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Abstract

This paper formulates and presents a solution to a new

problem called person count localization. Given a video

of a crowded scene, our goal is to output for each frame a

set of: 1) Detections optimally covering both isolated in-

dividuals and cluttered groups of people; and 2) Counts of

people inside these detections. This problem is a middle-

ground between frame-level person counting, which does

not localize counts, and person detection aimed at per-

fectly localizing people with count-one detections. Our

problem formulation is important for a wide range of do-

mains, where people appear frequently under severe occlu-

sion within a crowd. As these crowds are often visually dis-

tinct from the rest of the scene, they can be viewed as “vi-

sual phrases” whose spatially tight localization and count

assignment could facilitate higher-level video understand-

ing. For count localization, we specify a novel framework

of iterative error-driven revisions of a flow graph derived

from noisy input of people detections and foreground seg-

mentation. Each iteration creates and solves an integer pro-

gram for count localization based on iterative revisions of

the flow graph. The graph revisions are based on detected

violations of basic integrity constraints. They in turn trigger

learned modifications to the graph aimed at reducing noise

in input features. For evaluation, we introduce a new metric

that measures both count precision and localization of our

approach on American football and pedestrian videos.

1. Introduction

Motivation. In this paper, we consider the problem of

detecting people in videos of crowded scenes, where peo-

ple frequently appear under severe occlusion by other peo-

ple in the crowd. This is an important line of research,

since detecting people in video frames has become the stan-

dard initial step of many approaches to activity recognition

[1, 16, 10, 2, 7, 4, 23], and multi-object tracking by detec-

tion [19, 25, 22, 12, 3, 24, 11]. They typically use as input

human appearance, pose, and orientation, and thus critically

depend on robust person detections. In many domains, how-

ever, such as videos of American football (Fig.1) or public

spaces crowded with pedestrians, detecting every individual

person is highly unreliable, and remains an open problem.

This motivates us to study alternative formulations that

do not require perfect person localization, especially un-

der severe clutter and occlusion, and still prove useful for

higher-level video understanding. One related problem that

has successfully addressed videos of crowded scenes is

frame-level counting of people [5, 20, 17, 6, 14]. This

frame-level count information, however, is a very coarse

description of the video, with limited utility for high-level

tasks. In particular, these problem formulations and evalua-

tions do not address location of individuals or sub-groups.

Rather than counting people per frame, we would like

to retain as much localization capability of detecting in-

dividuals as possible, but gracefully transition to counting

people within areas in the frame occupied by crowds. As

these crowded groups are often isolated and visually dis-

tinct from the rest of the scene, they can be viewed as “vi-

sual phrases” whose spatially tight localization and count

assignment could provide useful cues for higher-level pro-

cessing. For example, as shown in Fig.1, localized counts

provide rich information about the activity unfolding dur-

ing a football play by identifying many isolated and small

groups of players and the primary larger player groups.

Similarly, localized counts can provide space-time density

statistics of crowds in an area of interest and also serve as a

basis for more refined individual tracking when desired.

New Problem. In this paper, we introduce a new prob-

lem, person count localization from noisy foreground and

person detections. Our formulation strikes a middle-ground

between person detection and frame-level counting. Given

a video, our goal is to output for each frame a set of:

1. Detections optimally covering both isolated individu-

als and crowds of people in the video; and

2. Counts assigned to each detection indicating the num-

ber of people inside.

Overview of Approach and Contributions. Our ap-

proach first extracts noisy foreground by running a person

detector and foreground segmentation, which will some-

times be redundant. A flow graph is then built and trans-
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Figure 1: Our count localization results for an image se-

quence from American football. Challenges include severe

occlusion, clutter, and similar appearance of players.

formed into a integer linear program (ILP). The construc-

tion of this ILP is our first contribution as it must deal with

the redundancy and false positives in input.

Our second contribution is to improve the initial solution

via the new framework of iterative error-driven graph revi-

sion (EGR). The key idea is that the ILP is derived from a

flow graph whose structure is based on hard-to-tune param-

eters and noisy input. As a consequence, for any fixed graph

construction approach, there will be cases where the ILP so-

lution can be observed to have visually obvious errors that

violate basic integrity constraints (e.g. a disappearing per-

son in the middle of a scene). To address this issue, EGR it-

eratively constructs a sequence of such graphs, and the cor-

responding integer programs, such that each new flow graph

is a refinement of the previous graph, and aimed at correct-

ing violated integrity constraints of the previous solution.

We use a simple learning strategy to select among various

refinements available at each step, such as running a tracker

to produce new detections in an area or adding edges to the

graph. The EGR process stops when no further integrity

constraints are found or refinements are selected and in our

experiments produce significantly improved results.

Our third contribution is to introduce a new metric for

person count localization that accounts for both errors in lo-

calization and counting. We provide experiments in two

challenging domains: American football and pedestrian

crowds. The results demonstrate the benefits of our ap-

proach compared to prior work and a number of base-

lines. Also, our evaluation suggests that EGR is a promising

framework for improving other vision tasks based on fixed

compilations to optimization problems.

2. Prior Work

While we are the first to define the problem of person

count localization and associated evaluation metrics, prior

work has studied related problems.

In multi-object tracking, counting problems are some-

times solved as part of the overall approach to deal with

groups of people. [19] greedily assigns and propagates

counts, which can lead to inconsistent counts. Instead, [11]

formulate counting as a flow problem but uses a simple lin-

ear cost function based on detection size, which is not ap-

propriate when there is heavy occlusion or the number of

counts vary significantly. Similar to [11], we also formu-

late our count localization problem in a flow framework but

we have a more complex objective function and constraints

and place an additional focus on being robust to segmenta-

tion/detection noise. The most similar work to ours was on

the problem of biological cell tracking, where maintaining

cell counts in foreground blobs is the main step followed by

heuristic id maintenance [21]. They solved the problem by

formulating an integer program based on a flow graph over

foreground blobs. Their approach, however, is insufficient

for our problems, as our experiments show. The key issue is

that contrary to our primary motivating application of team

sports, their cell tracking application allowed for high qual-

ity non-intersecting foreground blobs with few false posi-

tives and negatives, which significantly simplifies the prob-

lem. In our application of American football, foreground

extraction is often quite noisy, producing high rates of both

false positives and negatives.

The crowd counting problem generally has the goal of

accurately counting the number of people in a frame. Prior

work [5, 20, 17, 6, 14, 13] typically follows a two-step

pipeline where foreground segments are first extracted and

then counts are independently estimated for each segment

based on local features. Research has focused mainly

on feature design and training reliable estimators, but has

mostly ignored the consistency and interactions between

segments. While some of these methods are able to gen-

erate counts for more localized segments, the evaluations

have all focused on the accuracy of total counts, which ig-

nores localization performance.

3. Approach

We now describe our approach to the person count local-

ization problem, where the input is a video and the output is

a set of detections, each labeled by a count of people. The

quality measure of the output is based on both the accuracy

of the counts assigned to detections and the localization of

the detections. Intuitively, we desire count-one detections to

be associated with individual people when possible, but for

cluttered crowds we are satisfied with a crowd-level detec-

tion and accurate count. In our experiments, we introduce a

new evaluation metric to capture these concerns.

3.1. Overview

Our iterative solution approach, error-driven graph re-

vision (EGR), is depicted in Fig.2. In the first iteration we

extract foreground objects/blobs from the video and build a

corresponding initial flow graph representationG0 that rep-

resents the temporal-spatial relationships among the fore-

ground objects. An integer linear program (ILP) is then for-

mulated based on G0 that both selects a subset of detections

and assigns counts to them, giving a solution denoted byC0.

The ILP is designed with the goal of maintaining accurate

counts that also maintain temporal-spatial consistency.



Figure 2: System Overview. First extract noisy foreground by running an object detector and foreground segmentation. A

flow graph is then built and transformed into an integer program. In the following iterations, the approach detects places

where integrity/domain constraints are violated by the current solution and applies one or more graph-revision operators to

obtain a new graph and updated solution.

At iteration i of EGR, we first look at the ILP solution

Ci−1 from the previous iteration in order to identify vio-

lations of common-sense integrity and domain constraints

(for example a person cannot appear or disappear in the

middle of the frame). Such violations are inevitable in our

experience for any fixed way of constructing graphs from

the input. Associated with each type of constraint viola-

tion are potential graph-revisions operations that may ad-

dress the violation, e.g. adding edges, adding nodes, etc.

A trained classifier is then used to select appropriate graph

revisions to Gi−1 that yields Gi, resulting in a new ILP and

solution Ci. The iteration ends when no constraint viola-

tions are detected or a maximum number of iterations.

Note that, we do not assume the initial extracted fore-

ground objects to be perfect. In fact, the iterative process

aims at dealing with this noisy input. As we will see later,

the ILP can help address the problem of false positive fore-

ground objects by not selecting them or assigning them

counts of zero. However, the ILP does not have a natural

way to deal with false negatives, which do not even appear

in the corresponding flow graph. The key idea behind the

EGR approach is that the ILP solutions in such cases will of-

ten violate common-sense integrity constraints that can be

easily checked. Further, for a detected violation, there are

natural ways to revise the graph that will potentially correct

the violation, for example, by using a tracking mechanism

to acquire detections in a certain space-time region of the

video that were missed by the initial processing.

We note that an alternative to EGR would be to construct

a single graph G∗ and ILP that accounts for all possible

missing detections and edges. This, however, is impracti-

cal for at least two reasons. First, the enormous number

of such possibilities would stress even state-of-the-art IP

solvers. Second, the number of false-positives represented

in the graph would grow dramatically, resulting in less re-

liable solutions due to the increase in ambiguity. Rather,

EGR can be viewed as an approach that aims to incremen-

tally construct a graph G containing only the “necessary”

parts of G∗ for a particular problem instance.

3.2. Foreground Detection and Graph Building

Given a video, we first need to extract foreground detec-

tions that will serve as candidate detections to be labeled

by counts. In contrast to previous work that either runs

an object detector or performs foreground segmentation to

obtain the foreground detections, we apply both a person

detector and foreground segmentation. As shown in Fig.3,

these two methods have their own strengths. A person de-

tector usually works well for single isolated people, but has

problems when there is occlusion or inside a crowd, while

foreground segmentation usually works well when there is a

clutter of people but performs poorly for smaller object due

to noisy background modeling and registration. We com-

bine the two methods by using both the person detector’s

results and the relatively larger connected components from

the foreground segmentation. In this way, we can get an

initial set of foreground detections with a reasonable recall.

Note that there will often be significant overlap between the

foreground and detections, which is a complication that the

optimization process must account for.

We denote all the foreground detections obtained from

the two methods by {dt
i} where t is the frame index. We

then build a flow graph G = (V, E ∪E′) as shown in Fig.2.
Each foreground detection is represented by two vertices ut

i

and ut
i′ . There are two types of edges in G. The solid edge

set E contains edges et,t
i,i′ and et,t+1

i,j where et,t
i,i′ links ut

i to

ut
i′ . et,t+1

i,j link ut
i′ to a subset of u

t+1

j in the next frame. The

linkage is determined by the following rules: we first link

foreground detections that form reliable tracklets as sug-

gested by [15]. For other foreground detections, et,t+1

i,j is

added if dt+1

j is in the neighborhood of dt
i according to a

threshold. Note that, a particular threshold may not work

for all cases because of different viewpoints and perspec-

tives. Our approach will adaptively change this threshold

more locally in later EGR stage if needed. The other set of

dashed edgesE′ are hyper edges and link a subset of et,t
i,i′ in

the same frame. Since our foreground detections can over-

lap, we add a hyper edge et
i,j between et,t

i,i′ and et,t
j,j′ if for



Figure 3: Example results of object detector and foreground

segmentation. Left: foreground segmentation, Right: DPM

detector. The segmentation misses several isolated small

players while the DPM misses players in the crowd.

dt
i and dt

j , one is covered by the other or their intersection

of union score is larger than a threshold.

3.3. Integer Programming Formulation

We now wish to convert the flow graph to an optimiza-

tion problem that when solved will assign counts to the de-

tections represented in the graph in a way that maximizes

the estimated count accuracy while satisfying basic flow

constraints. Given the above graph G, consider assigning

each edge in E a corresponding variable x indicating the

amount of flow (number of people) going through that edge,

for example, xt,t
i,i′ is a variable indicating the flow across

edge et,t
i,i′ . Note that the flow assigned to xt,t

i,i′ is interpreted

as the count of people assigned to detection dt
i. Given these

variables we would like to find flow values (equivalently

count values) that result in consistent flows and also maxi-

mize some measure of count accuracy for each detection.

In order to measure count accuracy we use a function

f t,t
i,i′(x

t,t
i,i′ ) that assigns an accuracy score to the count as-

signed to dt
i. In traditional network flow formulations, these

functions are linear in xt,t
i,i′ and in that case yields a polyno-

mial time algorithm. However, for our problem it is unlikely

that any linear function will approximate f well, since the

accuracy of a count assignment is going to non-trivially de-

pend on the visual evidence associated with detection dt
i.

In this work, we define f values based on the confidence

of learned random forest classifiers. In particular, given an

upper bound N on the maximum count that can be assigned

to a detection, we train a random forest based on labeled

training data to predict the discrete count {0, . . . , N} for

a detection dt
i given visual features of that detection. The

value of f t,t
i,i′(x

t,t
i,i′ ) is then taken to be the confidence that

dt
i should be assigned count xt,t

i,i′ . The prediction of the

random forest is based on the following features: detec-

tion type (whether the detection is from a person detector

or foreground), location, size, number of foreground pixels,

and the spatial distribution of foreground pixels. We note

that more sophisticated regression algorithms that provide

confidences could also be used to define f .

Given this definition of f we would like to find the flow

assignmentx that maximizes the total estimated count accu-

racy
∑

i,t f t,t
i,i′(x

t,t
i,i′ ) subject to standard flow conservation

constraints that make sure the counts are consistent across

frames. Further, we also want to enforce constraints corre-

sponding to the hyper edges in G, which state that we only

want to assign non-zero counts to one detection in a pair of

overlapping detections. Unfortunately, in contrast to stan-

dard network flow formulations where f is linear, when f
is relatively arbitrary as in our case, the problem of opti-

mizing the count accuracy objective is NP-complete. This

means that we are unlikely to find an efficient exact algo-

rithm. However, below we formulate this problem in terms

of an integer linear program (ILP), which allows us to apply

state-of-the-art ILP solvers to our problem.

To formulate our problem as an ILP we introduce indi-

cators for each flow variable to linearize the objective. We

denote xt,t
i,i′,n to be the indicator of flow variable xt,t

i,i′ taking

value n and similarly for xt,t+1

i,j . We also define ct
i,i′,n to be

the accuracy score of f for assigning detection dt
i a count of

n. The ILP can now be defined as follows:

max
x

∑

i,t

∑

n

ct
i,i′,nxt,t

i,i′,n

s.t. for all i, t
∑

n

xt,t
i,i′,n ≤ 1,

∑

n

xt,t+1

i,j,n ≤ 1 for et,t+1

i,j ∈ E, (a)

∑

n

nxt,t
i,i′,n =

∑

j:e
t,t+1

i,j
∈E

∑

n

nxt,t+1

i,j,n , (b)

∑

n

nxt,t
i,i′,n =

∑

j:e
t−1,t

j,i
∈E

∑

n

nxt−1,t
j,i,n , (c)

∑

n

xt,t
i,i′,n +

∑

n

xt
j,j′,n ≤ 1 for et

i,j ∈ E′ (d)

0 ≤ x,x ∈ I (e)

(1)

The set of constraints (a) make sure all indicators for one

edge sum up to less or equal to 1. The flow conservation

constraints correspond to (b) and (c) and the hyper edge

constraints correspond to (d).

With the hyper edge constraints, not all input detections

will be assigned a count in the ILP solution. When there is

a large group with a large detection from segmentation and

a few smaller, overlapping detections from the person de-

tector, the large detection will usually be chosen as it better

facilitates the flow constraints. However, when foreground

extraction is noisy, sometimes these large detections can

contain significant areas that do not contain people and also

people that can be localized by people detectors. In such

cases, we could get improved localization by also using the

overlapping smaller detections. To account for this, after

solving the ILP, we perform an additional optimization at

the detection level for any detection d that contains smaller

detections. In particular, given such a detection d with a



count value of c from the ILP solution, we wish to best as-

sign counts to the smaller detections in order to provide bet-

ter localization within d. We use a greedy optimization for

this and greedily assign counts to the small detections in or-

der to maximize their f scores with the constraint that the

total of the counts does not exceed c. After doing this, if the
total count c′ assigned to the smaller detections is less than

c we assign d a count of c− c′ indicating that the remaining

people are somewhere in d but not precisely localized.

3.4. Error­driven Graph Revision

The initial set of detections we get are noisy and there

can be both false positives and missing detections. The ILP

attempts to address the problem of false positives by allow-

ing for counts of zero to be assigned to any detection. How-

ever, the ILP has no way of dealing with missing detections.

In addition, as we mentioned above, the ILP relies on the

graph G which is built based on certain thresholds, which

are hard to define so as to work well in all situations. It is

thus, desirable to be able to adjust the thresholds locally if

the need is detected. In order to deal with these problems,

we introduce the iterative EGR framework.

To apply EGR one must specify integrity constraints that

hold for (nearly) all solutions. The constraints can come

from common sense or domain-specific knowledge. In our

case, we use the simple constraint that people cannot ap-

pear/disappear at non entry/exit locations. In our current

domains, this single constraint was sufficient to allow EGR

to significantly improve performance. Note that such do-

main constraints are often hard to directly impose in the ILP

while retaining non-trivial solutions due to missing detec-

tions. However, they are easy to check given an ILP solu-

tion. In our case, we simply look for foreground detections

that have non-zero counts assigned and have no successor

in the next frame or predecessor in the previous frame in

the graph. We denote these detections by {dei
}.

Next, we need to update these places. As we mentioned,

there are two error sources, one is missing detections and

the other is inappropriate thresholds used in graph construc-

tion. We propose three operators to correct these errors.

Add a node (Fig.4 top). This operator applies when we

have a small gap of missing detection. If we decide to apply

this operator at dei
, we will create a new detection that is

identical to dei
in the next (previous) frame, and then mod-

ify the location according to a constant velocity model.

Add a tracker (Fig.4 middle). When we are missing

foreground detections for multiple frames, we fire an object

tracker at dei
to track the target forward (backward). We

stop tracking when the tracker is not confident or the track-

ing result overlaps with existing foreground detections. We

then add all the tracking results to the graph. The idea is

that the tracker behaves as a localized detector for dei
that

can overcomemistakes made by the more general detectors.

Figure 4: Illustration of three operators. Top: Add a node.

Miss a detection in one frame while there are corresponding

detections in neighboring frames. Middle: Add a tracker. A

target continue missing for several frames. Bottom: Add

an edge. This should be a merge, but we did not connect

initially because of inappropriate threshold.

Add an edge (Fig.4 bottom). When there is foreground

detections around dei
in the next (previous) frame, we might

just lower the threshold of the graph construction and add an

edge between dei
and some existing foreground detections.

It is not straightforward to decide which operator to ap-

ply, especially for adding a node and adding an edge. So we

train a random forest classifier to mimic the choices made

by an experienced human in various situations. The fea-

tures for the classifier include distance to the existing clos-

est detection in the next (previous) 1 frame and 5 frames,

size of uncovered foreground pixels in the neighborhood in

the next (previous) 1 frame and 5 frames, and sum of opti-

cal flow magnitude within the detection. Training examples

were generated by creating ILP solutions on a training set,

finding integrity constraint violations and then have the hu-

man label them by the most appropriate operator.

After making these local updates to the graph we create

a new ILP and rerun the solver initialized with the previous

solution. We iterate over solving the ILP and updating the

graph until there is no error detected in the solution or a

certain number of iterations is reached.

4. Experimental Results

Datasets. We evaluate on two datasets from the domain

of American football and a pedestrian domain. The foot-

ball dataset contains 10 videos from a football game where

each video depicts a complete play ranging from 200 to 400

frames with resolution 852 × 480. The challenges here in-



clude large view-point variations, fast camera motions and

complex player interactions. Ground truth bounding boxes

are labeled for all 22 players and 1 defensive referee. The

pedestrian dataset is taken from [5] and depicts pedestrians

walking in two directions along a sometimes crowded walk-

way. The camera is stationary and the video contains 2000

frames with a resolution of 238 × 158. The ground truth

location for each pedestrian is also provided for evaluation.

The challenge here is that the density of people is high and

there are seldom isolated people. Compared to the foot-

ball domain, however, the foreground segments provided

are much less noisy.

Implementation Details. For football, the foreground

segmentation is done by automatically registering each

frame to a panorama of the football field and then doing

background subtraction to obtain foreground blobs. We also

used training videos from the same game to train a DPM

detector [9] to recognize players. The count prediction

model required to produce scores for our ILP is obtained

by training a random forest classifier on 4 videos with dif-

ferent view points and then testing on the remaining videos.

The precision for the initial input foreground detections is

83.36%. 1.2 players out of 23 are not covered by any ini-

tial foreground detection in each frame on average. For the

pedestrian dataset [5], we use the same foreground segmen-

tation from [5] and train a Haar detector to detect individual

people. We follow the same training strategy as [5] and use

frames from 600 to 1399 to train the random forest classi-

fier. The single object tracker used in our EGR framework

for both datasets is from [26]. We use the Gurobi ILP solver

and perform a maximum of 5 EGR iterations.

Baselines. For the football dataset, we compare with

several variants of our approach: 1) EGR, our full count

localization approach, 2) RF , we use the trained random

forest to assign count to every input detection independently

without enforcing flow constraints, 3) EGRi, our approach

run for i iterations, in particular, EGR1 is the results of our

ILP with the initial input, 4) EGRn−,e−,t− , our approach

without applying one of the operators (adding nodes, edges,

trackers) respectively, 5) EGR∗, our approach applied to

the ground truth foreground, i.e. each input detection is

a connected component in the ground truth foreground, 6)

[21], we implement the method described in [21] and made

it work for the football domain. 7) [21]*, [21] applied to the

ground truth foreground. For the pedestrian dataset [5], we

compare against prior state-of-the-art results.

4.1. Evaluation Metrics

There are no existing metrics designed to measure the

performance of count localization. Prior work such as [21]

did not measure the count performance explicitly but rather

the overall event-recognition system. Crowd counting work

such as [5, 18] focus on global count accuracy without re-

gard for localization. Thus we propose a new metric called

count localization accuracy (CLA) that is aimed to evaluate

both count and localization accuracy.

Suppose for one frame, we have n ground truth peo-

ple and produce a solution with m detections each with a

count ci. To calculate the metric, we first greedily match

ground truths to detection results. If the intersection over

union score (IoU) between a ground truth and a detection

is over a threshold, we call this a match candidate, and

each ground truth is matched to only one detection with

the highest IoU score. A detection with count c cannot be

matched to more than c ground truths. After the matching

is done, for each ground truth, we calculate the IoU score

si between the ground truth and its corresponding detec-

tion (0 if there is no match). The metric is then calculated

as: CLA =
n
∑

0≤i

si/

(

m
∑

0≤i

ci + n′

)

, where n′ is the number

of unmatched ground truths. In the ideal case, where our

results are the same n detections as ground truth and each

with count 1, the metric gives a score of one. This metric

evaluates both counting precision and localization. In one

extreme case where we have all the correct detections but

wrong counts, the denominator gives a penalty. In another

extreme case where we have a single large detection that

covers all ground truths with the correct count, the numera-

tor which evaluates the IoU gives a penalty.

In addition to CLA we also report some other common

metrics. Localization Accuracy (LA) keeps the same nu-

merator as CLA and uses ground truth counts as the de-

nominator and thus only accounts for localization accuracy.

Missing count (MC) calculates the percentage of the ground

truth that are miss counted. Count error (CE) calculate the

average absolute count error. For the football dataset, we

compute CE based on each output detection and denote it

as CEd. For the pedestrian dataset, CE is computed based

on the entire frame to be able to compare with previous re-

sults and is denoted as CEf .

4.2. Results

Quantitative Results: Tab.1 shows results for the foot-

ball dataset. First, we observe that our approach EGR out-

perform [21] since [21] has no way to deal with missing

detections in the noisy input. In fact, [21] performs simi-

lar to our approach in the first pass, i.e. without any graph

revision and working with initial input. Further, when ap-

plying to the ground truth foreground, [21] has the same

performance as ours. It shows that under ideal input, even

if [21] has a more complex objective (transition score), we

are able to achieve the same results. As a reference point we

also give results for an oracle frame-level approach Frame

that has a single detection over all people with the correct

count. We see EGR achieves a CLA much closer to the ora-

cle EGR* than to Frame. When applying the random forest



Method CLA LA MC CEd

Frame 0.0112 0.0112 0 0

EGR∗ 0.1718 0.1976 0 0.15

EGR 0.1551 0.1830 0.04 0.18

RF 0.1101 0.1562 0.22 0.49

EGR1 0.1166 0.1506 0.24 0.34

EGR2 0.1387 0.1811 0.13 0.38

EGRn− 0.1273 0.1668 0.06 0.31

EGRt− 0.1186 0.1684 0.20 0.42

EGRe− 0.1471 0.1753 0.05 0.34

[21] 0.1205 0.1562 0.23 0.25

[21]* 0.1718 0.1976 0 0.15

Table 1: Results for American Football dataset. Maximum

number of targets is 23 per frame. To provide a better under-

standing of our CLA metric. Frame is an oracle frame-level

approach.

classifier RF independently to detection, the count error in-

creases. Comparing different iterations of EGR, we can see

that we have a big performance boost from the first pass to

second pass. This is mainly because with the tracker, we re-

cover many missing detections. Among the three operators

we have, the tracker plays the most important role under a

limited number of iterations. It is interesting to note that

for the football dataset over 70% of the detections output

by our approach EGR have an assigned count of 1 and over

90% have a count of 4 or less. This shows that the detec-

tions output by the approach are generally quite localized

to individuals or small groups. Detailed results are in the

supplementary materials.

Tab.2 shows results for the pedestrian dataset. In terms

of frame-level counting error for left-traveling and right-

traveling people, which was the focus of prior work, our

frame-level performance is a bit worse than two of the prior

systems [5, 18]. In this dataset, the foreground segmenta-

tion provided by [5] is quite accurate compared to the foot-

ball dataset, which means that our graph revision frame-

work plays a much less important role here. Instead, the

performance of the local random forest classifier becomes

the dominating factor. Since our random forest classifier

is much simpler than the regressors developed for previ-

ous work [5, 18], which was their primary focus but not

ours, this result is not surprising. However, our approach

is able to provide localization information in addition to

frame-level counts. Since we cannot compute CLA scores

for these frame-level approaches we report in the table the

CLA for the oracle frame-level approach that provides 2 de-

tections each covering all foreground segments in one direc-

tion and are assigned the correct count. We see that the CLA

score of our approach is orders of magnitude larger. Our

localization performance is also depicted in Fig.5, which

illustrates the heat maps of counts for each pixel for the

pedestrian dataset. We can draw some somewhat obvious

Method Left CEf Right CEf CLA

EGR 1.05 3.83 0.2794

[5] 1.291 1.621 0.0853∗

[8] 1.4458 11.1492 0.0853∗

[18] 0.6040 0.6883 0.0853∗

Table 2: Results for Pedestrian dataset. * We calculated

CLA for [5, 8, 18] assuming they output 2 detections, one

for each direction, and each direction has the correct counts.
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Figure 5: Heat map of counts for the pedestrian dataset.

Left: left direction, Right: right direction. See Fig.7 for

image of scene.

but interesting conclusions from these maps. For example,

people in large groups tend to walk in the middle of the

walkway. Also, most people walk along their right hand

side of the walkway.

Runtime. The run time of our approach varies from one

to 20 minutes for different videos on a desktop with a 4-

core 3.4GHZ CPU. The majority of time is spent on the

ILP solver. This suggests that the best way to speedup our

current system would be to investigate approximate and fast

solution techniques for the ILP problems we generate.

Qualitative Evaluation: Fig.6 illustrates count localiza-

tion results on an example American Football video. [21]

has similar results as EGR1 and misses several players due

to the noisy input. Some of the under-counting we see here

is also due to missing players in previous frames. Our ap-

proach is able to identify these errors in the input and correct

them through EGR. Similarly, Fig.7 shows our results on

some frames of the pedestrian dataset. With the help of the

person detector, we are able to get more localized counts.

More results can be found in supplementary materials.

5. Conclusion

We formulated the new problem of person count lo-

calization that is useful for crowded domains with severe

occlusion and interference among people such as team

sports domains. We presented an approach to this prob-

lem called iterative error-driven graph revision, which at-

tempts to overcome noisy input detections by detecting in-

tegrity constraint violations and then adjusting the optimiza-

tion problem appropriately. This idea was shown to be use-

ful in our experiments and more generally may be useful in

other applications where global optimization problems are



Figure 6: An example image sequence from American football dataset. First row: inital input of foreground detections,

second row: ([21]), third row :(EGR1), forth row(EGR). [21] and EGR1 miss a few players because of the initial input.

EGR is able to recover these miss detections by iteratively revise the graph.

Figure 7: Pedestrian dataset. Green and Red boundaries outline the foreground blobs moving left and right. Green bounding

boxes show smaller detection from greedy assignment.

formulated from vision data. We introduced a new met-

ric called count localization accuracy for evaluating the lo-

calization and count quality of solutions and evaluated our

approach on datasets derived from American football and

moving pedestrians. The results show that our approach is

significantly better than competitors when the input is noisy

and that for the much less noisy pedestrian dataset our ap-

proachwas competitive in terms of frame-level counts while

also providing localization information.
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