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Low-rank matrix factorization has long been recognized as a fundamen-
tal problem in many computer vision applications. It approximates a given
data matrix by the product of a basis matrix and a coefficient matrix under
some criteria. If the underlying rank R of the two factor matrices is lower
than that of the original data matrix, matrix factorization is an effective way
to reveal the low-dimensional structure of the data.

Nevertheless, the reliability of existing matrix factorization methods is
often hard to guarantee due to challenges brought by two model selection
issues. The first one is selection of the noise model which affects how well
each entry of the matrix can be represented by the model, and the second
one is the selection of the capacity of the two factor matrices related to
the expressive power of the model and it is generally difficult to estimate
the underlying rank accurately. In Fig. 1, we empirically show the effect
of these two problems in a face shadow removal application. As we can
see, the noise model indeed affects the performance greatly while the rank
controls the degree of abstraction.

Figure 1: A face shadow removal example demonstrating the effect of some
model selection issues. The original image is shown in (a) and the recovery
results of different models are shown in (b)-(e). In the results, the first row
shows the recovered images and the second row shows the corresponding
noise distributions of the matrices.

For the first problem, we propose to use a Dirichlet process Gaussian
mixture model (DP-GMM) [5] as the noise model. On one hand, we can
take advantage of the fact that GMM is a universal approximator for any
continuous distribution [3] and thus able to fit various types of noise. On
the other hand, we can infer the number of Gaussian components needed
from data, instead of doing heuristic pruning or trying ungrounded guesses.
For the second problem, we choose an automatic relevance determination
(ARD) [2, 4] prior for the factor matrices. ARD has long been recognized
as an effective technique for detecting the relevant components of the in-
put, so that we can automatically infer the optimal rank by pruning other
irrelevant ones. In this paper, we propose our novel non-parametric full
Bayesian model for adaptive matrix factorization (AMF). AMF for the first
time makes full use of the flexibility and adaptiveness of DP-GMM as noise
model, and is completed by ARD for automatic rank selection. It is also de-
signed to be capable of handling input with missing data. For model infer-
ence, we devise an efficient variational method based on the stick-breaking
representation of DP.

We now combine the desirable features of ARD and DP-GMM to define
the AMF model. The graphical model of AMF is depicted in Fig. 2 and the
generative process is given as follows:

1. Draw component mixing proportions θ ∼GEM(α).

2. For each cluster k of noise:
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Figure 2: Graphical model of AMF

• Draw variance σk ∼ IG(a0,b0).

3. For each dimension r of U and V (i.e., each column of U and V):

• Draw variance λr ∼ IG(a1,b1).

4. For each element in U and V:

• Draw umr,vnr ∼N (0,λr).

5. For each data element ymn:

• Draw noise cluster label zmn ∼Mult(θ);

• Draw observation ymn ∼N (um·vT
n·,σzmn).

Here θk , βk
k−1
∏

l=1
(1−βl) and βk is drawn independently from stick-breaking

construction of DP. Based on the generative process, the joint distribution
can be expressed as:

p(U,V,Y,z,σ ,λ ,β | a0,b0,a1,b1,α)

=p(Y | U,V,z,σ)p(U | λ )p(V | λ )p(λ | a1,b1)

p(σ | a0,b0)p(z | β )p(β | α).

We devise an efficient inference algorithm based on mean-field varia-
tional method for AMF, details can be found in the full paper. For experi-
mental validation, AMF is tested on both synthetic and real-world data. We
use text removal and face shadow removal tasks to demonstrate the effective-
ness of the automatic model selection capabilities of AMF. The results show
that AMF consistently achieves better or comparable performance among
state-of-the art algorithms included. It has high potential to handle a wide
range of applications with automatic model selection.
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