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Abstract

Satellite imagery is a valuable source of information
for assessing damages in distressed areas undergoing a
calamity, such as an earthquake or an armed conflict. How-
ever, the sheer amount of data required to be inspected for
this assessment makes it impractical to do it manually. To
address this problem, we present a semi-supervised learn-
ing framework for large-scale damage detection in satellite
imagery. We present a comparative evaluation of our frame-
work using over 88 million images collected from 4, 665
KM2 from 12 different locations around the world. To en-
able accurate and efficient damage detection, we introduce
a novel use of hierarchical shape features in the bags-of-
visual words setting. We analyze how practical factors such
as sun, sensor-resolution, satellite-angle, and registration
differences impact the effectiveness our proposed represen-
tation, and compare it to five alternative features in mul-
tiple learning settings. Finally, we demonstrate through a
user-study that our semi-supervised framework results in a
ten-fold reduction in human annotation time at a minimal
loss in detection accuracy compared to manual inspection.

1. Introduction
Each year, hundreds of catastrophic events impact vulnera-
ble areas around the world. Assessing the extent of damage
caused by these crises is crucial in the timely allocation of
resources to help the affected populations. Since disaster-
locations are usually not readily accessible, the use of satel-
lite imagery has emerged as a valuable source of informa-
tion for estimating the impact of catastrophic events.

However, currently these assessments are mostly done
by analyzing the pre- and post-event images of distressed ar-
eas by human photo-interpreters, making it a labor-intensive
and expensive process. It is therefore important to scale-up
damage detection to larger areas accurately and efficiently.
Our work is a step towards solving this problem.

In the following, we summarize some of the key chal-
lenges that need to be addressed in this regard, and how our
work contributes towards them:
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Figure 1: (Top) Areas of interest shown with red dots. Each area
represents multiple local regions. We considered 12 local regions,
spanning 4, 665 KM2. (Bottom) Before and after imagery for dif-
ferent events shown in the two rows. These include (1) Typhoon
(Phillipines, Oct. 2013), (2) Armed conflict (Central African Re-
public, Dec. 2013), (3) Earthquake (Pakistan, Sept. 2013), and (4)
Internally displaced people’s shelters (Somalia, May 2013).

1- Comprehensive Data-Set: Thus far, there has been a
lack of comprehensive labeled data-set that could be used
to explore automatic damage detection at scale. To this
end, we present a benchmark data-set of 86 pairs of pre-
and post-event satellite imagery of distressed areas covering
4, 665 KM2 with the associated ground truth of damaged
regions acquired by expert interpreters. This data-set was
collected by using the satellites of DigitalGlobe Inc. Our
data-set covers 12 different regions from around the world,
and spans a wide range of terrains and climates, with a vari-
ety of damage types (see Figure 1). This data-set enables us
to rigorously explore and make generalizable conclusions
about the various facets of the problem at hand.

2- Appropriate Feature Choice: The scale of our prob-
lem naturally presents an accuracy-efficiency tradeoff for
the features being considered. To this end, we introduce
the use of trees-of-shapes features [28] in the bag-of-visual-
words model [16] that focuses more on the shape character-



istics of a scene, as opposed to its edge attributes (as done by
other popular descriptors e.g., SIFT [18]). Our results show
that this difference proves to be quite important to detect
damaged areas accurately. We present a thorough empirical
analysis for the effectiveness of our proposed scheme, and
compare it to multiple alternatives.

3- Label Acquisition Cost: Given the high skill-set
required from the photo-interpreters to assess the dam-
age accurately, acquiring reliable ground-truth labels is
particularly challenging for our problem. This high label
acquisition cost makes it important to explore the various
learning paradigms that could utilize the labeled data
effectively. To this end, we present a thorough comparison
of different learning strategies, including supervised, unsu-
pervised and semi-supervised methods. Our results suggest
the use of semi-supervised learning as a good trade-off
between the label-acquisition cost and the detection accu-
racy. We present a user-study of the photo-interpretation
efficiency provided by our framework, and report a ten-fold
speed-up compared to an exhaustive manual inspection, at
a minimal loss in detection accuracy.

In the following, we begin by reviewing the relevant previ-
ous works on damage detection. We then present the de-
tails of our benchmark data-set in § 3. In § 4, we go over
the feature-sets and learning approaches we consider in our
analysis, and present our experiments and results in § 5.

2. Related Work
The problem of damage detection is an instance of the
broader problem-class generally referred to as novelty or
change detection. Applying statistical approaches to solve
novelty detection is a well-studied topic [20], and has been
explored in multiple research-areas. Both supervised [17]
and unsupervised [13] approaches have been tried to solve
novelty detection, depending on the expected variance in
the occurring novelty as well as the cost of label acquisition.
More recently, there has been a growing interest in explor-
ing semi-supervised learning approaches [2] to efficiently
bootstrap the learning and label curation processes in a cou-
pled way by having a set of humans in the loop. This learn-
ing model has also been tried at larger scales, using crowds
for the purposes of label acquisition and curation [26].

Within the context of using satellite imagery, the main
focus so far has been on unsupervised approaches [4] [12].
These techniques attempt to localize the outliers that corre-
spond to scene changes [21] [23]. While effective in captur-
ing generic changes, these approaches struggle with detect-
ing the relevant ones.

There have also been supervised algorithms proposed in
the past to provide accurate decisions regarding the occur-
ring change [23]. In particular, these methods have focused
on the relevant (as opposed to general) change detection [5].

However, most of these techniques rely on direct compar-
isons of pixel spectral responses, which can be adversely
affected by sensor-misalignments and differences in acqui-
sition geometries of the satellite imagery.

There has been a recent focus on using local image de-
scriptors [25] in order to be more robust to data variabilities.
These studies tend to show that the combination of local de-
scriptors with supervised learning leads to high accuracies.
However, this direction can be challenging to scale-up in
cases where the label-acquisition cost is steep.

Our semi-supervised damage detection framework at-
tempts to combine the benefits of previous supervised and
unsupervised approaches, by requiring fewer labeled data
and achieving higher detection accuracy simultaneously.

3. Data-Set Details

We now present details of our benchmark data-set.

3.1. Sources

To compile a comprehensive data-set for exploring large-
scale damage detection, we had to rely on multiple data-
sources. We obtained the different areas of interest (AOIs)
around the world from the United Nations Institute for
Training and Research (UNITAR/UNOSAT) [1], which is
responsible for publishing maps of major disaster events.
These maps provide geo-located points indicating relevant
changes on the ground. We used this information to build
ground-truth for 12 AOIs, the geographic layout of which
is shown in Figure 1. We used this ground-truth informa-
tion to evaluate each of our considered features and learning
methods. Different types of crisis events were considered in
our AOIs including armed conflicts, earthquakes, typhoons,
and refugee-camp developments (see Figure 1 for exam-
ple cases). We obtained the pre- and post-event images of
our AOIs from DigitalGlobe’s archive. We extracted pairs
of gray-scale panchromatic images of submetric resolution,
such that the images fully cover our AOIs.

3.2. Variabilities

In the context of damage analysis, the pre- and post-event
images are likely to be captured from different sensors,
which can have different ground resolutions. To incorporate
sensor-variability in our data-set, we selected our 86 image-
pairs from the four of DigitalGlobe’satellites: QuickBird,
WorldView-1, WorldView-2 and GeoEye-1 with pixel-
resolution of 0.61m2, 0.5m2, 0.46m2, and 0.41m2, respec-
tively. To simplify the matching between sensors, we down-
sampled all images to 1m resolution. The variability in our
sensor combinations is given in Table. 1.

Another important source of variability in satellite im-
ages is the acquisition angles (sun, satellite elevation and az-
imuth), as it effects the directions and lengths of the casted



Satellites QB-2 WV-1 WV-2 GE-1
QB-2 1 - - -
WV-1 9 14 - -
WV-2 3 23 6 -
GE-1 5 11 9 5

Table 1: Four of the six of DigitalGlobe’s satellite are
used in our 86 image-pairs. Here the per-pixel resolutions
of QuickBird (QB-2), WorldView-1 (WV-1), WorldView-2
(WV-2) and GeoEye-1 (GE-1) are 0.61m2, 0.5m2, 0.46m2,
and 0.41m2, respectively.

shadows. While it would help to have image-pairs with sim-
ilar acquisition angles, however given the tight time con-
straint of damage analysis campaigns, images most readily
available generally have to be used. These images therefore
do not always meet the similar acquisition angles constraint.
To incorporate this variability in our data-set, we consider
different acquisition angles for our 86 image-pairs, and this
variability is illustrated in Figure 2. Because of high posi-
tional precision of on-board localization systems, the image
pair are expected to be aligned with a displacement which
rarely exceeds ±5 meters.

3.3. Size

Our collected data-set covers a total area of 4665 KM2, and
contains 9.25 Billion 11-bit pixels. Furthermore, the area
of significant damages labeled by expert photo-interpreters
of UNITAR/UNOSAT is spread over 174 KM2, which cor-
responds to 3.74% of our 12 AOIs. In our experiments, we
found that using regions of 50 × 50m area (equivalent to
50× 50 pixel window) sliding over the AOI with a stride of
10× 10m (equivalent to 10× 10 pixels) to be optimal. This
level of granularity results in more than 86 million 50× 50
image chips. To the best of our knowledge, the size and
variability of our data makes our work the largest analysis
of automatic damage detection ever published to date.

4. Computational Framework
We propose a semi-supervised learning scheme with hu-
mans in the loop to efficiently and accurately perform dam-
age detection. Given a pair of image-strips, we extract the
features of their (50 × 50) pixel windows sliding with a 10
pixel stride. Features from both strips are concatenated and
used to learn a shared space that can accurately represent
the notion of damage in the scene. Based on the damages
detected in this unsupervised manner, we show the detected
areas to a set of human observers who provide feedback la-
bels regarding the true and false detections. We then use
these labels in a supervised setting to finally learn the dam-
age detection classifier. Our framework overview is pre-
sented in Figure 3. We now present the details for each of
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Figure 2: Scatter plot showing differences of sun and satel-
lite angles (optimal versus used) for our 86 image strips.

our framework steps.

4.1. Feature Extraction

Areas assessed for disaster-related damages usually have
multiple man-made structures, each with their signature ge-
ometric shapes. This necessitates the use of features that
can efficiently and accurately encode object shapes [11].

We therefore propose to use shape-distributions [10] [28]
(SD) as features in our learning framework. Our work is the
first to propose the usage of shape distributions in a bag-of-
visual-words paradigm for the problem of large-scale dam-
age detection, and validates its effectiveness in an in-depth
manner. Using this extraction mechanism, we decompose
each image-chip into its multiple constituent shapes, which
are clustered and used in a bags-of-visual-words setting. We
now present the details of our extraction mechanism.

4.1.1 Tree of Shapes

We particularly adopt the tree-of-shapes [22] representation
for shape distributions, which organizes a given image into
its upper and lower level-sets [8] based connected compo-
nents. We define the upper level-set χ of a gray-scale image
u : Ω 7→ N for a level-threshold λ as:

χλ(u) = {p ∈ Ω | u(p) ≥ λ}. (1)

The lower level set Ψλ can similarly be defined by inverting
the above inequality. Connected components of level sets
{χλ(u) | λ ∈ N} are a lossless representation of u and pro-
vide its segment (as opposed to edge) based representation.

By construction, the components of the lower level set
correspond to the holes of the components of the upper-
level set, and vice-versa. Both these sets can be incorpo-
rated in one non-redundant tree structure called the tree of
shapes, where the components are hierarchically nested and
the lower and upper components are connected depending
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Figure 3: Given a pair of image-strips, we extract features of their overlapping windows, which are then used to learn a
shared sub-space. Based on the changes detected in this unsupervised manner, we show the detected areas to a set of human-
observers to obtain feedback from them. We use this feedback in a supervised setting to learn a damage detection classifier.
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Figure 4: (a)- Illustration of tree of shapes using an input image with four gray-scale values. (b)- A 50× 50 example image-
chip of a roofless building is decomposed into its equivalent tree of shapes. The illustration shows the decomposition in upper
(white) and lower (black) level sets components. These components add up to reconstruct the input chip in a lossless manner.

on the holes they fill (see Figure 4 for illustration). We fol-
low the quasi-linear algorithm [9] for the construction of
shape-trees, which enables us to extract them efficiently.

4.1.2 Shape Attributes

We characterize each shape extracted by a tree-of-shapes
by its contrast, spectral response, and moment-based shape
descriptors. We compute the contrast as the difference be-
tween the grey levels of a node and its parent in a tree-
of-shapes. The spectral response is obtained as the aver-
age gray-level values for each shape-component. We de-
rive our shape descriptors from the 2nd and 3rd order central
moments [10] of a node. In particular, we use four shift-
invariant shape descriptors, i.e., area, eccentricity, and the
first two Hu’s moments [14]. These descriptors can be com-
puted efficiently by exploiting the nesting property of nodes
in a tree of shapes [9], requiring only a single pass over an
input image for all the extracted shapes.

4.1.3 Descriptor Encoding

Having computed the shape attributes for all the shapes ex-
tracted in an image, we apply K-Means clustering on their

respective shape-attributes in order to compute a shape-
codebook. This codebook is used to perform vector quanti-
zation on the extracted shape-attributes in order to convert
them into their respective codes, i.e.:

arg min
C

N∑
i=1

||si −Bci||2 (2)

such that, ||ci||l0 = 1, ||ci||l1 = 1, and, ci � 0,∀i

Here si represents the i-th extracted shape, B represents the
shape codebook, and ci represents the i-th code extracted.
In practice, for each shape this is done by searching for its
nearest neighbor entry in the codebook, and converting it
into its sparse quantized representation. We finally take a
weighted average for the codes of all the shapes extracted
from an image. The weight of a shape is determined by
the fraction of pixels it contains in an image. This process
is repeated for each overlapping image-chip in the pre- and
post-event image strip.

4.2. Subspace Learning

Based on our extracted shape-codes, we use linear canoni-
cal correlation analysis [23] to learn a subspace that accu-



rately encodes the notion of change between image strips.
Let ci and di be the feature vectors from the correspond-
ing windows of pre- and post-event image-strips. Let C =
[c1, c2, · · ·, cN]T be the concatenated matrix of feature vec-
tors from the pre-event strip. Similarly, we define the con-
catenated feature matrix D as D = [d1,d2, · · ·,dN]T. The
canonical correlation analysis attempts to re-project C and
D into c̃ = Ca and d̃ = Db, such that c̃ and d̃ have maxi-
mum correlation, i.e., our objective function is:

ã, b̃ = arg max
a,b

aTCTDb√
aTCTCa

√
bTDTDb

(3)

This optimization can be treated in terms of generalized
eigen-values [3], where ã and b̃ correspond to the top eigen
vector for the above problem. We can find the top k eigen
vectors of this problem and concatenate them to form Ã and
B̃. Finally, the damage indicator (DI) is computed as the L2

norm of the projected space difference:

DI(ci,di) = ‖cT
i Ã− dT

i B̃‖ (4)

Difference values diviating sufficiently from zeros do not fit
the global mapping of features, and therefore correspond to
the parts of the scene where changes have occurred.

4.3. Semi-Supervised Learning

We show the detection results based on the aforemen-
tioned unsupervised subspace learning to human photo-
interpreters, who decide about the detections being true
or false positives. Treating these samples as positive and
negative classes, we stack up their corresponding shape-
distribution codes and use them to train a linear support vec-
tor machine (SVM). For this work, we used linear SVM [6]
with L1-regularization and L2-loss function. The learned
classifier is then used for final detection on test images.

5. Experiments and Results
We now present the results of our experiments. We begin
by explaining the features used and the evaluation metrics
employed in our analysis.

5.1. Compared Features

We consider the following features in our comparisons:
1-Gray-Scale Distributions (GSD): Gray scale distribu-
tions represent histograms of gray scale values in an image-
chip. These features have been extensively employed for
change detection [21, 25], and serve as our baseline feature.
We tried different quantization granularities for GSD and
found 50 as optimal number of bins for our problem.
2-Optical-Flow (O-Flow): Treating damage detection as a
pixel-flow problem, we use the magnitudes of optical-flow
fields [19] as an estimate of the amount of damage occurred.

Power
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Figure 6: Subset of object classes used to fine-tune CNN.

3-Bag-of-Words with SIFT (B-SIFT): We tried SIFT [18]
in a bag-of-visual-words [16] settings to see how much
edge-based scene characteristics help in damage detection.
For each image-chip, we tried different number of grid and
patch sizes and found 8 and 16 to be their optimal values.
We also tried different codebook sizes, and found 512 to be
sufficiently representative. Finally, we tried spatial-pooling
with 2 levels of pyramids, but found it not helpful, most
likely due to the small chip-size. Our reported results there-
fore do not incorporate spatial-pooling.

4-Bag-of-Words with LLC (B-LLC): To improve the en-
coding quality of B-SIFT, we also tried locality-constrained
linear coding (LLC) [27]. The values for grid, patch and
codebook sizes were set the same as they were for B-SIFT,
i.e., 8, 16, and 512 respectively. Similar to B-SIFT, we
found spatial-pooling not to be helpful for B-LLC, and
therefore did not incorporate it in our reported results.

5-Convolutional Neural Networks (CNN): To test the ef-
fectiveness of more non-linear feature-maps, we used Con-
volutional Neural Networks. We employed the pre-trained
model from the ImageNet Large-Scale Visual Recognition
Challenge 2012 [24], using the Caffe framework [15].

We fine-tuned this model by presenting it with images
of man-made objects captured from satellites. We collected
∼ 150 thousand images of 20 object-classes from more then
250 cities around the world. Examples for some of these
classes are shown in Figure 6. We rotated these images
eight way around their centers, and used the resulting 1.2
Million images to fine tune our pre-trained model. The out-
put feature dimensionality for the model was set to 1024.

5.2. Evaluation Metrics

Using the ground truth collected from our AOIs, we use the
receiver operating curves (ROCs) to evaluate the different
damage indicators. Note that true positive rate (TPR) repre-
sents the number of relevant damages detected over the total
number of changes. Similarly, the false positive rate (FPR)
represents the area of false-alarms with respect to the area of
no damages. For a given (TPR,FPR) tuple, the associated
damage indicator covers an area of f ·TPR + (1− f) ·FPR,
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Figure 5: (a) Average ROCs provided for 6 sets of features used in combination with the unsupervised canonical correlation
analysis are shown. (b) Average ROC curve of the 5 sets of features combined with the SVM-L algorithm are presented. (c)
Mean and standard deviation of the equal error rate are represented as a function of number of positive examples.

Feature Type Unsupervised Supervised
SD 0.339±0.088 0.123±0.068

CNN 0.360±0.120 0.161±0.072
B-SIFT 0.462±0.049 0.149±0.071
B-LLC 0.447±0.057 0.156±0.074
GSD 0.429±0.072 0.205±0.077

O-Flow 0.473±0.029 -

Table 2: Means and standard deviations of the Equal Error
Rate for the 6 sets of considered features.

where f is the fraction of damaged area. Note that the quan-
tity f ·TPR + (1− f) ·FPR is also the relative search space
size that needs to be examined by a human photo-interpreter
during curation. We use the Equal Error Rate (EER) as a
summary of the performance of an ROC curve, which is
given as the ROC point satisfying FPR = (1− TPR).

5.3. Feature and Learning-Strategy Comparison

The average ROC curves for our unsupervised and super-
vised settings are shown in Figures. 5-a and b respectively,
with their corresponding Equal Error Rate given in Table. 2.
For the the supervised case, the training data was generated
by using 50% of the positive examples randomly sampled
from ground-truth, with an equal number of negative exam-
ples sampled from areas not overlapping with the damaged
areas. The reported results were obtained by testing the im-
agery over the remaining unused area.

Note that our proposed use of shape distribution (SD)
features performs best in both supervised and unsuper-
vised settings. Furthermore, it is the most consistent fea-
ture across all 86 image pairs, with accuracy variation of
∼ 7% averaged across supervised and unsupervised set-
tings. CNN features rank second in the unsupervised set-

ting, while B-SIFT, B-LLC, and CNN all give comparable
accuracies in the supervised setting.

Note that the ERR of 0.12 in Table 2 for our framework
implies a 12% miss-rate (or 88% TPR). Given the expected
fraction of damaged area f in our data as 3%, the expected
reduction of search space provided by our framework is 1 -
[0.03×0.88 + (1− 0.03)×0.12] = 85.7% of the full area.

Figure 8 shows some example instances of damages de-
tected and missed by our system. Most of the missed dam-
ages were subtle, naturally making them challenging to au-
tomatically detect. For cases where the damage occurred
over buildings or well-defined structures, our framework
was able to detect them with high precision. Our system
tends to make mistakes for damages of more amorphus na-
ture, such as mud-huts, or damages covering only a small
area in an image chip such as an isolated house.

5.4. Effect of Training Sample Size

We present the average EER as a function of percentage of
ground-truth positive instances in Figure 5-c. Besides GSD,
we observe monotonic accuracy-improvements with the
number of positive training examples for each feature. For
SD features in particular, the EER improves by 0.6125%
on average for every 10% increase of labeled training data
size. This shows that even with very few labeled training
data, the SD features are capable to disambiguate between
damaged-versus-non-damaged areas effectively.

5.5. Run-Time Analysis

The processing time of our framework per 1-million image
chips is given in Table. 3. For these times, we ensure that
the image chips are co-located and overlapping such that
acceleration such as image integral based filtering [7] can be
employed. Times reported in Table 3 were obtained using
Intel(R) Xeon(R) CPU E5− 2687W v2 @ 3.40GHz. In the
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Figure 7: Effects of satellite, sun-angle differences and image misalignment on SD features in supervised setting.
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Figure 8: Example damaged areas detected by our frame-
work as well as the ones our framework missed.

Flow GSD B-SIFT B-LLC SD CNN
Times 10 170 124 550 778 10406

Table 3: Compute-time (seconds) for features and unsuper-
vised change indicator per million window-pairs.

case of optical-flow and CNN, GPU based implementations
were used on an NVidia Tesla K20 card.

Note that while optical-flow is the fastest to compute,
it performs quite poorly in accuracy. This is why we only
consider optical flow in an unsupervised setting, and not in
the supervised one. B-SIFT performs both faster and bet-
ter than GSD. B-LLC is comparable to B-SIFT in accuracy
while being less efficient. Finally, our proposed use of SD
features takes 13 times less time than CNNs, while giving
significantly better accuracy than all alternate features.

5.6. Effect of Acquisition Variability

The average EER using SD features as a function of sun,
satellite angle-differences and image misregistration are
plotted in Figure 7.

It is evident that satellite angle-differences do not impact
our framework’s accuracy, while the sun angle-differences
seem to matter more. This is because sun angles impact
shadows which can significantly vary image appearance.
We also computed the average EER for each sensor com-
bination given in Table 1. The standard deviation for this is
0.03, indicating that our approach is robust to using pre- and
post-event imagery from different sensors. Finally, for each
image pair, we compute the homography using SIFT key
point. The homography’s translation component has been
retained, and its norm is depicted against the EER in Fig-
ure 7. The scatter plot shows independence between both
x- and y-axes, highlighting the robustness of our approach
to image displacements.

5.7. Photo-Interpretation Speed-Up

To quantify the time reduction during photo-interpretation
using our framework we conducted a user-study in which
we used two images each of size 7500× 11250 pixels. Each
image was split into 33, 750 non-overlapping image chips
of 50 × 50 pixels. First, multiple experts were asked to
scan the image-chips exhaustively and select the ones that
contained damaged areas. In the second case, a change indi-
cator was computed using our proposed framework, based
on which we sampled image-chips to be shown to the hu-
man experts and decided which chips contain damage. The
times and accuracies for both cases are given in Table 4.

Note that curation guided by the change indicator of our
framework actually improves the false-positive rate by 76%.
At the same time however, guided-curation produces a 15%
reduction in the true-positive rate. Most of the damaged ar-
eas are however co-located, and therefore recovering from
this loss in recall is easily achievable in practice. Overall,



Time (s) FPR TPR
Exhaustive 41767 0.03 0.88

Guided 4048 0.007 0.74

Table 4: Times and performances of photo interpretation.

we obtain a ten-fold speed-up factor by applying guided cu-
ration as opposed to exhaustive search. This result high-
lights the importance of using a semi-supervised learning
framework for the problem of large-scale damage detection.

6. Conclusions and Future Work
We presented a comprehensive analysis for the problem of
large-scale damage detection using satellite imagery. We
presented a novel use of hierarchical shape features in bags-
of-visual words setting, and demonstrated its accuracy and
efficiency advantages over multiple alternatives.

Going forward, we plan to improve the encoding scheme
used in our current framework from hard quantization
to one involving multiple soft-assignments. Furthermore,
we plan on incorporating approximate sub-space learning
mechanisms to further improve the efficiency of the unsu-
pervised part of our framework. Finally, we plan to ap-
ply our damage-detection framework to a larger class of
changes, such detecting urbanization patterns, and harbor
and border monitoring.

References
[1] United Nations Institute for Training and Research, url-

http://www.unitar.org/unosat/maps. 2
[2] G. Blanchard, G. Lee, and C. Scott. Semi-supervised novelty

detection. JMLR, 11:2973–3009, 2010. 2
[3] M. Borga. Canonical correlation: a tutorial. On line tutorial

http://people. imt. liu. se/magnus/cca, 4, 2001. 5
[4] L. Bruzzone and D. Prieto. Automatic analysis of the dif-

ference image for unsupervised change detection. IEEE
TGARS, 38(3):1171–1182, May 2000. 2

[5] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Rojo-
Alvarez, and M. Martinez-Ramon. Kernel-based framework
for multitemporal and multisource remote sensing data clas-
sification and change detection. IEEE TGARS, 46(6):1822–
1835, June 2008. 2

[6] C.-C. Chang and C.-J. Lin. Libsvm: a library for support
vector machines. ACM TIST, 2(3):27, 2011. 5

[7] F. C. Crow. Summed-area tables for texture mapping. SIG-
GRAPH, 18(3):207–212, Jan. 1984. 6

[8] L. C. Evans, J. Spruck, et al. Motion of level sets by mean
curvature i. J. Diff. Geom, 33(3):635–681, 1991. 3

[9] T. Geraud, E. Carlinet, S. Crozet, and and Laurent Najman.
A quasi-linear algorithm to compute the tree of shapes of nD
images. In ISMM, 2013. 4

[10] L. Gueguen. Classifying compound structures in satellite im-
ages: A compressed representation for fast queries. IEEE
TGARS, 53(4):1803–1818, April 2015. 3, 4

[11] L. Gueguen, M. Pesaresi, A. Gerhardinger, and P. Soille.
Characterizing and counting roofless buildings in very high
resolution optical images. IEEE GRSL, 2012. 3

[12] L. Gueguen, P. Soille, and M. Pesaresi. Change detection
based on information measure. IEEE TGRS, 49(11):4503–
4515, 2011. 2

[13] R. Hamid, A. Johnson, S. Batta, A. Bobick, C. Isbell, and
G. Coleman. Detection and explanation of anomalous activ-
ities: Representing activities as bags of event n-grams. In
IEEE CVPR, 2005. 2

[14] M.-K. Hu. Visual pattern recognition by moment invari-
ants. IRE Transactions on Information Theory, 8(2):179–
187, 1962. 4

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014. 5

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In IEEE CVPR, volume 2, pages 2169–
2178, 2006. 1, 5

[17] W. Lee and S. J. Stolfo. A framework for constructing
features and models for intrusion detection systems. ACM
transactions on Information and system security (TiSSEC),
3(4):227–261, 2000. 2

[18] D. G. Lowe. Object recognition from local scale-invariant
features. In IEEE ICCV, 1999. 2, 5

[19] B. D. Lucas, T. Kanade, et al. An iterative image registra-
tion technique with an application to stereo vision. In IJCAI,
volume 81, pages 674–679, 1981. 5

[20] M. Markou and S. Singh. Novelty detection - a review: sta-
tistical approaches. Signal processing, 83(12), 2003. 2

[21] G. Mercier, G. Moser, and S. Serpico. Conditional copulas
for change detection in heterogeneous remote sensing im-
ages. IEEE TGARS, 46(5):1428–1441, May 2008. 2, 5

[22] P. Monasse and F. Guichard. Fast computation of a contrast-
invariant image representation. IEEE Transactions on Image
Processing, 9(5):860 –872, may 2000. 3

[23] A. Nielsen. The regularized iteratively reweighted mad
method for change detection in multi- and hyperspectral
data. IEEE Tran. Image Processing, 2007. 2, 4

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge, 2014. 5

[25] C. Vaduva, T. Costachioiu, C. Patrascu, I. Gavat,
V. Lazarescu, and M. Datcu. A latent analysis of earth sur-
face dynamic evolution using change map time series. IEEE
TGARS, 51(4):2105–2118, April 2013. 2, 5

[26] S. Vijayanarasimhan and K. Grauman. Large-scale live ac-
tive learning: Training object detectors with crawled data and
crowds. IJCV, 108(1-2):97–114, 2014. 2

[27] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In IEEE CVPR, pages 3360–3367, 2010. 5

[28] G.-S. Xia, J. Delon, and Y. Gousseau. Shape-based invariant
texture indexing. IJCV, 88(3):382–403, 2010. 1, 3


