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Abstract

We present a Generalized Deformable Spatial Pyramid
(GDSP) matching algorithm for calculating the dense cor-
respondence between a pair of images with large appear-
ance variations. The main challenges of the problem gen-
erally originate in appearance dissimilarities and geomet-
ric variations between images. To address these challenges,
we improve the existing Deformable Spatial Pyramid (DSP)
[10] model by generalizing the search space and devising
the spatial smoothness. The former is leveraged by rota-
tions and scales, and the latter simultaneously considers
dependencies between high-dimensional labels through the
pyramid structure. Our spatial regularization in the high-
dimensional space enables our model to effectively pre-
serve the meaningful geometry of objects in the input im-
ages while allowing for a wide range of geometry variations
such as perspective transform and non-rigid deformation.
The experimental results on public datasets and challeng-
ing scenarios show that our method outperforms the state-
of-the-art methods both qualitatively and quantitatively.

1. Introduction

Densely matching two correlated images at the pixel
level is one of the most fundamental tasks in computer vi-
sion applications. A tremendous number of research ef-
forts have been conducted in various forms. For example,
narrow-baseline stereo matching finds a pixel-level corre-
spondence along each scan-line, and 2D motion flow esti-
mates dense correspondence fields under a small displace-
ment constraint. In a broad concept, general dense corre-
spondence algorithms address matching two images with
different objects or scenes.

Specifically, general dense correspondence algorithms,
where the object and viewpoint differ significantly, do not
have explicit low-level constraints between the input im-
ages. There mainly exist two principal challenges: (1) pho-
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Figure 1: Backward warping results of each algorithm given a pair
of images with significant geometric and photometric variations:
SIFT Flow [12], DSP [10], DAISY Filter Flow (DFF) [23], and
our algorithm. Images are courtesy of L. Liu, the author of [13].

tometric variations due to different camera settings and il-
lumination conditions and (2) geometric variations due to
viewpoint changes, object pose changes, and the non-rigid
deformation of objects between the images. These various
factors are projected onto the 2D space; thus, it is challeng-
ing to decompose these factors from the images.

Many approaches have attempted to resolve these dif-
ficulties by simplifying the complex factors. A common
way to gain robustness for photometric variation is to adapt
illumination-invariant descriptors, such as SIFT [14], SURF
[1], or DAISY [19]. However, it is infeasible to decompose
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individual factors of geometric variations. The previous at-
tempts derive their own approximating models, such as the
2D pixel-level MRF model [11, 12, 13, 18], spatial pyramid
model [10], and nearest-neighbor search [23].

However, the performance is limited to the controlled
scenarios formulated by their deformation models, which
failed to handle a broad range of geometric deformation.
SIFT Flow [12] and Deformable Spatial Pyramid (DSP)
[10] use the SIFT descriptor with a fixed scale and rota-
tion; as a consequence, they do not fully cover the scale and
rotation varying scenarios as shown in Fig. 1. To overcome
the limitations on scale and rotation, DAISY Filter Flow
(DFF) [23] and variants of SIFT Flow [13] increase the de-
gree of freedom in the search space by including scale and
rotation invariant properties on their descriptor. However,
they show only visually plausible but geometrically incor-
rect matching results because they do not properly enforce
spatial constraints in the spatial domain mainly due to com-
putational concerns.

In this paper, we propose the Generalized Deformable
Spatial Pyramid (GDSP) model to overcome the limitations
of the previous approaches and extend the capability of
matching images under versatile forms of geometric vari-
ations. We reformulate the existing DSP [10] model by im-
posing rotation and scale invariant properties and consider-
ing the spatial relationship in the high dimensional search
space through the pyramid structure. This high dimensional
regularization directly links to our main contribution: we
can effectively preserve the meaningful inherent geome-
try and texture in images while allowing a broad range of
geometric variations such as affine, perspective and even
non-rigid deformation. We provide an optimization method
of our high dimensional objective functions by modifying
loopy belief propagation [12, 17, 22] to our formulation,
which is the second contribution of our work.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the previous works on dense correspondence
matching and explains their weaknesses. Section 3 reviews
the original DSP model and introduces our generalized
model with its optimization formulation. Section 4 presents
qualitative and quantitative results of our algorithms with
the state-of-the-art algorithms, and Section 5 concludes the
paper and suggests further work.

2. Related Work
The performance boundary of dense correspondence al-

gorithms is generally determined by the type of descrip-
tor and the method of regularizations that each algorithm
adopts. We thoroughly examine the related research efforts
on dense correspondence and describe their limitations.

SIFT Flow [12] gives an important breakthrough on
dense matching between different scenes and objects. The
algorithm densely extracts the SIFT descriptor for each

pixel with a fixed scale and orientation, and then matches
the descriptors via dual-layered loopy belief propagation.
The local gradient information and pixel-level regulariza-
tion enable fine matching even across different scenes or
objects. However, the lack of the consideration of scale and
rotation confines its scope of matching scenarios.

There have been several extensions of SIFT Flow to
overcome the limitations of the original formulation. The
modified algorithms employ multiple SIFT descriptors for
each pixel with varying scales [18] and orientations [13]
rather than fixed ones, and they match the most agreeable
one among the descriptors for each pixel. The increased di-
mension of their descriptors expands the matching coverage
of their algorithms to scale and rotation varying scenarios.
Scale-Less SIFT (SLS) [8] devises a novel scale-invariant
SIFT-based descriptor and demonstrates its performance in
conjunction with SIFT flow.

These methods, however, overlook joint regularization
between neighboring pixels in complex motion. Instead, the
translation is used only for the smoothness term [8, 13], or
both the translation and scale are used for the smoothness
terms without considering their dependency [18]. Thus,
their formulations are not sufficient to handle deformation
by even a similarity transform.

DSP [10] matching suggests a coarse-to-fine approach to
handle geometric deformations with orientation- and scale-
fixed descriptors. The novel regularization through multiple
layers in the pyramid structure efficiently handles global
and local geometric deformations. A variant of DSP has
also been proposed to handle rotation for 3D motion flow
[9]. However, these approaches [9, 10] do not provide a
concrete solution for handling severe geometric variations
caused by orientation and scale changes.

More recently, DAISY Filter Flow (DFF) [23] targets
non-rigid geometric variations between two images. This
approach adopts the DAISY descriptor [19] and inherits the
regularization scheme in the PatchMatch Filter [15], which
filters the cost volume and derives optimal labels from the
high dimensional search space. DFF outperforms the above
previous works under scale and rotation varying scenarios.
However, searching for optimal labels based on PatchMatch
Filtering yields randomized results for each trial and pro-
duces visually plausible but incorrect flow fields, which are
caused by weak spatial regularization.

To cope with the various types of complex deforma-
tions against the previous approaches, we suggest a gen-
eralized model of DSP [10]. We utilize orientation- and
scale-varying SIFT descriptors which can effectively find
correspondence when various motion exists. Additionally,
we design the smoothness constraints of our model to con-
sider the dependencies of each state through the pyramid
levels, which allows it to effectively regulate and propagate
the deformation of objects in a coarse-to-fine way.



Figure 2: The graph structure of DSP model [10].

3. Approach
We first briefly review the DSP algorithm in Section 3.1

and discuss how our generalized model, GDSP, improves
the shortcomings of DSP in Section 3.2. The optimiza-
tion method for our objective function is described in Sec-
tion 3.3.

3.1. Review on Deformable Spatial Pyramid (DSP)

Deformable Spatial Pyramid (DSP) matching [10] ex-
tracts dense correspondence across two different images in
the spatial pyramid model. The pyramid model consists of
two layers: a grid-cell level layer and a pixel-level layer. In
the grid-cell level layer, DSP divides a source image into
four rectangular cells and continues dividing each cell in
the same manner until it reaches the last level of the pyra-
mid, as shown in Fig. 2. In the graphical representation
of DSP, each grid cell and each pixel correspond to nodes.
The edges connect neighboring grid cells, parent-child grid
cells, and each pixel with its parent grid cell.

Let i denotes an index of a node in the graphical model;
ti = (ui, vi) becomes a translation vector of node i from
the source to the target image. DSP formulates its objective
function in a Markov random field model [11]:

E(t) =
∑
i

Di(ti) + α
∑
{i,j}∈E

Vij(ti, tj). (1)

In Eq. (1), Di is a unary term which calculates the SIFT
matching cost of node i according to its state ti, and Vij
regulates spatial smoothness between node i and node j,
which are connected by an edge. DSP optimizes the objec-
tive function via loopy belief propagation.

The multiple levels of spatial extent in the DSP model
allow for its robust matching on two images under large ap-
pearance variations. The upper level in the pyramid struc-
ture globally estimates matching states, while the lower
level in the pyramid structure takes the responsibility of
matching for local variations. However, from our exper-
iments, DSP shows its shortcoming when handling view-
point changes and complex object motions because the grid
cells in the DSP model do not account for its scale and rota-
tion; thus, the cells inherit incorrect estimation of its spatial

Figure 3: Comparison of matching methods between original DSP
[10] model and our GDSP model.

moves in the final matching result.

3.2. Generalized Deformable Spatial Pyramid
(GDSP)

To overcome the limitations of DSP, we propose a Gen-
eralized Deformable Spatial Pyramid (GDSP) model, which
incorporates a rotation and scale term into the original
model. Let IS and IT denote a source image and a tar-
get image to match, respectively. Our generalized objective
function becomes

E(t, r, s) =
∑
i

Di(ti, ri, si)

+
∑
{i,j}∈E

Vij(ti, ri, si, tj , rj , sj).
(2)

Each node i takes additional states ri and si, which denote
the rotation and scale in the image coordinate, respectively.
Fig. 3 shows the geometric representation of our matching
method compared to DSP. Our model allows each grid cell
to rotate and increase or decrease itself, which gives it more
flexibility to find its correspondence.

In Eq. (2), data term Di(ti, ri, si) calculates the SIFT
matching cost of node i given its state (ti, ri, si) for all sam-
pling pixels p in the node:

Di(ti, ri, si) =
1

z

∑
p

min(‖dS(p)− dT (p′, ri, si)‖1 , λ)

(3)
p′ = oi + si ·R(ri) · −→oip + ti, (4)

where dS(p) and dT (p′, ri, si) are SIFT descriptors ex-
tracted at location p in the source image and at p′ with
orientation ri and scale si in the target image respectively.
We extract SIFT descriptors with varying ri and si in the
source image only, and with a fixed rotation and scale in the
target image because only relative rotation and scale mat-
ter. Eq. (4) calculates a corresponding point p′ in IT of
p in IS with a given state of (ti, ri, si), which is visual-
ized in Fig. 4. R(ri) is a rotation matrix which is [cos(ri)



ps = oi + si · −→oip
psr = oi + siR(ri) · −→oip

p′ = oi + siR(ri) · −→oip + ti

Figure 4: Visualization of Eq. (4). Black: denoting a rectangular
grid cell of node i centered at oi. Yellow: after adjusting scale si
on the grid cell. Green: after adjusting scale si and rotation ri.
Blue: after adjusting scale si, rotation ri, and translation ti.

(a)

In global coordinate

(b)

In local coordinate of p1

(c)

Figure 5: Improper and redundant cost occurs without consid-
ering mutual dependencies for regularization (green dashed line
in (b), derivation: ‖t2 − t1‖1 = ‖(p′

2 − p2)− (p′
1 − p1)‖1 =

‖(p′
2 − p′

1)− (p2 − p1)‖1). Almost no error occurs if mutually
considering each state in the spatial domain in (c).

− sin(ri); sin(ri) cos(ri)], and oi denotes the 2D center
coordinate of node i in the source image. λ is a truncation
constant, which regulates the undesired effects from out-
liers, and z is the number of descriptors used for calculating
the data term.

The pairwise term Vij in the objective function in Eq. (2)
penalizes the state discrepancy of two nodes that are con-
nected by an edge. Conventional approaches simply calcu-
late the differences of each state individually in the param-
eter space and include their weighted sums in their object
functions [10, 13, 18, 12]. Note that this is valid only if
the regulating states are orthogonal [10, 12]. However, for
the case of simultaneously regulating multiple states (scale,
rotation, translation) that have dependencies [13, 18], the
pairwise term should consider their mutual dependencies to

o′i = oj + sj · −−→ojoi

o′′i = oj + sjR(rj) · −−→ojoi

o′′′i = oj + sjR(rj) · −−→ojoi + tj

Figure 6: Derivation of V 2
ij in Eq. (6). Red: denoting a child node

i of node j. Yellow: after adjusting scale sj of the parent node j.
Green: after adjusting scale sj and rotation rj of the parent node.
Blue: displaying the location of node i by a state (tj , rj , sj) of
the parent node j. Purple: indicating position of node i by its own
state (ti, ri, si). The pairwise term calculates the distance between
the center points of the purple and blue rectangle (red-dashed line).

preserve the original topology of objects in images.
Fig. 5 shows an improper regularization of the previous

approaches [13, 18] and our modification. When regulat-
ing states of two points p1, p2 by calculating the absolute
differences of the translation states, the redundant cost oc-
curs as the amount of the green-dashed line in Fig. 5(b).
Conversely, in our modification in Fig. 5(c), we reflect the
influence of rotation and scale variation on measuring the
translation discrepancies by reasoning in the local spatial
coordinate. This spatial reasoning provides a reasonable
smoothness regularization when scale and rotation vary.

In our pyramid structure, we first impose the spatial
smoothness only between nodes with the parent-child re-
lationship, followed by the individual smoothness between
nodes in the same level. This bipartite regularization prop-
agates scale and rotation information through the pyramid
structure and, at the same time, allows flexible deformation
between nodes in the same level.

Vij =


V 1
ij , if i is a parent node
V 2
ij , if i is a child node
V 3
ij , otherwise

(5)

V 1
ij = α

∥∥tj − ((siR(ri) · −−→oioj −−−→oioj) + ti)
∥∥
1

+ β ‖ri − rj‖1 + γ ‖si − sj‖1
V 2
ij = α

∥∥ti − ((sjR(rj) · −−→ojoi −−−→ojoi) + tj)
∥∥
1

+ β ‖rj − ri‖1 + γ ‖si − sj‖1
V 3
ij = α ‖ti − tj‖1 + β ‖ri − rj‖1 + γ ‖si − sj‖1 .

(6)

Eq. (6) enumerates different forms of the pairwise terms
according to the relationships between node i and j (e.g..
the parent-child cells or neighbors) with weighting con-
stants α, β, and γ. When nodes are in the parent-child re-
lationship, we compensate the translation discrepancies to



make scale or rotation invariant when the parent cells af-
fect the translation of their child cells. Fig. 6 displays the
derivation of one case of the pairwise terms where j is a
parent node and i is one of its child nodes.

3.3. Optimization

Our algorithm conducts optimization in two steps: in the
grid-cell level matching and in the pixel-level matching, as
in [10]. It first derives the optimal states of each grid cell
by using loopy belief propagation [17, 22] and then directly
calculates the optimal states for each pixel from a reduced
form of the objective function.

When we optimize our objective function via loopy be-
lief propagation, the complexity is O(n2), where n is the
number of labels, which is significant in our formulation.
DSP [10] employs the distance transform to compute mes-
sages for matching grid cells via loopy belief propagation to
reduce the complexity to O(n) [6]. Our extended pairwise
terms, however, cannot directly adopt the distance trans-
form because variables, ti(ui, vi), ri, and si are combined
together in the translation-smoothness terms of V 1

ij and V 2
ij

in Eq. (6). These terms make it difficult to directly compute
translation discrepancies for passing messages.

To regard our formulation as an ordinary four dimen-
sional case of the distance transform, we reorder the min-
imization term according to the dependencies of each vari-
able. In the pairwise term V 1

ij in Eq. (6), if we let
∆u(ri, si) = (siR(ri) · −−→oioj −−−→oioj) · û and ∆v(ri, si) =
(siR(ri) ·−−→oioj−−−→oioj) · v̂, then a message to pass becomes:

h(uj , vj , rj , sj)

= min
ui,vi,ri,si

(αf1 + αf2 + βf3 + γf4 + h)

= min
si
{γf4 + min

ri
{βf3 + min

vi
[αf2 + min

ui

(αf1 + h)]}}

where f1 = ‖uj − (∆u(ri, si) + ui)‖1 ,
f2 = ‖vj − (∆v(ri, si) + vi)‖1 ,
f3 = ‖rj − ri‖1 , f4 = ‖sj − si‖1 ,
and h = h(ui, vi, ri, si).

(7)

The second line in Eq. (7) calculates the message that
node i want to pass to node j. Because of the complex
form of a minimization problem, we organize the original
form into a series of four minimization problems, as in the
third line of Eq. (7). Then, we can sequentially calculate
the reordered form of V 1

ij via a four dimensional distance
transform, as shown in Algorithm 1. The algorithm updates
the offset ∆u(ri, si) and ∆v(ri, si) for every ri and si.

This modification successfully reduces the complexity of
our optimization problem from O(n2) to O(n). Addition-
ally, the usage of the offset term suggests a general way
for adopting Loopy Belief Propagation in the order of O(n)
when variables are linearly combined.

Algorithm 1 The Distance Transform (DT) for computing
messages with V 1

ij in the 4D case (ui, vi, ri, si)

Require: A message from a parent node i to a child node j be-
fore updating, The center coordinate oi, oj of node i and j
respectively.

Ensure: A message from a parent i to a child j after updating
1: procedure MessageUpdating
2: for si, ri, vi do // calculating h(uj , vi, ri, si)
3: 1D DT for ui with offset ∆u(ri, si)
4: end for
5: for si, ri, uj do // calculating h(uj , vj , ri, si)
6: 1D DT for vi with offset ∆v(ri, si)
7: end for
8: for si, uj , vj do // calculating h(uj , vj , rj , si)
9: 1D DT for ri

10: end for
11: for uj , vj , rj do // calculating h(uj , vj , rj , sj)
12: 1D DT for si
13: end for
14: end procedure

The pairwise term V 2
ij , where node i and j are a child and

parent cell, respectively, follows the same procedure with
the change of sign of the offset term. We give more details
on the procedure in the supplementary material. The pair-
wise term V 3

ij follows a general case of distance transform
for four variables.

In the pixel-level matching, the optimal states for each
pixel i can be directly derived from the objective function
because no edge exists between pixels:

(t∗i , ri
∗, si

∗) = argmin
ti,ri,si

(Di(ti, ri, si)

+α
∥∥ti − ((spR(rp) · −−→opoi −−−→opoi) + tp)

∥∥
1

+β ‖ri − rp‖1 + γ ‖si − sp‖1 ,
(8)

where tp, rp, sp, and op denote, respectively, translation,
rotation, scale, and center position of a parent node p, which
were already derived in the grid-cell matching step. Finally,
we use a bilateral filter for pixel-level refinement at the end
of the algorithm.

4. Experiment
We verify our proposed model by comparing with the

following four algorithms: SIFT Flow [12], Deformable
Spatial Pyramid (DSP) [10], DAISY Filter Flow (DFF)
[23], and Scale-Space SIFT Flow (SSF) [18]. We use the
authors’ implementations of each paper and their initial sets
of parameters for fair comparisons. The experiments in-
clude quantitative and qualitative comparisons on public
datasets and our own image collections. All of the algo-
rithms were tested on a PC with Intel Core i7 3.50 GHz and
16.0GB memory.



Source Target GDSP (Ours) DSP [10] SIFT Flow [12] DFF [23] SSF [18]

Graffiti (Viewpoint) 52.9% 1.6% 2.4% 19.8% 5.7%

Boat (Rotation+Scale) 62.7% 1.0% 2.6% 8.5% 0.6%

Cars (Illumination) 98.1% 80.0% 95.9% 22.2% 97.4%

Figure 7: Several experiment results on Mikolajczyk et al. dataset [16] and matching percentages. On each source image, valid matching
areas are colored (invalid areas, due to occlusion or dis-occlusion, are in black), and correctly matched areas are highlighted.

Scene characteristic GDSP (Ours) DSP [10] SIFT Flow [12] DFF [23] SSF [18]
Bikes Blur 0.979 ± 0.008 0.941 ± 0.046 0.994 ± 0.005 0.766 ± 0.169 1.000 ± 0.000
Trees Blur 0.953 ± 0.035 0.951 ± 0.036 0.946 ± 0.039 0.567 ± 0.397 0.969 ± 0.016

Graffiti Viewpoint 0.503 ± 0.331 0.033 ± 0.029 0.238 ± 0.216 0.242 ± 0.215 0.521 ± 0.431
Bricks Viewpoint 0.771 ± 0.417 0.230 ± 0.368 0.491 ± 0.460 0.465 ± 0.324 0.829 ± 0.282
Bark rotation + scale 0.168 ± 0.272 0.007 ± 0.007 0.011 ± 0.017 0.018 ± 0.036 0.021 ± 0.031
Boat rotation + scale 0.312 ± 0.208 0.003 ± 0.002 0.006 ± 0.008 0.150 ± 0.152 0.002 ± 0.001
Cars Illumination 0.995 ± 0.008 0.858 ± 0.148 0.992 ± 0.018 0.437 ± 0.257 0.994 ± 0.012
UBC JPEG compression 0.998 ± 0.005 0.969 ± 0.027 0.897 ± 0.068 0.753 ± 0.172 0.980 ± 0.044

Average Rank 1.625 4.125 3.375 4.000 1.875

Table 1: Percentages of correct match on Mikolajczyk et al. dataset [16]. Green colored cells and light green colored cells denote the best
and the second-best statistic on each scenario, respectively.

Our algorithm extracts the dense SIFT descriptor [14] us-
ing the VLFeat library [21]. We strictly fix all parameters in
our algorithm during the experiment. We empirically set the
number of the pyramid level to 4, α = 0.0018, β = 0.0072,
γ = 0.048, and λ = 400. For computational efficiency, we
fix the number of rotation state ri by dividing [−π, π] into
9 bins and choose 7 scale states si between [0.5, 2] in the
log scale. For compatibility with the parameter setting, our
algorithm automatically sets the width of input images to
270 pixels while keeping the width-height ratio.

Results on the Mikolajczyk et al. dataset [16]: We con-
ducted an experiment on the Mikolajczyk et al. dataset [16]
to evaluate matching performances on scene alignment. The
dataset includes the same scenes taken under illumination
changes, viewpoint variations, sharpness variations, planar
transformation, and different compression rates.

We used the same evaluation metric as in [7, 12, 23],
which calculates a percentage of correct matching pixels on
a valid matching region. The computed correspondence,
the error of which is less than r pixels, is considered to be
correct. We relaxed the criterion and set r = 20 because

there exist a few incorrect labels in the ground truth data
that include significant geometric transformation.

Table 1 and Fig. 7 demonstrate the superior perfor-
mances of our GDSP model on the dataset. Our model best
estimates dense correspondence fields under illumination,
compression rate, and planar scale and rotation changes.
We confirm that the coverage of our model reaches to per-
spective transformation by referring to the results on view-
point variation scenarios. This strength of our model comes
from our high dimensional search, which includes rotation
and scale variation while preserving the internal topology in
images through the pyramid structure. Though our model is
designed to handle significant geometric deformation, our
method still demonstrates comparable results when only
sharpness difference and small displacement exist.

Results on the Moseg dataset [2]: We also tested our
algorithm on the Moseg Dataset [2] to evaluate how our al-
gorithm handles large displacement and multi-layered mo-
tion. We followed the same evaluation protocols in [20, 23],
which measured overlap percentages between warped im-
ages and the ground truths using the Dice coefficient [3].



Figure 8: Quantitative results on the Moseg dataset [2].

As in Fig. 8, we confirmed that our algorithm also
shows its strength on estimating dense correspondence un-
der various multi-layered motions in outdoor scenes. The
performance of our model, however, gets degraded when
more than 50 frame difference occurs. This is because our
pyramid-structure-based approach has its inherent difficul-
ties on handling independent motions with substantial dis-
placement. We expect that this issue can effectively be re-
solved by controlling different weights on edges in the pyra-
mid structure via segmentation-aware approaches, which
will be a part of our future work.

Results on challenging non-rigid pairs: Our geometry-
preserving smoothness shows its superiority when two im-
ages specifically share similar contents and lie under non-
rigid deformation. Fig. 9 shows intermediate results during
our GDSP matching. An upper pyramid level coarsely holds
global matching status, and, at the same time, each cell in
the lower pyramid levels allow local non-rigid deformation
while spatial smoothness propagates through the pyramid
levels.

We tested image pairs under non-rigid deformation from
our own image collections and Caltech 101 database [5].
Fig. 10 demonstrates that our model successfully computes
dense correspondence fields under non-rigid deformation.
The results show the backward-warped images from the tar-
gets to the sources with the obtained correspondence fields
from each algorithm. The more similar the posture of warp-
ing result is to that of the source image, the more accurate
the obtained dense correspondence field. DSP [10], SIFT
Flow [12], and SSF [18] clearly show their inherent limita-
tions when large scale and rotation variation exist. DFF [23]
correctly delineates the shape in the source image, but its
PatchMatch-based search strategy without strictly enforcing
spatial coherence [15] destroys overall details with incorrect
flows.

To qualitatively analyze our geometry preserving model,
we track all of the corresponding pixels from the target im-
age to the source image and generate interpolated images

Grid-cell matching Pixel-level
matching1st layer 2nd layer 3rd layer 4th layer

Source
image

Matching in
the target

image

Warping to
the source

image

Figure 9: Intermediate results during the matching process of our
model. Matching details are refined as the matching descends to
the pyramid levels.

between two images. We compare our model with DFF
[23], which is supposed to handle non-rigid deformation
better than the other algorithms. The qualitative analysis
of our model is shown in Fig. 11, and that of DFF is in the
supplementary material. For each figure, the fourth column
shows the backward warping results of each scenario in the
two figures. The second column shows pixels in the target
images, which are transferred to the warping results, and the
third column demonstrates how each pixel in the target im-
age moves to their corresponding pixel in the source image.
The last column corresponds flow fields.

The interpolated sequences of our model in Fig. 11 vali-
dates that the pixel-level dense correspondence is regularly
obtained while preserving the geometry of each object. The
qualitative analysis of DFF’s shows that the geometry of
foreground objects is not preserved and the number of trans-
ferred pixels to the warping results is significantly reduced.
This outcome implies that the majority of correspondences
are incorrectly calculated, although the warping results look
similar to their source images. The flow fields also validate
these results; the flow fields of our model show piecewise-
smoothness, while those of DFF [23] demonstrate irregular-
ities overall.

Algorithm LT-ACC IOU LOC-ERR
GDSP (Ours) 0.882 ± 0.072 0.728 ± 0.060 0.078 ± 0.032

DSP [10] 0.774 ± 0.148 0.660 ± 0.142 0.097 ± 0.041
SIFT Flow [12] 0.730 ± 0.183 0.542 ± 0.178 0.093 ± 0.028

DFF [23] 0.830 ± 0.195 0.720 ± 0.185 0.188 ± 0.086
SSF [18] 0.856 ± 0.077 0.606 ± 0.186 0.140 ± 0.053

Table 2: Quantitative analysis of non-rigid deformation scenarios
using the label-transfer metrics.

Table 2 shows the quantitative analysis of the matching
results as in Fig. 10. We adopt the same label-transfer met-
ric in DSP [10]. LT-ACC denotes the accuracy of label-
transfer results, which counts the percentage of correctly
labelled pixels, and the intersection over union (IOU) cal-
culates the ratio of intersection to union between the label
transfer results and the ground truths [4]. LOC-ERR cal-
culates localization errors in the bounding box. Our model
outperforms the state of the arts in terms of the metrics.



Source Target GDSP (Ours) DSP [10] SIFT Flow [12] DFF [23] SSF [18]

Figure 10: Backward warping results on the source images based on the obtained dense correspondence when non-rigid deformation exists.
The more similar the warping result is to the source image, the more accurate the obtained dense correspondence field is.

GDSP (Ours)
Interpolated image

Source Target −−−−−−−→ Warping Flow fields

Figure 11: Qualitative analysis of our dense correspondence
search results.

Runtime: The computational complexity of our algo-
rithm inevitably becomes cubic along with the increased
dimension of the search space. For handling a 320 x 240
image, on the PC with Intel Core i7 3.5 GHz and 16GB
memory, our algorithm averagely takes 212.0 (s), where
DSP takes 4.59 (s), SIFT-Flow 3.46 (s), DFF 64.65 (s), and
SSF 37.12 (s). As in Table 3, our algorithm consumes sub-
stantial times on extracting features and matching them in

the pixel level because our generalized model requires (the
number of scale states) × (the number of rotation states)
times more features per each sampling pixel than DSP [10].
We are, however, working on enabling parallel computing
with GPU and expect the time to be substantially reduced.

Process GDSP (Ours) DSP [10]
Feature extraction 93.1 (s) 1.04 (s)

BP (grid-cell matching) 8.3 (s) 1.24 (s)
Pixel Matching 110.6 (s) 2.31 (s)

Total 212.0 (s) 4.59 (s)

Table 3: Runtime analysis between our algorithm and DSP [10].

5. Conclusion
We introduce a Generalized Deformable Spatial Pyramid

model to extract dense correspondence between images un-
der large photometric and geometric variations. We gen-
eralize the search space by including rotation and scale in a
Loopy Belief Propagation framework. We pursue the geom-
etry preserving smoothness in the high dimensional search
space by mutually considering dependencies of each label
through the pyramid structure. Our geometry preserving
search successfully estimates more reliable and meaningful
dense correspondence results under even non-rigid defor-
mation compared with the state-of-the-art. Our work can be
further improved by adding refinements derived from user
interactions and reducing the processing time via GPU ac-
celeration.
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