ≤ β, j = 1, . . . , n (2)

n∑
j=1

[
Dj(x, y) + I(x, y)

]
=

n∑
I(x, y). (3)

Eq. (1) specifies our requirement that each distorting val-
ue Dj(x, y) is randomly computed. In this aspect, I(x, y)
cannot be recovered from screenshot of distorted pixel
Dj(x, y)+I(x, y). Eq. (2) expresses our requirement that a
distorted pixel can be displayed on the screen. Most impor-
tantly, eq. (3) models our requirement that Dj(x, y) sup-
ports lossless recovery of I(x, y) by a human. Specifically,
we model the subtle blending of visual information from
preceding and present fixations in the short term memory
by an additive process. Consequently, eq. (3) models the
notion that viewing of the distorted pixels over n period is
mathematically equivalent to viewing of the original pixel
over the same time period. We note here that an additive

process may not be optimum in modeling this blending of
visual information by our short term memory. Neverthe-
less, in our experiments, we found an additive process to
be remarkably sufficient for a viewer to mentally recover
meaningful visual contents of the original image.

Our aim here is to generate a set of n distorting planes
which satisfies eqs. (1) - (3) for an arbitrary value of n,
n ≥ 2. We note that the tight coupling of distorting values{
D(x, y), . . . , Dn(x, y)

}
by these equations, together with

the arbitrary values I(x, y) can take, makes direct compu-
tation of a Dj(x, y) challenging. Instead, we recognize that
there is a range of values for whichDj(x, y) can take. Thus,
rather than computingDj(x, y) directly, we develop an iter-
ative framework which computes the lower and upper limits
of Dj(x, y) at each jth iteration and exploits these limits to
compute a random value for Dj(x, y).

Let Lj(x, y) and Uj(x, y) denote the lower and upper
limits of Dj(x, y) respectively. From eq. (2), we note that
Dj(x, y) is bounded as

α− I(x, y) ≤ Dj(x, y) ≤ β − I(x, y), (4)

where Dj(x, y) is obtained from eq. (3) as

Dj(x, y) = −
j−1∑
k=1

Dk(x, y)−
n∑

k=j+1

Dk(x, y). (5)

Close examination of eq. (5) reveals a fast method
to compute Lj(x, y) and Uj(x, y). We first discuss the
computation of Lj(x, y). From eq. (5), we note that
Dj(x, y) is dependent on previous sum

∑j−1
k=1Dk(x, y). S-

ince
∑n

j=1Dj(x, y) = 0, as trivially derived from eq. (3),
a possible lower limit for Dj(x, y) is−

∑j−1
k=1Dk(x, y). At
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Figure 2: Toy example for computing a lower limit of D3(x, y).
(a) Since

∑n
j=1Dj(x, y) = 0, a possible lower limit of D3(x, y)

is -0.7. (b) A tighter lower limit for D3(x, y) can be obtained by
assigning D4(x, y), . . . , Dn(x, y) to the currently known upper
limit value U2(x, y).

the same time, the lower limit of Dj(x, y) is also influ-
enced by future sum

∑n
k=j+1Dk(x, y). As such, a low-

er limit value for Dj(x, y) can be computed by assigning
Dj+1(x, y), . . . , Dn(x, y) with the currently known upper
limit value Uj−1(x, y),

L̂j(x, y) = −
j−1∑
k=1

Dk(x, y)− (n− j)× Uj−1(x, y). (6)

We illustrate the computation of L̂j(x, y) with the toy ex-
ample in Fig. 2. This, however, ignores the lower bound on
Dj(x, y) as given in eq. (4). To ensure the lower limit of
Dj(x, y) is within this bound, we compute Lj(x, y) as

Lj(x, y) = max
(
L̂j(x, y), α− I(x, y)

)
. (7)

Similarly, Uj(x, y) can be computed as

Uj(x, y) = min
(
Ûj(x, y), β − I(x, y)

)
, (8)

where

Ûj(x, y) = −
j−1∑
k=1

Dk(x, y)− (n− j)× Lj−1(x, y). (9)

Given Lj(x, y) and Uj(x, y), we compute Dj(x, y) as

Dj(x, y) = γ × Lj(x, y) + (1− γ)× Uj(x, y), (10)

where γ is a random number between 0 and 1. Note
that initial values L0(x, y) and U0(x, y) are respectively
α − I(x, y) and β − I(x, y), as given in eq. (4). It can
be proved that Dn(x, y) = −

∑n−1
k=1 Dk(x, y) and hence∑n

j=1Dj(x, y) is guaranteed to be equal to 0.
For illustration, we show an image I in Fig. 3(a) and an

exemplar set of {Dj} generated with n = 4 in Fig. 3(b).
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Figure 3: Distorting image I with {Dj}. (a) Input image I . (b)
Set of Dj generated with n = 4 and visualized by normalizing
between 0 and 1. (c) Distorted images obtained by arithmetical-
ly adding Dj to I . RMS distances between distorted images and
input image are shown at the bottom of each distorted image. Ob-
serve that information is less hidden in latter distorted images, as
also indicated by their decreasing RMS values.

Distorted images {Dj + I} are shown in Fig. 3(c). We
compute the root-mean-square (RMS) distances between
each distorted image and the input image, and report them
at the bottom of the distorted images. As observed in Fig.
3(c), visual contents in I are completely hidden by initial
distorting planes but are increasingly revealed at subsequen-
t planes, as also indicated by the decreasing RMS values.
This is not surprising, since the computation of Lj(x, y)
and Uj(x, y) in eqs. (7) and (8) results in a tighter range
from which Dj(x, y) is sampled from at latter iterations.
This results in less variations to Dj(x, y). Consequent-
ly, for pixels with similar intensity, their distorted values
Dj(x, y)+I(x, y) exhibit less variations at latter iterations,
and hence visual contents of distorted images become in-
creasingly revealed.

To visualize this observation, we create 1000 test im-
ages each of size 100 × 100. All pixels within each im-
age have the same intensity value that is randomly select-
ed in the range 0 to 1. For each distorting plane Dj , we
compute across these 1000 images the range of values from
which Dj(x, y) can be sampled and depict it as the blue
plots in Fig. 4(a). A blue dot in each panel corresponds
to a Dj(x, y) value, where the color intensity increases lin-
early with the number of pixels that can be assigned with
this Dj(x, y) value. Red plots depict the distributions of
Dj(x, y) values that are assigned to the pixels. Each red
dot corresponds to a Dj(x, y) value whose color intensity
increases linearly with the number of pixels assigned with
this Dj(x, y) value. As observed from the blue plots, the
range of values from which Dj(x, y) is sampled becomes
tighter at latter iterations. This results in more pixels being
assigned with similarDj(x, y) values, as shown by reduced
spread of the red dots. Thus,Dj(x, y) exhibit less variations
at latter iterations, which reduces the information distorting
capability of the planes. In the following, we proposed a
simple but effective method to circumvent this.
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Figure 4: Empirical analysis of the number of pixels that are
paired with a distorting value. Results are obtained by 1000 runs
on different images (each measuring 100 × 100), in which pixel-
s of each image have the same intensity value randomly sampled
in the range 0 to 1. Blue plots depict the range from which the
distorting values can be sampled and assigned to pixels, where the
color intensity increases linearly with the number of pixels that
can be assigned to a distorting value. Red plots depict the distri-
bution of distorting values that are actually selected and assigned
to the pixels, where the color increases linearly with the number
of pixels assigned with a distorting value. Note in Fig. 4(a) that
decreasing range from which distorting values are sampled (blue
plots) result in less variations to the distorting values (red plots).
This is effectively resolved in Sect. 2.2, as depicted in Fig. 4(b).
Best viewed on screen.

2.2. Random Selection of Distorting Values

We want to ensure information distorting capability
is consistent across different distorting planes. This is
achieved when distorting values exhibit consistent (and
large) variations for each distorting plane. When this is
achieved, the distorted values Dj(x, y) + I(x, y) at each
jth iteration will be different, even for image pixels with
similar intensity. This ensures visual contents of the image
can be consistently distorted by the planes. Our goal here is
to generate such a set of final distorting planes {Fj} which
possesses this information distortion capability.

We define set Υ(x, y) to be
{
D1(x, y), . . . , Dn(x, y)

}
.

Let Fj(x, y) denote a distorting value at (x, y) location of
Fj . We obtain Fj(x, y) by randomly selecting without re-
placement the values from Υ(x, y). This randomly dis-
tributes the distorting values at each (x, y) location across
different planes, and increases the likelihood that image pix-
els of similar intensity values are assigned different distort-
ing values by each plane. Correspondingly, this limits the
amount of meaningful visual contents revealed in each dis-
torted image. Note that {Fj(x, y)} obtained this way are
guaranteed to satisfy eqs. (1) - (3) since they are directly
obtained from Υ(x, y).

We visualize this improvement in Fig. 4(b). It can be ob-
served that there exists a boarder and more consistent range
of distorting values which can be assigned to image pix-
els (blue plots), as compared to that shown in Fig. 4(a).
More importantly, the distribution of the distorting values
that are assigned to pixels (red plots) also exhibit larger and
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Figure 5: Distorting input image of Fig. 3(a) with final distorting
planes {Fj}. (a) Set of {Fj} generated with n = 4. (b) Distort-
ed images {Fj + I}. RMS distances between distorted and input
images are shown at the bottom of distorted images.

more consistent variations across different distorting planes.
Consequently, these distorting planes {Fj} possess a more
consistent ability to hide visual information of an image.

Given a set of final distorting planes {Fj} generated for
an input image I , we distort I in a similar way by arith-
metically adding each Fj to I . Fig. 5(a) shows a set of
final distorting planes {Fj} generated with n = 4 for the
image of Fig. 3(a). We show the corresponding distorted
images in Fig. 5(b), where RMS distances between the dis-
torted images and the input image are shown at the bottom
of the distorted images. Compared to RMS distances report-
ed in Fig. 3(c), RMS distances obtained by latter distorting
planes are higher. This indicates that latter distorting planes
can better hide visual information of the input image. We
highlight here that while there is a lowering of RMS dis-
tances obtained by the earlier distorting planes, a quantita-
tive evaluation across 1000 test images (discussed in Sect.
3.1) demonstrates that RMS distances can be increased by
using more distorting planes.

2.3. Recovery of Distorted Visual Contents

We exploit the human visual system to automatically re-
cover visual contents of the distorted data in real-time. De-
tailed psychological studies on scene memory show visu-
al data to persist briefly in a viewer’s short term memo-
ry [12, 13], where carryover information from recent fix-
ations empowers the viewer to construct a coherent repre-
sentation of the scene. In this work, we model this blending
of visual contents from recent and current fixations by an
additive process. As given in eq. (3), addition of the distort-
ed images provides lossless reconstruction of the original
visual contents. Thus, by rapid presentation of the distort-
ed images to the viewer, the blending of the visual contents
of distorted images helps a viewer to mentally recover the
visual contents of the original image.
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Figure 6: RMS distances of images formed by combining suc-
cessive distorted images. Given a stream of distorted images pro-
duced by a tested n value, we combine the current distorted image
with previous distorted images, and compute the RMS distance
between the resulting image and the input image. This is repeated
1000 times, each time using input image whose pixels have the
same intensity value that is randomly sampled in the range 0 to
1. Figure plots the mean RMS distances for various n values. As
confirmed by the plot, perfectly reconstructed image are spaced at
n intervals apart. This figure is best viewed in color.

Given an image I , we generate a set of final distorting
planes {Fj} to distort the image, and present the distorted
images {Fj + I} to the viewer at rapid succession. This
process is applied repeatedly, in which at each repetition,
we generate a different set of {Fj}. The number of Fj in the
set, i.e. n, is randomly chosen at run time, 2 ≤ n ≤ ϕ. ϕ is
an empirically derived upper bound for the maximum num-
ber of distorted images which can be presented to a viewer
while ensuring I can be recovered by the viewer. In this
work we found ϕ = 22. Implicitly, ϕ models the maxi-
mum duration beyond which visual information from pre-
vious fixations no longer persists in the viewer’s short term
memory, and thus I can no longer be recovered.

Eq. (3) ensures contents of an image can be reconstruct-
ed losslessly only when distorted images obtained from the
same set of {Fj} are combined. We are aware that this con-
dition is violated when a viewer is presented with a continu-
ous stream of distorted image, since the viewer can mental-
ly combine arbitrary number of successive distorted images
together. Nevertheless, the proposed recovery process en-
sures perfectly reconstructed images to always be n frames
apart. We visualize this property in Fig. 6. Given an input
image of size 100 × 100 whose pixels have the same inten-
sity that is randomly sampled in the range 0 to 1, we com-
pute a stream of distorted images for a tested n value. We
combine a current distorted image with previous distorted
images, and compute the RMS distance between the result-
ing image and the input image. We repeat this experiment
1000 times and plot the mean RMS distances obtained with
various n values. For clarity, we do not show the standard

deviation of the RMS distances in the figure. As observed,
perfectly reconstructed images (with zero RMS distances)
are obtained at every n frames. Our user study (detailed in
Sect. 3.2) provides further confirmation that visual contents
of input image can be faithfully recovered.

3. Experimental evaluation
We present a detail evaluation of our method to protect

contents of documents from being copied by screenshots,
and compare it against a baseline method. Test images are
generated as follows. Each test image measures 100 × 100
and contains 25 random characters (alphabets and numbers
only) that are arranged in a 5× 5 grid. All alphabets are in
uppercase. We fix the intensity of the characters and back-
ground to be 0.25 and 0.75 respectively. Additionally, we
fix the height of each character to be 15 pixels, and the font
type to be Time News Roman. Fig. 3(a) shows an exam-
ple of a synthetic test image. While our focus in this paper
is to protect contents of static data against screenshots, we
note that our method can be readily extended to protect the
visual contents of a movie. We conclude this section by
demonstrating one such possible extension in Sect. 3.3.

3.1. Quantitative Evaluation of Distortion Process

First, we quantitatively evaluate the extent of our method
to distort image contents. For a test image, we compute a
set of distorting planes {Fj}. We distort the test image with
these planes, and compute the average-RMS distances be-
tween the distorted and test images. This is repeated across
1000 different test images to obtain 1000 average-RMS dis-
tances for a tested n value. We report the mean and standard
deviation of the average-RMS distances for each n value in
Fig. 7. We observe the mean average-RMS distances at all
tested n values to be non-zero, which indicates planes {Fj}
to possess information distortion capability. It can also be
observed that RMS distances increase with larger n values,
albeit at a lowering rate. In this aspect, by increasing the
number of distorting planes in a set {Fj}, we can enhance
the information distortion capability of the planes.

3.2. User Study

We conducted a user study to qualitatively evaluate the
visual data distortion and recovery processes. 5 subjects
were engaged for this study. The mean age was 38.6 years,
the youngest was 29 years and the oldest was 42 years. All
subjects have normal (or corrected) vision. Subjects viewed
images from a computer screen (1280 × 1024, 3 × 8 bit
RGB) that is approximately 50 cm away, and which is con-
nected to a quad core 3.4GHz computer. The refresh rate of
the monitor was 60 Hz. We compare our method against a
baseline method which distorts the test image by adding salt
and pepper noise to the image. To ensure fair comparison
against distorted images generated by our method, the noise
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Figure 7: Quantitative evaluation of RMS distances at different n
values. For a test image, we generate a set of distorting planes and
evaluate the average-RMS distances between the distorted and test
images. Graph plots the mean average-RMS distances evaluated
across 1000 randomly generated test images at different n values.
Vertical bars denote standard deviation of the average-RMS dis-
tances. Note that all distorting planes exhibit distortion capability,
where stronger distortion is achievable at larger n values.

density was empirically tuned such that the RMS distance
between the test image and the distorted image of the base-
line method is within a small range of ±0.005 away from
the RMS distance obtained with our distorted image.

In the experiments that follow, we present either a single
image (for evaluating the distortion process) or a continu-
ous stream of images (for evaluating the recovery process)
to subjects. We present images at a mean rate of one image
per 0.0156 second (standard deviation of 7 ×10−5). Sub-
jects were instructed to identify the characters seen in the
presented images. Images produced by the baseline and the
proposed methods are shown in random order to avoid bias
against either methods. Beforehand, all subjects were told
presented images contain 5×5 alphanumeric (i.e. alphabets
and numbers only) characters, of which alphabets are shown
in uppercase, but were otherwise naı̈ve about the methods
used to generate the images. Additionally, all subjects were
told that their timing would not be recorded and to focus
only on the accuracy of their inputs (except the speed e-
valuation experiment). To rigorously evaluate the distortion
and recovery processes, subjects were also instructed to i-
dentify characters of badly distorted images on a best-effort
basis. At the beginning of each study, 5 images were used to
familiarize the subjects with the input interface. Responses
for these images were excluded from all data analysis.

3.2.1 Evaluating Visual Information Distortion

We first evaluate the distortion process. For a tested n value,
we generate a test image, and distort it with our method to
produce n distorted images. We randomly select one from
the n distorted images, and compute the RMS distance be-
tween the test image and the selected distorted image. Us-

ing the baseline method, we generate another distorted im-
age which has similar RMS distance to the test image. Dis-
torted images produced by the baseline and our methods at
various n values are then presented to subjects in random
order. We define an accuracy score as the percentage of
characters that are identified correctly by the subjects. Dif-
ferent test images are used for different subjects.

Fig. 8(a) reports the accuracy scores of our method in
blue and the baseline method in black for various n val-
ues. We fit least squares quadratic curves to the accura-
cy scores and depict them as dashed curves in the figure.
For both methods, we observe subjects to identify fewer
characters correctly as the number of distorting planes n
increases. This is not surprising as the extent of image dis-
tortion increases with larger n, as shown by the increased
RMS-distances in Fig. 7. More importantly, subjects attain
lower accuracy scores on distorted images generated by our
method on majority of the tested n values (33 of 35 test-
ed values). This is also depicted by the lower regression
curve of our method. We highlight here that distorted im-
ages generated by the baseline and our methods have similar
RMS-distances (within a range of ±0.005). In this aspec-
t, this demonstrates our method to distort image can better
hide its visual contents. A paired t-test shows this result to
be significant, (ρ < 10−9).

3.2.2 Evaluating Visual Information Recovery

In the second study, we evaluate the feasibility of our
method to empower humans to automatically recover visual
contents of distorted images. For a tested n value, we gen-
erate a stream of distorted images, and present these dis-
torted images to subjects. Subjects were tasked to report
the characters seen on the screen. Higher accuracy scores
imply better ability of the method to support real-time and
automatic recovery of visual contents. Fig. 8(b) reports the
accuracy scores obtained by the subjects on images gener-
ated by the proposed and baseline methods for various n
values. Accuracy scores of both methods show a general
downward trend with increasing n values (as also indicat-
ed by their least squares curves). Importantly, we note that
subjects show remarkable consistency in recovering visual
contents of images distorted by our method where all char-
acters are correctly identified even when as many as 22 dis-
torting planes (i.e. a mean average-RMS distance of 0.31,
as given in Fig. 7) are used. This value could be used as
an upper bound for the number of distorting planes that can
be used while ensuring visual contents of an image can be
faithfully recovered by a viewer. Overall, visual contents in
images distorted by our method are better recovered by the
subjects, as indicated by a paired t-test (ρ < 10−3).

Additionally, we evaluate the time and accuracy score at
which humans can recover distorted visual contents. The s-
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Figure 8: User study results on (a) distortion and (b) recovery processes. Accuracy scores on distorted images generated by our method
are shown in blue ‘x’ and by the baseline method in black ‘◦’. Least squares curves fitted to accuracy scores are depicted by dashed curves.
Overall, our method demonstrates better distortion capability, as confirmed by a paired t-test (ρ < 10−9), while supporting better visual
contents recovery (ρ < 10−3). See text for details. This figure is best viewed in color.

Table 1: Time and accuracy of visual information recovery
at different contrast levels.

Contrast Level 1.5 2.0 2.5 3.0
Distorted
text

Time 15.75s 9.25s 8.16s 8.07s
Accuracy 78% 97% 100% 100%

Undistorted
text

Time 8.75s 9.00s 8.33s 8.1s
Accuracy 100% 100% 100% 100%

tudy is conducted under different contrast levels by varying
the intensity ratio of background and characters from 1.5 to
3 at intervals of 0.5, where higher values indicate greater
contrast. Subjects were instructed to identify characters of
distorted images on a best-effort basis in the shortest time
possible. We compare the performance against undistorted
text and report the results in Table 1. As observed, for dis-
torted text, accuracy and time of recognition deteriorate at
low contrast levels, but approaches that of undistorted text
as contrast ratio increases. In particular, at contrast levels
of 2.5 and 3.0, all visual contents of the distorted text were
correctly recovered, in which humans take equal time to re-
cover distorted and undistorted visual contents.

3.3. Extension to movies

Our method can be readily extended to prevent screen-
shots of movies from capturing meaningful visual contents.
Given a currently considered video frame Ti, we identify
the next frame Tj in the movie whose RMS distance to Ti
is above a user defined threshold τ . We compute n as the
number of frames between Tj and Ti, and distort Ti using

n distorting planes to form n distorted frames. This pro-
cess is repeated from Tj until the end of the movie. The
distorted frames are then collected together to form a dis-
torted movie. We note that our method provides the distort-
ed movie with an advantage over the original movie during
video playback. Specifically, pausing of a distorted movie
during playback presents a distorted frame to the user. This
empowers users to quickly keep their viewing of on-screen
movie contents private from third parties, while allowing
them to readily resume playing the movie at a later time.

4. Discussion
We proposed a method to limit meaningful visual infor-

mation from being captured by screenshots. Our method
takes visual data of the screen as input, distorts the visual
data, and presents the distorted data back to the viewer. The
novelty of our approach lies in the distortion method which
exploits findings from psychological studies to empower a
viewer to automatically and mentally recover the distort-
ed visual data in real-time. This is a shift from tradition-
al methods which takes a system architectural approach to
protect against screenshots. Our experiments and user study
demonstrate the feasibility of our method to limit meaning-
ful information from being captured by screenshots, while
empowering viewers to readily interpret visual contents of
the display. We also demonstrate how the proposed method
can be readily extended to protect meaningful visual data of
movies from being captured by screenshots. To our knowl-
edge, this is the first approach which exploits image pro-
cessing techniques to limit useful visual information from
being captured by screenshots.
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