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Abstract

We propose a new learning-based method for estimat-
ing 2D human pose from a single image, using Dual-Source
Deep Convolutional Neural Networks (DS-CNN). Recently,
many methods have been developed to estimate human pose
by using pose priors that are estimated from physiologi-
cally inspired graphical models or learned from a holis-
tic perspective. In this paper, we propose to integrate both
the local (body) part appearance and the holistic view of
each local part for more accurate human pose estimation.
Specifically, the proposed DS-CNN takes a set of image
patches (category-independent object proposals for train-
ing and multi-scale sliding windows for testing) as the input
and then learns the appearance of each local part by con-
sidering their holistic views in the full body. Using DS-CNN,
we achieve both joint detection, which determines whether
an image patch contains a body joint, and joint localization,
which finds the exact location of the joint in the image patch.
Finally, we develop an algorithm to combine these joint de-
tection/localization results from all the image patches for
estimating the human pose. The experimental results show
the effectiveness of the proposed method by comparing to
the state-of-the-art human-pose estimation methods based
on pose priors that are estimated from physiologically in-
spired graphical models or learned from a holistic perspec-
tive.

1. Introduction

By accurately locating the important body joints from
2D images, human pose estimation plays an essential role
in computer vision. It has wide applications in intelligent
surveillance, video-based action recognition, and human-
computer interaction. However, human pose estimation
from an 2D image is a well known challenging problem –
too many degrees of freedom are introduced by the large
variability of the human pose, different visual appearance
of the human body and joints, different angles of camera

Figure 1. An illustration of the proposed method based on DS-
CNN. (a) Input image and generated image patches. (b) DS-CNN
input on an image patch (containing a local part – ankle). (c) DS-
CNN input on full body and holistic view of the local part in the
full body. (d) DS-CNN for learning. (e) DS-CNN output on joint
detection. (f) DS-CNN output on joint localization.

view, and possible occlusions of body parts and joints.
Most of the previous works on human pose estimation

are based on the two-layer part-based model [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15]. The first layer focuses on lo-
cal (body) part appearance and the second layer imposes the
contextual relations between local parts. One popular part-
based approach is pictorial structures [1], which capture the
pairwise geometric relations between adjacent parts using
a tree model. However, these pose estimation methods us-
ing part-based models are usually sensitive to noise and the
graphical model lacks expressiveness to model complex hu-
man poses [12]. Furthermore, most of these methods search
for each local part independently and the local appearance
may not be sufficiently discriminative for identifying each
local part reliably.

Recently, deep neural network architectures, specifically
deep convolutional neural networks (CNNs), have shown
outstanding performance in many computer vision tasks.
Due to CNNs’ large learning capacity and robustness to
variations, there is a natural rise in the interest to directly
learn high-level representations of human poses without us-
ing hand-crafted low-level features and even graphical mod-



els. Toshev et al. [16] present such a holistic-styled pose es-
timation method named DeepPose using DNN-based joint
regressors. This method also uses a two-layer architecture:
The first layer resolves ambiguity between body parts (e.g.
left and right legs) in a holistic way and provides an ini-
tial pose estimation and the second layer refines the joint
locations in a local neighborhood around the initial estima-
tion. From the experiments in [16], DeepPose can achieve
better performance on two widely used datasets, FLIC and
LSP, than several recently developed human pose estima-
tion methods. However, DeepPose does not consider local
part appearance in initial pose estimation. As a result, it has
difficulty in estimating complex human poses, even using
the CNN architecture.

In this paper, we propose a dual-source CNN (DS-CNN)
based method for human pose estimation, as illustrated in
Fig. 1. This proposed method integrates both the local part
appearance in image patches and the holistic view of each
local part for more accurate human pose estimation. Fol-
lowing the region-CNN (R-CNN) that was developed for
object detection [17], the proposed DS-CNN takes a set of
category-independent object proposals detected from the in-
put image for training. Compared to the sliding windows or
the full image, that are used as the input in many previous
human pose estimation methods, object proposals can cap-
ture the local body parts with better semantic meanings in
multiple scales [17, 18]. In this paper, we extend the original
single-source R-CNN to a dual-source model (DS-CNN) by
including the full body and the holistic view of the local
parts as a separate input, which provides a holistic view for
human pose estimation. By taking both the local part ob-
ject proposals and the full body as inputs in the training
stage, the proposed DS-CNN performs a unified learning
to achieve both joint detection, which determines whether
an object proposal contains a body joint, and joint local-
ization, which finds the exact location of the joint in the ob-
ject proposal. In the testing stage, we use multi-scale sliding
windows to provide local part information in order to avoid
the performance degradation resulted by the uneven distri-
bution of object proposals. Based on the DS-CNN outputs,
we combine the joint detection results from all the sliding
windows to construct a heatmap that reflects the joint lo-
cation likelihood at each pixel and weightedly average the
joint localization results at the high-likelihood regions of
the heatmap to achieve the final estimation of each joint lo-
cation.

In the experiments, we test the proposed method on two
widely used datasets and compare its performance to several
recently reported human pose estimation methods, includ-
ing DeepPose. The results show the effectiveness of the pro-
posed method which combines local appearance and holis-
tic view.

2. Related Work
Part-based models for human pose estimation. In the

part-based models, human body is represented by a collec-
tion of physiologically inspired parts assembled through a
deformable configuration. Following the pictorial-structure
model [19, 1], a variety of part-based methods have been
developed for human pose estimation [2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15]. While many early methods build
appearance models for each local part independently, re-
cent works [8, 20, 4, 12, 10, 15] attempt to design strong
body part detectors by capturing the contextual relations
between body parts. Johnson and Everingham [10] parti-
tion the pose space into a set of pose clusters and then ap-
ply nonlinear classifiers to learn pose-specific part appear-
ance. In [12], independent regressors are trained for each
joint and the results from these regressors are combined
to estimate the likelihood of each joint at each pixel of
the image. Based on the appearance models built for each
part, these methods usually leverage tree-structured graph-
ical models to further impose the pairwise geometric con-
straints between parts [2, 3, 8, 7, 21]. Due to the limited ex-
pressiveness [16], the tree-structured graphical models of-
ten suffer from the limb ambiguity, which affects the ac-
curacy of human pose estimation. There have been several
works that focus on designing richer graphical models to
overcome the limitation of tree-structured graphical mod-
els. For example, in [10], mixture of pictorial structure mod-
els are learned to capture the ‘multi-modal’ appearance of
each body part. Yang and Ramanan [21] introduce a flexible
mixture-of-parts model to capture contextual co-occurrence
relations between parts. In [2], the hierarchical structure
is incorporated to model high-order spatial relation among
parts. Loopy models [5, 22, 23, 24] allow to include addi-
tional part constraints, but require approximate inference. In
the latter experiments, we include several above-mentioned
part-based methods for performance comparison.

Deep convolutional neural network (CNN) in com-
puter vision. As a popular deep learning approach, CNN
[25] attempts to learn multiple levels of representation
and abstraction and then use it to model complex non-
linear relations. It has been shown to be a useful tool in
many computer vision applications. For example, it has
demonstrated impressive performance for image classifica-
tion [26, 27, 28, 29]. More recently, CNN architectures have
been successfully applied to object localization and detec-
tion [30, 17, 31]. In [31], a single shared CNN named ‘Over-
feat’ is used to simultaneously classify, locate and detect
objects from an image by examining every sliding window.
In this paper, we also integrate joint detection and localiza-
tion using a single DS-CNN. But our problem is much more
challenging than object detection – we need to find precise
locations of a set of joints for human pose estimation. Gir-
shick et al. [17] apply high-capacity R-CNNs to bottom-up



object proposals [32] for object localization and segmen-
tation. It achieves 30% performance improvement on PAS-
CAL VOC 2012 against the state of the art. Zhang et al. [18]
adopt the R-CNN [17] to part localization and verify that
the use of object proposals instead of sliding windows in
CNN can help localize smaller parts. Based on this, R-CNN
is shown to be effective for fine-grained category detection.
However, this method does not consider the complex rela-
tions between different parts [18] and is not applicable to
human pose estimation.

CNN for human pose estimation. In [16], a cascade
of CNN-based joint regressors are applied to reason about
pose in a holistic manner and the developed method was
named ‘DeepPose’. The DeepPose networks take the full
image as the input and output the ultimate human pose with-
out using any explicit graphical model or part detectors.

In [33], Jain et al. introduce a CNN-based architecture
and a learning technique that learns low-level features and
a higher-level weak spatial model. Following [33], Tomp-
son et al. show that the inclusion of a MRF-based graphical
model into the CNN-based part detector can substantially
increase the human pose estimation performance. Differ-
ent from DeepPose and Tompson et al. [34], the proposed
method takes both the object proposals and the full body as
the input for training, instead of using the sliding-windowed
patches, to capture the local body parts with better semantic
meanings in multiple scales.

3. Problem Description and Notations

In this paper, we adopt the following notations. A hu-
man pose can be represented by a set of human joints
J = {ji}Li=1 ∈ R2L×1, where ji = (xi, yi)

T denotes the
2D coordinate of the joint i and L is the number of human
joints. In this paper, we are interested in estimating the 2D
joint locations J from a single image I . Since our detection
and regression are applied to a set of image patches, in the
form of rectangular bounding boxes, detected in I , it is nec-
essary to convert absolute joint coordinates in image I to
relative joint coordinates in an image patch. Furthermore,
we introduce a normalization to make the locations invari-
ant to size of different image patches. Specifically, given an
image patch p, the location of p is represented by 4-element
vector p = (w (p) , h (p) , c (p))

T , where w (p) and h (p)
are the width and height of p, c (p) = (xc (p) , yc (p))

T is
the center of p. Then the normalized coordinate of joint ji
relative to p can be denoted as

ji (p) = (xi (p) , yi (p))
T

=

(
xi − xc (p)
w (p)

,
yi − yc (p)
h (p)

)T

. (1)

Furthermore, the visibility of all the joints in p is denoted

Figure 2. Extended part and body patches containing (a) right an-
kle, (b) left ankle, (c) right wrist, and (d) left wrist from the LSP
training dataset. For each local part, the part patches are shown
in the left while the corresponding body patches are shown in the
right.

as V(p) = {vi (p)}Li=1 ∈ RL×1, where

vi (p) =

{
1, |xi (p)| ≤ 0.5 and |yi (p)| ≤ 0.5

0, otherwise.
(2)

If vi (p) = 1, it indicates that the joint i is visible in
p, i.e., it is located inside the patch p. On the contrary, if
vi (p) = 0, it indicates that the joint i is invisible in p, i.e.,
it is located outside of p.

4. Model Inputs
As described earlier, to combine the local part appear-

ance and the holistic view of each part, the proposed DS-
CNN takes two inputs for training and testing – image
patches and the full body. To make it clearer, we call the
former input the part patches, denoted as pp, and the lat-
ter body patches, denoted as pb. So the dual-source input is
pp,b = (pp,pb). Randomly selected samples for these two
kinds of inputs are shown in Fig. 2, where for each local
part, the part patches are shown in the left while the corre-
sponding body patches are shown in the right. From these
samples, we can see that it is difficult to distinguish the left
and right wrists, or some wrists and legs, based only on the
local appearance in the part patches.

As we will see later, we use object proposals detected
from an image for training and object proposals usually
show different sizes and different aspect ratios. CNN re-
quires the input to be of a fixed dimension. In [17], all the
object proposals are non-uniformly scaled to a fixed-size
square and it may need to vary the original aspect ratios.
This may complicate the CNN training by artificially intro-
ducing unrealistic patterns into training samples. In partic-
ular, in our model we are only interested in the body joint
that is closest to the center of a part patch (This will be
elaborated in detail later). If the part patch is non-uniformly
scaled, the joint of interest may be different after the change



of the aspect ratio. Thus, in this paper we keep the aspect
ratio of image patches unchanged when unifying its size.
Specifically, we extend the short side of the image patch
to include additional rows or columns to make it a square.
This extension is conducted in a way such that the center
of each image patch keeps unchanged. After the extension,
we can perform uniform scaling to make each patch a fixed-
size square. This extension may not be preferred in object
detection [17] by including undesired background informa-
tion. However, in our problem this extension just includes
more context information of the joint of interest. This will
not introduce much negative effect to the part detection. The
only minor effect is the a subtle reduction of the resolution
of each patch (after the uniform scaling).

Part Patches In the training stage, we construct part
patches in two steps. 1) Running an algorithm to construct a
set of category-independent object proposals. Any existing
object proposal algorithms can be used here. In our experi-
ments, we use the algorithm developed in [35]. 2) Select a
subset of the constructed proposals as the part patches. We
consider two factors for Step 2). First, we only select ob-
ject proposals with a size in certain range as part patches.
If the size of an object proposal is too large, it may cover
multiple body parts and its appearance lacks sufficient reso-
lution (after the above-mentioned uniform scaling) for joint
detection and localization. On the contrary, if the size of an
object proposal is too small, its appearance may not provide
sufficient features. To address this issue, we only select the
object proposals pp with an area in a specified range as part
patches, i.e.,

µ1d
2 (J) ≤ w (pp) · h (pp) ≤ µ2d

2 (J) (3)

where d (J) is the distance between two opposing joints
on the human torso [16]. µ1 and µ2 are two coefficients
(µ1<µ2) that help define the lower bound and the upper
bound for selecting an object proposal as a part patch.

Second, from the training perspective, we desire all the
body joints are covered by sufficient number of part patches.
In the ideal case, we expect the selected part patches cover
all the joints in a balanced way – all the joints are covered
by similar number of part patches. We empirically examine
this issue and results are shown in Fig. 3 – on both FLIC
and LSP datasets, this simple part-patch selection algorithm
provides quite balanced coverage to all the joints. In this
figure, the x-axis indicates the label of different joints – only
upper-body joints are shown in FLIC dataset while all 14
body joints are shown in LSP dataset. The y-axis indicates
the average number of part patches that covers the specified
joint in each image. Here we count that a part patch covers a
joint if this joint is visible to (i.e., located inside) this patch
and this joint is the closest joint to the center of this patch.
At each joint, we show three part-patch coverage numbers
in three different colors. From left to right, they correspond

Figure 3. The average number of part patches that cover each joint
in (a) FLIC and (b) LSP datasets. Three colors indicates the results
by selecting different µ2 values of 1.0, 1.5 and 2.0 respectively.

to three different µ2 values of 1.0, 1.5 and 2.0 respectively.
In this empirically study, we always set µ1 = 0.1.

In the testing stage, part patches are selected from multi-
scale sliding windows (this will be justified in Section 8).

Body Patches Similarly, in the training stage we con-
struct body patches by selecting a subset of object propos-
als from the same pool of object proposals detected from
the image. The only requirement is that the selected body
patch should cover the whole body or all the joints, i.e.,

L∑
i=1

vi (pb) = L. (4)

In the testing stage, the body patch can be generated by
using a human detector. For the experiments in this paper,
each testing image only contains one person and we simply
take the whole testing image as the body patch.

For DS-CNN, each training sample is made up of a part
patch pp, a body patch pb, and the binary mask that spec-
ifies the location of pp in pb, as shown in Fig. 2, where
both pp and pb are extended and normalized to a fixed-size
square image. For part patch pp, we directly take the RGB
values at all the pixels as the first source of input to DS-
CNN. For body patch pb, we take the binary mask as an ad-
ditional alpha channel and concatenate the RGB values of
pb and the alpha values as the second source of input to DS-
CNN. Given that we extend and normalize all the patches
to a N × N square, the first source of input is of dimen-
sion 3N2 and the second source of input is of size 4N2. In
the training stage, based on the constructed part patches and
body patches, we randomly select one from each as a train-
ing sample. For both training and testing, if the selected part
patch is not fully contained in the selected body patch, we
crop the part patch by removing the portion located outside
the body patch before constructing the training or testing
sample.

5. Multi-Task Learning
We combine two tasks in a single DS-CNN – joint detec-

tion, which determines whether a part patch contains a body



Figure 4. The structure of DS-CNN.

joint, and joint localization, which finds the exact location
of the joint in the part patch. Each task is associated with a
loss function.

Joint detection For joint detection, we label a patch-pair
pp,b to joint i∗, where

i∗ (pp) =

{
arg min

1≤i≤L
‖ ji (pp) ‖2 if

∑L
k=1 vk (pp) > 0

0 otherwise,
(5)

and this is taken as the ground truth for training.
Let the DS-CNN output for joint detection be

(`0 (pp,b) , `1 (pp,b) ..., `L (pp,b))
T , where `0 indicates the

likelihood of no body joint visible in pp and `i, i = 1, ..., L
represents the likelihood that joint i is visible in pp and is
the closest joint to the center of pp . We use a softmax clas-
sifier where the loss function is

Cd (pp,b) = −
L∑

i=0

1 (i∗ (pp) = i) log (`i (pp,b)) , (6)

where 1 (·) is the indicator function.
Joint localization Joint localization is formulated as

a regression problem. In DS-CNN training, the ground-
truth joint location for a patch-pair pp,b is ji∗(pp) (pp) =(
xi∗(pp) (pp) , yi∗(pp) (pp)

)T
, where i∗ (pp) is defined in

Eq. (5). Let the DS-CNN output on joint localization be
{zi (pp,b)}Li=1 ∈ R2L×1 , where zi (pp,b) = (x̂i, ŷi)

T de-
notes the predicted location of the i−th joint in pp. We use
the mean squared error as the loss function,

Cr (pp,b) =

{
‖ zi∗(pp) (pp,b)− ji∗(pp) (pp) ‖2 if i∗ > 0

0 otherwise.
(7)

Combining the joint detection and joint localization, the
loss function for DS-CNN is

C =
∑
pp,b

{λdCd (pp,b) + Cr (pp,b)} , (8)

where the summation is over all the training samples (patch
pairs) and λd > 0 is a factor that balances the two loss
functions.

6. DS-CNN Structure
The structure of the proposed DS-CNN is based on the

CNN described in [29], which is made up of five convolu-
tional layers, three fully-connected layers, and a final 1000-
way softmax, in sequence. The convolutional layers 1, 2 and
5 are followed by max pooling. In the proposed DS-CNN,
we include two separate sequence of convolutional layers.
As shown in Fig. 4, one sequence of 5 convolutional lay-
ers takes the part-patch input as defined in Section 4 and
extracts the features from local appearance. The other se-
quence of 5 convolutional layers takes the body-patch input
and extracts the holistic features of each part. The output
from these two sequences of convolutional layers are then
concatenated together, which are then fed to a sequence of
three fully connected layers. We replace the final 1000-way
softmax by a (L+ 1)-way softmax and a regressor for joint
detection and joint localization, respectively. In DS-CNN,
all the convolutional layers and the fully-connected layers
are shared by both the joint detection and the joint localiza-
tion.

In Fig. 4, the convolutional layer and the following pool-
ing layer is labeled Ci and the fully-connected layer are
labeled as Fi where i is the index of layer. The size of a
convolutional layer is described as depth@width × height,
where depth is the number of convolutional filters, width
and height denote the spatial dimension.

7. Human Pose Estimation
Given a testing image, we construct a set of patch-pairs

using multi-scale sliding windows as discussed in Section
4. We then run the trained DS-CNN on each patch-pair pp,b

to obtain both joint detection and localization. In this sec-
tion, we propose an algorithm for estimating the final hu-
man pose on the testing image by combining the joint de-
tection and localization results from all the patch pairs.



At first, we construct a heatmap Hi for each joint i – the
heatmap is of the same size as the original image andHi(x),
the heatmap value at a pixel x, reflects the likelihood that
joint i is located at x. Specifically, for each patch-pair pp,b,
we uniformly allocate its joint-detection likelihood to all the
pixels in pp, i.e.,

hi (x,pp,b) =


`i (pp,b) / (w (pp) · h (pp)) ,

if x ∈ pp and `i (pp,b) > `j (pp,b) ,∀j 6= i

0 otherwise.
(9)

We then sum up the allocated joint-detection likelihood over
all the patch-pairs in a testing image as

Hi (x) =
∑
pp,b

hi (x,pp,b) . (10)

Figure 4 shows an example of the heatmap for the left wrist.
We can see that, by incorporating the body patches, the
constructed heatmap resolves the limb ambiguity. However,
while the heatmap provides a rough estimation of the joint
location, it is insufficient to accurately localize the body
joints.

To find the accurate location of a joint, we take the DS-
CNN joint-localization outputs from a selected subset of
patch-pairs, where the joint is visible with high likelihood.
We then take the weighted average of these selected outputs
as the final location of the joint. More specifically, we only
select patch pairs pp,b that satisfy the following conditions
when finding the location of joint i in the testing image.

1. The likelihood that no body joint is visible in pp is
smaller than the likelihood that joint i is visible in the
part patch, i.e.

`0 (pp,b) < `i (pp,b) . (11)

2. The likelihood that joint i is visible in pp should be
among the k largest ones over all L joints. In a special
case, if we set k=1, this condition requires `i (pp,b) >
`j (pp,b) ,∀j 6= i.

3. The maximum heatmap value (for joint i) in pp is close
to the maximum heatmap value over the body patch
(full testing image in our experiments). Specifically, let

Hp
i = max

x∈pp

Hi (x) , (12)

and
Hb

i = max
x∈pb

Hi (x) . (13)

We require
Hp

i > λhH
b
i , (14)

where λh is a scaling factor between 0 and 1. In our
experiments, we set λh = 0.9.

Method Arm Leg
Torso Head Avg.

Upper Lower Upper Lower

DS-CNN 0.80 0.63 0.90 0.88 0.98 0.85 0.84

DeepPose [16] 0.56 0.38 0.77 0.71 - - -

Dantone et al. [12] 0.45 0.25 0.68 0.61 0.82 0.79 0.60

Tian et al. [2] 0.52 0.33 0.70 0.60 0.96 0.88 0.66

Johnson et al. [36] 0.54 0.38 0.75 0.67 0.88 0.75 0.66

Wang et al. [3] 0.49 0.32 0.74 0.70 0.92 0.86 0.67

Pishchulin et al. [7] 0.54 0.34 0.76 0.68 0.88 0.78 0.66

Pishchulin et al. [37] 0.62 0.45 0.79 0.73 0.89 0.86 0.72

Table 1. PCP comparison on LSP. Note that DS-CNN, DeepPose
[16] and Johnson et al. [36] are trained with both the LSP and its
extension, while the other methods use only LSP .

Let Pi be the set of the selected patch-pairs that satisfy these
three conditions. We estimate the location of joint i by

j′i =

∑
pp,b∈Pi z′i (pp,b) `i (pp,b)∑

pp,b∈Pi `i (pp,b)
, (15)

where z′i (pp,b) is the DS-CNN estimated joint-i location
in the coordinates of the body patch pb. As mentioned ear-
lier, in our experiments, each testing image only contains
one person and we simply take the whole image as the
body patch pb, so z′i (pp,b) can be derived from the DS-
CNN joint localization output zi (pp) by applying the in-
verse transform of Eq. (1).

8. Experiments
In this paper, we evaluate the proposed method on Leeds

Sports Pose (LSP) dataset [10], the extended LSP dataset
[36], and Frames Labeled in Cinema (FLIC) dataset [15].
LSP and its extension contains 11,000 training and 1,000
testing images of sports people gathered from Flickr with 14
full body joints annotated. These images are challenging be-
cause of different appearances and strong articulation. The
images in LSP dataset have been scaled so that the most
prominent person is about 150 pixels high. FLIC dataset
contains 3,987 training and 1,016 testing images from Hol-
lywood movies with 10 upper body joints annotated. The
images in FLIC dataset contain people with diverse poses
and appearances and are biased towards front-facing poses.

Most LSP images only contain a single person. While
each image in FLIC may contain multiple people, simi-
lar to [16], a standard preprocessing of body detection has
been conducted to extract individual persons. As in previ-
ous works, we take the subimages of these detected individ-
ual persons as training and testing samples. This way, the
training and testing data only contain a single person and as
mentioned earlier, in the testing stage, we simply take the
whole image (for FLIC dataset, this means a whole subim-
age for an individual person) as the body patch.



Figure 5. PDJ comparison on FLIC.

Figure 6. PDJ comparison on LSP.

It has been verified that, in the training stage, the use
of object proposals can help train better CNNs for object
detection and part localization [17, 18]. However, in the
testing stage, object proposals detected on an image may
be unevenly distributed. As a result, an image region cov-
ered by dense low-likelihood object proposals may unde-
sirably show higher values in the resulting heatmap than a
region covered by sparser high-likelihood object proposals.
To avoid this issue, in our experiments we use multi-scale
sliding windows (with sizes of 0.5d (J) and d (J), stride 2)
to provide part patches in the testing stage.

To compare with previous works, we evaluate the per-
formance of human pose estimation using two popular met-
rics: Percentage of Corrected Parts (PCP) [38] and Percent-
age of Detected Joints (PDJ) [15, 16]. PCP measures the
rate of correct limb detection – a limb is detected if the dis-
tances between detected limb joints and true limb joints are
no more than half of the limb length. Since PCP penalizes
short limbs, PDJ is introduced to measure the detection rate
of joints, where a joint is considered to be detected if the dis-
tance between detected joint and the true joint is less than a
fraction of the torso diameter d (J) as described in Section
4. For PDJ, we can obtain different detection rate by vary-
ing the fraction and generate a PDJ curve in terms of the
normalized distance to true joint [16].

The parameters that need to be set in the proposed
method are

1. Lower bound coefficient µ1 and the upper bound coef-
ficient µ2 in Eq.(3).

2. Balance factor λd in the loss function in Eq. (8).

3. k and λh that are used for selecting patch-pairs for
joint localization in Section 7.

Figure 7. Visualization of the features extracted by layer F7 in DS-
CNN.

In our experiments, we set µ1 = 0.1, µ2 = 1.0, λd = 4,
k = 3, and λh = 0.9.

In this paper, we use the open-source CNN library Caffe
[39] for implementing DS-CNN. We finetune a CNN net-
work pretrained on ImageNet [29] for training the proposed
DS-CNN. Following [17], the learning rate is initialized to
a tenth of the initial ImageNet learning rate and is decreased
by a factor of ten after every certain number of iterations.

We first evaluate our method on LSP dataset. The PCP
of the proposed method, DeepPose and six other compar-
ison methods for head, torso, and four limbs (upper/lower
arms and upper/lower legs) is shown in Table 1. Except for
‘head’, our method outperforms all the comparison methods
including DeepPose at all body parts. The improvement on
average PCP is over 15% against the best results obtained
by the comparison methods.

Figure 5 shows the PDJ curves of the proposed method
and seven comparison methods at the elbows and wrists on
the FLIC dataset [16, 15, 33, 4, 11, 34, 21]. We can see that
the proposed method outperforms all the comparison meth-
ods except for Tompson et al. Tompson et al’s PDJ perfor-
mance is higher than the proposed method, when normal-
ized distance to true joint, or for brevity, normalized dis-
tance, is less than a threshold t, but a little lower than the
proposed method when normalized distance is larger than
t. As shown in Fig. 5, the value of t is 0.15 and 0.18 for
elbows and wrists respectively.

As a further note, Tompson et al. [34] combines an
MRF-based graphic model into CNN-based part detection.
It shows that the inclusion of the graphical model can sub-
stantially improve the PDJ performance. In this paper, we
focus on developing a new CNN-based method to detect lo-
cal parts without using any high-level graphical models. We
believe the PDJ performance of the proposed method can
be further improved if we combine it to a graphical model
as in Tompson et al.

Performance comparison on LSP dataset using PDJ met-
ric is shown in Fig. 6. Similar to PDJ comparison on FLIC,
the PDJ of the proposed method is better than all the com-



LSP ankle knee hip wrist elbow shoulder neck head mAP FLIC hip wrist elbow shoulder Head mAP

pp 35.7 25.5 27.3 20.7 17.1 35.0 47.9 70.3 31.5 pp 61.2 56.0 71.2 88.8 93.8 72.0

pb 39.7 39.6 37.5 21.3 29.3 40.7 44.4 70.4 37.9 pb 72.8 59.3 77.7 91.0 94.0 77.2

pp,b 44.6 41.9 41.8 30.4 34.2 48.7 58.9 79.6 44.4 pp,b 74.3 68.1 82.0 93.5 96.4 81.4

Table 2. Average precision (%) of joint detection on LSP and FLIC testing datasets when CNN takes different types of patches as input.

Figure 8. Human pose estimation on sample images from FLIC and LSP testing datasets.

parison methods except for Tompson et al. When compared
with Tompson et al, the proposed method performs substan-
tially better when normalized distance is large and performs
worse when normalized distance is small. One observation
is that the PDJ gain of the proposed method over Tompson
et al. at large normalized distance in LSP is more significant
than the same gain in FLIC.

We also conduct an experiment to verify the effective-
ness of using dual sources of inputs: pp and pb. In this
experiment, we compute the average precision (AP) of the
joint detection when taking either 1) only part patches pp

, 2) only body patches pb, or 3) the proposed patch pairs
pp,b as the input to CNN. The results are shown in Table 2.
On both LSP and FLIC testing datasets, the use of the dual-
source patch-pairs achieves better AP at all joints, and the
best mAP, the average AP over all the joints. Note that the
body patch pb in this paper actually include part patch infor-
mation, in the form of a binary mask as discussed in Section
4. That’s why the use of only pb can lead significantly better
AP than the use of only pp on both LSP and FLIC testing
datasets. However, the binary mask is usually of very low
resolution because we normalize the body patch to a fixed
dimension. As a result, we still need to combine pp and pb

and construct a dual-source CNN for pose estimation.
Following [17, 40], we visualize the patterns extracted

by DS-CNN. We compute the activations in each hidden
node in layer F7 on a set of patch-pairs and Figure 7 shows
several patch pairs with the largest activations in the first
node of F7. We can see that this node fires for two pose
patterns – the bent right elbow and the right hip. For each
pattern, the corresponding full-body pose also show high
similarity because of the inclusion of both part and body
patches in DS-CNN.

Finally, sample human pose estimation results on FLIC
and LSP testing datasets are shown in Fig. 8. In general,
upper-body poses in FLIC are usually front-facing, while
the full-body pose in LSP contains many complex poses. As
a result, human pose estimation in LSP is less accurate than
that in FLIC. By including holistic views of part patches,
the proposed method can estimate the human pose even if
some joints are occluded, as shown in Fig. 8.

9. Conclusion

In this paper, we developed a new human pose estima-
tion method based on a dual-source convolutional neutral
network (DS-CNN), which takes two kinds of patches –
part patches and body patches – as inputs to combine both
local and contextual information for more reliable pose
estimation. In addition, the output of DS-CNN is designed
for both joint detection and joint localization, which are
combined for estimating the human pose. By testing on
the FLIC and LSP datasets, we found that the proposed
method can produce superior performance against several
existing methods. When compared with Tompson et al [34],
the proposed method performs better when normalized
distance is large and performs worse when normalized
distance is small. The proposed method is implemented
using the open-source CNN library Caffe and therefore has
good expandability.
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