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Abstract

We present in this paper a superpixel segmentation algo-
rithm called Linear Spectral Clustering (LSC), which pro-
duces compact and uniform superpixels with low computa-
tional costs. Basically, a normalized cuts formulation of
the superpixel segmentation is adopted based on a simi-
larity metric that measures the color similarity and space
proximity between image pixels. However, instead of using
the traditional eigen-based algorithm, we approximate the
similarity metric using a kernel function leading to an ex-
plicitly mapping of pixel values and coordinates into a high
dimensional feature space. We revisit the conclusion that
by appropriately weighting each point in this feature space,
the objective functions of weighted K-means and normal-
ized cuts share the same optimum point. As such, it is possi-
ble to optimize the cost function of normalized cuts by iter-
atively applying simple K-means clustering in the proposed
feature space. LSC is of linear computational complexity
and high memory efficiency and is able to preserve global
properties of images. Experimental results show that LSC
performs equally well or better than state of the art super-
pixel segmentation algorithms in terms of several commonly
used evaluation metrics in image segmentation.

1. Introduction
Superpixel segmentation is an increasingly popular im-

age preprocessing technique used in many computer vision
applications such as image segmentation [17], image pars-
ing [19], object tracking [22], and 3D reconstruction [9]. It
provides a concise image representation by grouping pixels
into perceptually meaningful small patches that adhere well
to object boundaries. Comparing to the pixel-rigid image
representation, superpixel is more consistent with human
visual cognition and contains less redundancy. Moreover,
compact and uniform superpixel segmentation can serve as
the spatial support for vision feature extraction [12].

Many different superpixel segmentation algorithms have
been proposed to meet the needs of various applications
[17][8][5][21][11]. It is widely understood that the follow-

Figure 1. Images [13] segmented into 1000/500/200 superpixels
using the proposed LSC algorithm.

ing properties of superpixel segmentation are generally de-
sirable. First, superpixels should adhere well to the natural
image boundaries and each superpixel should not overlap
with multiple objects. Second, as a preprocessing technique
for improving efficiency of computer vision tasks, super-
pixel segmentation should be of low complexity itself. Last
but not the least, global image information which is impor-
tant for human vision cognition should be considered ap-
propriately. It is critical for a segmentation process to uti-
lize the perceptually important non-local clues to group un-
related image pixels into semantically meaningful regions.
Nevertheless, considering global relationship among pixels
usually lead to substantial increases in computational com-
plexity. A typical example is the eigen-based solution to
the normalized cuts (Ncuts) based superpixel segmentation
algorithm proposed in [17]. As a result, most practical su-
perpixel segmentation algorithms, such as [5][21][11], are
mainly based on the analysis of local image information
only. These methods may fail to correctly segment image
regions with high intensity variability [8].

To address this issue, we propose a superpixel segmen-
tation algorithm, Linear Spectral Clustering (LSC), which
not only captures perceptually important global image prop-
erties, but also runs in linear complexity with high memory
efficiency. In LSC, we map each image pixel to a point
in a ten dimensional feature space in which weighted K-
means is applied for segmentation. Non-local information
is implicitly preserved due to the equivalence between the
weighted K-means clustering in this ten dimensional feature
space and normalized cuts in the original pixel space. Sim-
ple weighted K-means clustering in the feature space can be
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used to optimize the segmentation cost function defined by
normalized cuts. Figure 1 shows some superpixel segmen-
tation results of LSC. We will demonstrate the efficiency
and effectiveness of LSC through further experiments.

The rest of this paper is organized as follows. In Section
2, we briefly review existing approaches for superpixel seg-
mentation. Section 3 presents the proposed LSC method.
Experimental results are demonstrated in Section 4. The
last section concludes our work.

2. Related Works
In early studies, algorithms designed for image segmen-

tation were directly used for generating superpixels, such
as FH [8], mean shift [5] and quick shift [21]. In FH, each
superpixel is represented by a minimum spanning tree and
two superpixels are merged if the maximum weight of edges
inside the trees is larger than the minimum weight of edges
connecting them. Mean shift and quick shift are two mode-
seeking methods attempting to maximize a density function
by shifting pixels towards areas of higher density. Pixels
converging to the same mode formulate a superpixel. These
algorithms offer no explicit control over the size and num-
ber of the superpixel and compactness is not considered.
Superpixels thus produced are usually of irregular sizes and
shapes and tend to overlap with multiple objects.

Another widely known algorithm adopts the normalized
cuts formulation [18]. However, the traditional eigen-based
solution is of high computational complexity which further
grows when the number of eigenvectors to be computed in-
creases. For superpixel segmentation, the number of eigen-
vectors equals the expected number of superpixels, which
is usually much larger than the number of segments in tra-
ditional image segmentation. Therefore, to facilitate nor-
malized cuts based superpixel segmentation, Ren and Malik
proposed a two step algorithm (Ncuts) [17], in which pixels
are first grouped into large regions by eigen-based normal-
ized cuts and direct K-means clustering is then adopted to
further partition these regions into small superpixels. Due
to its heuristic nature, Ncuts is less effective comparing to
other methods when the number of superpixel grows.

Previous researches show that algorithms which do not
consider the spatial compactness usually lead to under seg-
mentation, especially when there is poor contrast or shadow
[11]. Among the four algorithms mentioned above, Ncuts
[17] is the only one that implicitly takes compactness into
consideration. However, the high computational complex-
ity has limited its applicability. To solve this problem, sev-
eral other approaches have been proposed to generate com-
pact and regular superpixels with relatively low computa-
tional complexity. The Turbopixel algorithm [11] generates
highly uniform lattice-like superpixels by iteratively dilat-
ing regularly distributed seeds. However, due to the stabil-
ity and efficiency issues of the level-set method, superpixels

Figure 2. Comparison of different superpixel segmentation al-
gorithms. (a)SEEDS, (b)Lattice, (c)Turbopixel, (d)EneOpt0,
(e)EneOpt1, (f)quick shift, (g)Ncuts, (h)SLIC, (i) ERS and (j)LSC.
The image [13] is segmented into 400/200 superpixels.

thus generated present relative low adherence to boundaries
and the algorithm is slow in practice. Veksler et al. for-
mulated superpixel segmentation as an energy optimization
problem which was then solved using the min-cut/max-flow
algorithm [4][3][10]. The authors further extended this al-
gorithm to two variations (EneOpt0 and EneOpt1) by bal-
ancing between shape regularity and boundary adherence
differently [20]. Moore et al. proposed an algorithm (Lat-
tice) that preserves the topology of a regular lattice in su-
perpixel segmentation [15][14]. Nevertheless, the quality
of the superpixel relies on a pre-calculated boundary proba-
bility map. Liu et al. presented in [12] a clustering objective
function that consists of the entropy rate (ERS) of a random
walk and a balancing term which encourages the generation
of superpixels with similar sizes. ERS is able to preserve
jagged object boundaries which are likely to be smoothed
by other algorithms. However, the irregular shape of ERS
superpixels may become a potential drawback in feature ex-
traction [1]. Bergh et al. proposed SEEDS in [2] by in-
troducing an energy function that encourages color homo-
geneity and shape regularity. A hill-climbing algorithm is
used for optimization. However, SEEDS also suffers from
highly shape irregularity and the superpixel number is diffi-
cult to control. Achanta et al. proposed a linear clustering
based algorithm (SLIC) which produces superpixels by iter-
atively applying simple K-means clustering in the combined
five dimensional color and coordinate space. In spite of its
simplicity, SLIC has been proved to be effective in various
computer vision applications [22]. Nevertheless, as a local
feature based algorithm, the relationship between SLIC and
global image properties is not clear.

Another work closely related to our proposed method
was introduced in [7], in which Dhillon et al. proved that K-
way normalized cuts in the original pixel space is identical
to the weighted K-means clustering in a high dimensional
feature space by rewriting weighted K-means clustering as
a trace maximization problem. However, in [7], the high



dimensional feature space is not explicitly defined and the
kernel trick has to be used. The generated kernel matrix
can be very large in practice. For instance, a moderate size
image with N = 105 pixels will produce a 30GB kernel
matrix in case that it is dense, leading to serious deterio-
ration in both time and space complexity. Moreover, this
kernel matrix has to be positive definite to guarantee con-
vergence of iterative weighted K-means. These problems
have limited the application of this algorithm in spite of its
solid theoretical foundation. We will reveal that these prob-
lems can be efficiently solved by investigating the relation-
ship between the inner product in the feature space and the
similarity between image pixels. Superpixel segmentation
results of different algorithms are compared in Figure 2.

3. Linear Spectral Clustering Superpixel
In this section, we will present the LSC superpixel seg-

mentation algorithm which not only produces superpixels
with state of the art boundary adherence but also captures
global image properties. The LSC algorithm is proposed
based on the investigation of the relationship between the
objective functions of normalized cuts and weighted K-
means. We find that optimizing these two objective func-
tions are equivalent if the similarity between two points in
the input space is equal to the weighted inner product be-
tween the two corresponding vectors in an elaborately de-
signed high dimensional feature space. As such, simple
weighted K-means clustering in this feature space can be
used to replace the highly complex eigen-based method for
minimizing the normalized cuts objective function. Com-
paring to the weighted kernel K-means clustering [7], LSC
avoids the calculation of the large kernel matrix and the con-
vergence condition can be naturally satisfied. By further
limiting the search space of the weighted K-means, LCS
achieves a linear complexity while retaining the high qual-
ity of the generated superpixels.

To facilitate the deduction, we briefly revisit the problem
definitions of weighted K-means clustering and normalized
cuts. For clarity, we use lowercase letters, such as p, q, to
represent data points, or pixels in our case, to be clustered in
the input space. In the weighted K-means clustering, each
data point p is assigned with a weight w(p). Let K be the
number of clusters; πk be the kth(k = 1, 2, ,K) cluster;
and ϕ denote the function that maps data points to a higher
dimensional feature space for improving linear separability.
The objective function of weighted K-means is defined in
(1), in which mk is the center of πk as is defined in (2).
Fk−m can be efficiently minimized in an iterative manner.

Fk−m =
K∑

k=1

∑
p∈πk

w(p)∥ϕ(p)−mk∥2 (1)

mk =

∑
q∈πk

w(q)ϕ(q)∑
q∈πk

w(q)
(2)

In normalized cuts, each data point corresponds to a node
in a graph G = (V,E,W ) in which V is the set of all
nodes; E is the set of edges; and W is a function char-
acterizing similarity among data points. The K-way nor-
malized cuts criterion is to maximize the objective function
FNcuts defined in (3), in which W (p, q) stands for the
similarity between two points p and q. Several solutions
for solving this optimization problem have been proposed
in [18][23][16]. All of these solutions are based on the
eigenvalue decomposition of the large affinity matrix and
are therefore intrinsically computationally complex.

FNcuts =
1

K

K∑
k=1

∑
p∈πk

∑
q∈πk

W (p, q)∑
p∈πk

∑
q∈V W (p, q)

(3)

By introducing a kernel matrix for mapping data points
into a higher dimensional feature space, Dhillon et al.
showed the connection between weighted K-means cluster-
ing and normalized cuts by rewriting the optimization of
both Fk−m and FNcuts as the same matrix trace maximiza-
tion problem [7]. Under such a formulation, the conver-
gence of the iterative minimization of Fk−m can be guaran-
teed only when the kernel matrix is positive definite. How-
ever, this can not always be ensured. To solve this prob-
lem and further reveal the relationship between Fk−m and
FNcuts, we present the following corollary. Equations (4)
and (5) can also be deduced from the results in [7].

Corollary 1 Optimization of the objective functions of
weighted K-means and normalized cuts are mathematically
equivalent if both (4) and (5) hold.

∀ p, q ∈ V, w(p)ϕ(p) · w(q)ϕ(q) = W (p, q) (4)

∀ p ∈ V, w(p) =
∑
q∈V

W (p, q) (5)

Equation (4) indicates that the weighted inner prod-
uct of two vectors in the high dimensional feature space
equals the similarity between the two corresponding points
in the input space; and (5) indicates that the weight of
each point in weighted K-means clustering equals the to-
tal weight of edges that connect the corresponding node to
all the other nodes in normalized cuts. To prove Corol-
lary 1, we first rewrite Fk−m as (6), in which C =∑K

k=1

∑
p∈πk

w(p)∥ϕ(p)∥2 is a constant independent of
the clustering result. A detailed derivation of (6) can be
found in the supplementary material.

Combining (4), (5) and (6), we have (7), from which
it can be easily observed that minimizing Fk−m is strictly
equivalent to maximizing FNcuts. In other words, by care-
fully constructing the high dimensional feature space de-
fined by ϕ, the partitioning result of the normalized cuts
should be identical to that of the weighted K-means cluster-
ing at their optimum points. This conclusion serves as the
foundation of our LSC algorithm.



Fk−m =
K∑

k=1

∑
p∈πk

w(p)∥ϕ(p)−
∑

q∈πk
w(q)ϕ(q)∑

q∈πk
w(q)

∥2

=
K∑

k=1

∑
p∈πk

w(p)∥ϕ(p)∥2 −
K∑

k=1

∥
∑

p∈πk
w(p)ϕ(p)∥2∑

p∈πk
w(p)

= C −
K∑

k=1

∑
p∈πk

∑
q∈πk

w(p)ϕ(p) · w(q)ϕ(q)∑
p∈πk

w(p)
(6)

Among the two sufficient conditions of Corollary 1, (5)
can be easily fulfilled by using the sum of edge weights in
normalized cuts as the point weight in weighted K-means.

Fk−m = C −
K∑

k=1

∑
p∈πk

∑
q∈πk

W (p, q)∑
p∈πk

∑
q∈V W (p, q)

= C −K × FNcuts (7)

Fulfilling (4), however, requires a careful selection of the
similarity function W . Equation (4) can be rewritten as (8),
in which the left hand side is the inner product of two vec-
tors in the high dimensional feature space. In fact, (8) can
also be considered as defining a symmetric kernel function,
indicating that it must satisfy the positivity condition [6].
Also, to avoid the kernel matrix, W must be separable to
allow an explicit expression of the mapping function ϕ.

ϕ(p) · ϕ(q) = W (p, q)

w(p)w(q)
(8)

In order to find a suitable form for W (p, q), we first
investigate the widely used Euclidean distance based pixel
similarity measurement. For each pixel in a color image, we
represent it using a five dimensional vector (l, α, β, x, y), in
which l, α, β are its color component values in the CIELAB
color space; and x, y are the vertical and horizontal coordi-
nates in the image plane. Without loss of generality, the
range of each component is linearly normalized to [0, 1]
for simplicity. The CIELAB color space is adopted be-
cause it is believed that the Euclidean distance is nearly
perceptually uniform in this space [1]. Given two pixels
p = (lp, αp, βp, xp, yp) and q = (lq, αq, βq, xq, yq), a
similarity measurement between them can be defined as
(9), in which Ŵc and Ŵs are used to measure color sim-
ilarity and space proximity respectively. Two parameters
Cc and Cs are used to control the relative significance of
color and spatial information. We multiply the first term
of Ŵc(p, q) with 2.552 in order to be consistent with the
standard CIELAB definition.

Ŵ (p, q) = C2
c · Ŵc(p, q)+ C2

s · Ŵs(p, q)

Ŵc(p, q) = 2.552
[
2− (αp − αq)

2 − (βp − βq)
2
]

+
[
1− (lp − lq)

2
]

Ŵs(p, q) =
[
2− (xp − xq)

2 − (yp − yq)
2
]

(9)

Although Ŵ (p, q) has very clear physical meaning in
measuring pixel similarity, it cannot be directly used in our
method because it does not satisfy the positivity condition
[6] required by (8). Detailed explanation can be found in
the supplementary material. To solve this problem, we try
to find a proper approximation of Ŵ (p, q).

Ŵ (p, q) = C2
s [g(xp − xq) + g(yp − yq)] + C2

c [g(lp

−lq) + 2.552(g(αp − αq) + g(βp − βq)
]

g(t) = 1− t2, t ∈ [−1, 1] (10)

We rewrite (9) as (10) to show that Ŵ (p, q) is a nonneg-
ative linear combination of a number of instances of a sim-
ple functions g(t), which can be expanded as a uniformly
convergent Fourier series shown in (11). The coefficients of
this series converge to 0 very quickly at a speed of (2k+1)3.
Therefore, g(t) can be well approximated by the first term
in the series as is expressed in (12).

g(t) =
∞∑
k=0

32(−1)k

[(2k + 1)π]3
cos(

(2k + 1)πt

2
), t ∈ [−1, 1]

(11)

g(t) = 1− t2 ≈ 32

π
cos

π

2
t, t ∈ [−1, 1] (12)

Simply omitting the constant multiplier 32/π, Ŵ (p, q)
can be approximated by W (p, q) defined in (13). Unlike
g(t), cos π

2 t is positive definite, leading to the positivity of
W (p, q). Actually, according to the properties of cosine
function, W (p, q) can be directly written in the inner prod-
uct form shown in (4), in which ϕ and w are defined in (14).

W (p, q) = C2
s

[
cos

π

2
(xp − xq) + cos

π

2
(yp − yq)

]
+C2

c

[
cos

π

2
(lp − lq) + 2.552(cos

π

2
(αp

−αq) + cos
π

2
(βp − βq)

]
(13)

ϕ(p) =
1

w(p)
(Cc cos

π

2
lp, Cc sin

π

2
lp, 2.55Cc cos

π

2
αp,

2.55Cc sin
π

2
αp, 2.55Cc cos

π

2
βp, 2.55Cc sin

π

2
βp,

Cs cos
π

2
xp, Cs sin

π

2
xp, Cs cos

π

2
yp, Cs sin

π

2
yp)

w(p) =
∑
q∈V

W (p, q) = w(p)ϕ(p) ·
∑
q∈V

w(q)ϕ(q) (14)

Until now, we have explicitly define a ten dimensional
feature space in (14) such that weighted K-means clustering
in this feature space is approximately equivalent to normal-
ized cuts in the input space. Noticing that under the sim-
ilarity function defined in (13), both the kernel matrix for



weighted kernel K-means and the affinity matrix in the nor-
malized cuts will be highly dense, leading to high computa-
tional complexity when using existing methods. In contrast,
by directly applying weighted K-means in the ten dimen-
sional feature space, the objective function of the normal-
ized cuts can be efficiently optimized.

Based on the above analysis, we propose the LSC super-
pixel segmentation algorithm which takes as input the de-
sired number of superpixels, K. In LSC, image pixels are
first mapped to weighted points in the ten dimensional fea-
ture space defined by (14). K seed pixels are then sampled
uniformly over the whole image with horizontal and verti-
cal intervals vx and vy , while vx/vy equals the aspect ratio
of the image. After slight disturbances for avoiding noisy
and boundary pixels [1], these seeds as used as the search
centers and their feature vectors are used as initial weighted
means of the corresponding clusters. Each pixel is then as-
signed to the cluster of which the weighted mean is closest
to the pixel’s vector in the feature space. After pixel assign-
ment, the weighted mean and search center of each cluster
will be updated accordingly. The above two steps are iter-
atively performed until convergence. Pixels assigned to the
same cluster form a superpixel.

Theoretically, the search space of each cluster should
cover the whole image to satisfy Corollary 1. However, for
superpixels, local compactness is a common prior. In other
words, it may not be favorable to assign pixels far away
from each other to the same superpixel in term of human
perception. Hence, we adopt the common practice [20][1]
in superpixel segmentation by limiting the search space of
each cluster to the size of τvx × τvy , in which τ ≥ 1 is a
parameter for balancing local compactness and global opti-
mality. We simply choose τ = 2 for implementation.

The above process offers no enforcement on the con-
nectivity of superpixels, meaning that there is no guarantee
that pixels in the same cluster form a connected component.
To address this problem, we empirically merge small iso-
lated superpixels which are less than one fourth of the ex-
pected superpixel size to their large neighboring superpix-
els. When there are more than one candidates for merging,
we choose the closest one in the ten dimensional feature
space. The algorithm is summarized in Algorithm 1.

Suppose the number of image pixels is N . The com-
plexity of the feature mapping is obviously O(N). By
restricting the search space of each cluster, the complex-
ity of pixel assignment is reduced from O(KN) to O(N)
in each iteration. The complexity of updating the weight
means and search centers is also O(N). The merging step
requires O(nz) operations, in which z represents the num-
ber of small isolated superpixels to be merged and n is the
average number of their adjacent neighbors. As such, the
overall complexity of LSC is O(κN + nz), in which κ is
the number of iterations. In practice, nz ≪ NI and κ = 20

Algorithm 1 LSC Superpixel Segmentation
1: Map each point p = (lp, αp, βp, xp, yp) to a ten di-

mensional vector ϕ(p) in the feature space.
2: Sampling K seeds over the image uniformly at fixed

horizontal and vertical intervals vx and vy .
3: Move each seed to its lowest gradient neighbor in the

3× 3 neighborhood.
4: Initialize weighted mean mk and search center ck of

each cluster using the corresponding seed.
5: Set label L(p) = 0 for each point p.
6: Set distance D(p) = ∞ for each point p.
7: repeat
8: for each weighted means mk and search center ck

do
9: for point p in the τvx × τvy neighborhood of ck

in the image plane do
10: D = Euclidean distance between ϕ(p) and mk

in the feature space.
11: if D < d(p) then
12: d(p) = D
13: L(p) = k
14: end if
15: end for
16: end for
17: Update weighted means and search centers for all

clusters.
18: until weighted means of K cluster converge.
19: Merge small superpixels to their neighbors.

will be enough for generating superpixels with the state of
art quality. Therefore, LSC is of a linear complexity O(N)
and experiments will show that LSC is among the fastest
superpixel segmentation algorithms.

4. Experiments
We compare LSC to eight state of the art superpixel

segmentation algorithms including SLIC [1], SEEDS [2],
Ncuts [23], Lattice [15], ERS [12], Turbopixel [11],
EneOpt1 and EneOpt0 [20]. For all the eight algorithms,
the implementations are based on publicly available code.
Experiments are performed on the Berkeley Segmentation
Database [13] consisting of three hundred test images with
human segmented ground truth. The boundary adherence of
superpixels generated by different algorithms are compared
using three commonly used evaluation metrics in image
segmentation: under-segmentation error (UE), boundary re-
call (BR) and achievable segmentation accuracy (ASA).

Among the three metrics, UE measures the percentage of
pixels that leak from the ground truth boundaries. It actu-
ally evaluates the quality of superpixel segmentation by pe-
nalizing superpixels overlapping with multiple objects. The
definition of UE used in [1] is adopted here. Lower UE in-
dicates that fewer superpixels straddle multiple objects. BR



(a) UE (b) BR (c) ASA (d) Time

Figure 3. Quantitative evaluation of different superpixel segmentation algorithms.

measures the fraction of ground truth boundaries correctly
recovered by the superpixel boundaries. A true boundary
pixel is regarded to be correctly recovered if it falls within
2 pixels from at least one superpixel boundary point. A
high BR indicates that very few true boundaries are missed.
ASA is defined as the highest achievable object segmenta-
tion accuracy when utilizing superpixel as units [12]. By
labeling each superpixel with the ground truth segments of
the largest overlapping area, ASA is calculated as the frac-
tion of labeled pixels that are not leaked from the ground
truth boundaries. A high ASA indicates that the superpixels
comply well with objects in the image. Figure 3 shows the
experimental results which are average values over all the
300 test images in the Berkeley segmentation database.

Computational efficiency is also an important factor for
evaluating the performance of superpixel segmentation al-
gorithms. In our experiment, we calculate the average run-
ning time for different algorithms and the results are shown
in Figure 3(d). All the experiments are performed on an
desktop PC equipped with an Intel 3.4 GHz dual core pro-
cessor and 2GB memory. The time consumption of the
Ncuts algorithm [23] is much higher than that of the other
methods and is therefore omitted in Figure 3(d).

To be more clear, we also list the numeric values of the
metrics when the number of superpixels K = 400 in Table
1 which also summarizes the computational complexity of
different algorithms. From Figure 3 and Table 1, it can be
observed that in terms of the boundary adherence, the pro-
posed LSC is comparable to the state of art the algorithms.
For relative large number of superpixels, LSC performs the
best. Also, LSC is of linear complexity and is among the al-
gorithms with the highest time efficiency. In addition, quali-
tative experiments demonstrate that LSC performs the best.
We select the five algorithms (SEEDS, Ncuts, SLIC, ERS
and LSC) that achieve the lowest UE values when K = 400
for visual comparison. According to Figure 3, these five
algorithms generally outperform the remaining three algo-
rithms in terms of UE, BR as well as ASA. Figure 4 shows
some typical visual results of superpixel segmentation us-
ing these algorithms. Some detail segmentation results are
emphasized to facilitate close visual inspection. Intuitively,

LSC has achieved the most perceptually satisfactory seg-
mentation results for different kind of images.

According to Figure 3, EneOpt0 performs the worst in
terms of boundary adherence among the five selected algo-
rithms, probably because that it uses a variation of the mini-
mum cut strategy which may suffer from the bias of cutting
out small set of pixels, leading to under segmentation errors
in practice as is shown in Figure 4(a). Actually, EneOpt0 in-
directly controls the superpixel density by setting the upper
bound of the superpixel size. However, it may be difficult
to produce a desirable number of superpixels using EneOp0
especially for small K because large superpixels tend to be
split into small patches at regions with high variabilities. As
for Ncuts, a major drawback is its extremely low time effi-
ciency. The two-step heuristic algorithm proposed in [17]
for acceleration has caused Ncuts to become ineffective in
terms of boundary adherence as K increases. Even though,
Ncuts is still the slowest algorithm as is shown in Table 1.
As a local feature based method, SLIC is the second fastest
among the selected algorithms according to our experimen-
tal results. The superpixels generated by SLIC are also
perceptually satisfactory for most of the cases. However,
compared to the proposed LSC algorithm, the boundary ad-
herence of SLIC is less competitive according to Figure 3.
Actually, the major difference between SLIC and LSC is
that the iterative weighted K-means clustering is performed
inside different feature spaces. However, this difference is
critical because unlike SLIC which rely on local features
only, LSC successfully connects a local feature based op-
eration with a global optimization objective function by in-
troducing ϕ so that the global image structure is implicitly
utilized to generate more reasonable segmentation results.
In terms of boundary adherence, ERS and SEEDS are very
close to LSC and SEEDS is probably the fastest existing su-
perpixel segmentation algorithm. However, this is achieved
by sacrificing the regularity and perceptual satisfaction of
the generated superpixels as is shown in Figure 4(d).

LSC uses two parameters Cs and Cc to control the rel-
ative significance of the color similarity and space proxim-
ity in measuring similarity between pixels. In fact, what is
truly meaningful is the their ratio rc = Cs/Cc. Generally,



Table 1. Performance metrics of superpixel segmentation algorithms at K = 400

EneOpt0 SEEDS ERS Lattices Ncuts SLIC Turbo LSC
Adherence to boundaries
Under segmentation error 0.230 0.197 0.198 0.303 0.220 0.213 0.277 0.190
Boundary recall 0.765 0.918 0.920 0.811 0.789 0.837 0.739 0.926
Achievable segmentation accuracy 0.950 0.960 0.959 0.933 0.956 0.956 0.943 0.962
Segmentation speed
Computational complexity O(N

3

K2 ) O(N) O(N2lgN) O(N
3
2 lgN) O(N

2
3 ) O(N) O(N) O(N)

Average time per image 8.22s 0.213s 2.88s 0.748s 273s 0.314s 20.2s 0.919s

(a) SEEDS (b) Ncuts (c) SLIC (d) ERS (e) LSC

Figure 4. Visual comparison of superpixel segmentation results when K = 400.



(a) rc = 0.05 (b) rc = 0.075 (c) rc = 0.1 (d) rc = 0.15

Figure 5. Superpixel segmentation results for different rc.

larger values of rc indicate a tendency towards generating
superpixels with higher shape regularity while smaller rc
usually lead to better boundary adherence as is shown in
Figure 5. In our experiments, we set rc = 0.075. We have
also verified the validity of approximating Ŵ (p, q) using
W (p, q). For more than 98.8% practical cases, the relative
error caused by this approximation does not exceed 0.5%.

5. Conclusions
We present in this paper a novel superpixel segmenta-

tion algorithm, LSC, which produces compact and regular
shaped superpixels with linear time complexity and high
memory efficiency. The most critical idea in LSC is to ex-
plicitly utilize the connection between the optimization ob-
jectives of weighted K-means and normalized cuts by intro-
ducing a elaborately designed high dimensional space. As
such, LSC achieves both boundary adherence and global
image structure perseverance through simple local feature
based operations. Experimental results show that LSC gen-
erally over-performs most state of the art algorithms both
quantitatively and qualitatively.
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