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Abstract

Low-rank matrix factorization has long been recognized
as a fundamental problem in many computer vision appli-
cations. Nevertheless, the reliability of existing matrix fac-
torization methods is often hard to guarantee due to chal-
lenges brought by such model selection issues as select-
ing the noise model and determining the model capacity.
We address these two issues simultaneously in this paper
by proposing a robust non-parametric Bayesian adaptive
matrix factorization (AMF) model. AMF proposes a new
noise model built on the Dirichlet process Gaussian mix-
ture model (DP-GMM) by taking advantage of its high flex-
ibility on component number selection and capability of fit-
ting a wide range of unknown noise. AMF also imposes
an automatic relevance determination (ARD) prior on the
low-rank factor matrices so that the rank can be determined
automatically without the need for enforcing any hard con-
straint. An efficient variational method is then devised for
model inference. We compare AMF with state-of-the-art
matrix factorization methods based on data sets ranging
from synthetic data to real-world application data. From
the results, AMF consistently achieves better or compara-
ble performance.

1. Introduction
Matrix factorization is a crucial component in many

computer vision applications, such as face recognition [35],
motion segmentation [7], and structure from motion
(SfM) [27]. Briefly speaking, it approximates a given data
matrix by the product of a basis matrix and a coefficient ma-
trix under some criteria. If the underlying rank of the two
factor matrices is lower than that of the original data ma-
trix, matrix factorization is an effective way to reveal the
low-dimensional structure of the data.

The success of matrix factorization depends very much
on proper model selection. Two model selection problems
are involved. The first one is selection of the noise model
which affects how well each entry of the matrix can be rep-
resented by the model, and the second one is the selection

Figure 1. A face shadow removal example demonstrating the effect
of some model selection issues. The original image is shown in
(a) and the recovery results of different models are shown in (b)-
(e). In the results, the first row shows the recovered images and
the second row shows the corresponding noise distributions of the
matrices.

of the capacity of the two factor matrices related to the ex-
pressive power of the model. In Fig. 1, we empirically show
the effect of these two problems in a face shadow removal
application. As we can see, the noise model indeed affects
the performance greatly while the rank controls the degree
of abstraction.

For the first model selection problem, various attempts
have been made to find a better description for the noise un-
derlying the data, ranging from the traditional `2 norm, the
robust `1 norm [5] to non-convex norms [30]. These meth-
ods often make overly strong assumptions about the noise
distribution which unfortunately do not hold in many real
applications. Recently, Meng and De la Torre proposed to
use a Gaussian mixture model (GMM) to fit the noise [18],
and further extended it into a full Bayesian model [32].
Although it is more flexible than the methods above, the
number of Gaussian components in the GMM still has to
be specified in advance. This is a real limitation since the
number of Gaussians weighs heavily in the generalizability
of a GMM noise model. In this paper we propose to use a
Dirichlet process Gaussian mixture model (DP-GMM) [22]
as the noise model. On one hand, we can take advantage of
the fact that GMM is a universal approximator for any con-
tinuous distribution [17] and thus able to fit various types
of noise. On the other hand, we can infer the number of
Gaussian components needed from data, instead of doing
heuristic pruning or trying ungrounded guesses.

For the second problem, one method is to limit the rank



of the factor matrices directly while another is to impose
regularization terms on them. Except for some applications
such as SfM in which strong knowledge of the true rank
is available, it is generally difficult to estimate the underly-
ing rank accurately. Some heuristic methods [26, 19] have
been developed for rank selection but their performance is
not stable across different applications. For the regulariza-
tion approach, some regularizers have been proposed to ful-
fill the requirements of specific applications, such as the
basis orthogonality constraints in SfM and non-negativity
constraints in image analysis. Some others have been cho-
sen simply to avoid overfitting, e.g., imposing `2 regular-
ization [24, 28], which is a generalization of the nuclear
norm and is effective at reducing the rank of the resulting
matrix. Here we choose an automatic relevance determina-
tion (ARD) [15, 20] prior for the factor matrices. ARD has
long been recognized as an effective technique for detecting
the relevant components of the input, so that we can auto-
matically infer the optimal rank by pruning other irrelevant
ones.

In this paper, we propose our novel non-parametric full
Bayesian model for adaptive matrix factorization (AMF).
AMF for the first time makes full use of the flexibility and
adaptiveness of DP-GMM as noise model, and is completed
by ARD for automatic rank selection. It is also designed to
be capable of handling input with missing data. For model
inference, we devise an efficient variational method based
on the stick-breaking representation of DP. For experimen-
tal validation, we use the text removal and face shadow re-
moval tasks to demonstrate the effectiveness of the auto-
matic model selection capabilities of AMF.

2. Related Work
Matrix factorization has its root in numerical analysis.

One of the most commonly used methods is singular value
decomposition (SVD), which can give the optimal solution
if the true rank is known and additive Gaussian noise is as-
sumed. A drawback of SVD is that it cannot cope with miss-
ing data. To remedy it, Buchanan and Fitzgibbon proposed
a damped Newton’s method in [4]. To enhance the robust-
ness of SVD, a method based on iteratively reweighted least
squares estimation was first proposed in [7]. Following it,
some other early methods cast the matrix factorization prob-
lem as several small linear programming problems in each
step, e.g., [13, 8]. However, all these methods have high
computation cost and hence are not suitable for large-scale
applications. A recent breakthrough in matrix factorization
has been brought by principal component pursuit (PCP) [5].
PCP reformulates the problem as a convex optimization
problem. It uses the nuclear norm to regularize the rank of
the resulting matrix and the `1 norm as the noise model to
accommodate outliers in the matrix. To solve the optimiza-
tion problem, it advocates using the alternating direction

method of multipliers (ADMM) [3] which yields consider-
able speedup when compared to the methods above. In-
spired by this pioneering work, [33, 34, 26] exploited differ-
ent settings for matrix factorization and demonstrated great
improvement over traditional methods in several applica-
tions. Another emerging trend is to apply gradient descent
on the Grassmannian manifold, e.g.,[11, 31]. The advan-
tage of these methods lies in their ability of learning the
low-rank matrix factorization online. In [24], Salakhutdi-
nov and Mnih first formulated the matrix factorization prob-
lem in a probabilistic framework. Then it was extended
to a full Bayesian model [23] and a nonlinear model [14].
All the three models are well suited for collaborative filter-
ing applications. Along this line, Wang et al. proposed
two robust Bayesian matrix factorization methods from the
point estimation perspective [28] and the full Bayesian per-
spective [29], yielding good results in some computer vi-
sion applications. Some other related methods include the
Bayesian robust principal component analysis [6] which can
be seen as a probabilistic version of PCP, and the variational
Bayesian low-rank matrix estimation [1], which also relies
on ARD and uses a fast variational inference algorithm for
Bayesian matrix factorization. The previous works that are
most closely related to ours are [18, 32]. They both use a
GMM to model the possibly complex and unknown noise
in the data. Though they add priors on the factor matri-
ces in the latter work [32], the need for setting the number
of Gaussian components beforehand to a great extent limits
the generalizability of this model. And this new algorithm
lacks the ability of tackling inputs with missing data. We
will give empirical comparison with these related models
and show AMF consistently achieves better or comparable
results.

3. Notations

We introduce some notations to be used in the sequel.
For a matrix X, XT denotes its transpose and tr(X) its
trace. We also use xi· and x·j to denote the ith row and jth
column, respectively, of X. Let I denote the identity matrix
with proper size. For probability distributions,N (µ,Σ) de-
notes the multivariate normal distribution with mean vector
µ and covariance matrix Σ, N (µ, σ) the univariate normal
distribution with mean µ and variance σ, B(α, β) the beta
distribution with parameters α and β, IG(α, β) the inverse-
gamma distribution with shape parameter α and scale pa-
rameter β, and Mult(π) the multinomial distribution.

4. Background

In this section, we review some background knowledge
to set the stage for presenting our model in the next sec-
tion. We first introduce the general form of low-rank matrix
factorization and then review the Dirichlet process.



4.1. Low-Rank Matrix Factorization

As with most common low-rank matrix factorization
models, the input data matrix Y can be expressed as

Y = UVT + E, (1)

where the data matrix Y = [ymn] ∈ RM×N is assumed to
be of low rank, U ∈ RM×R and V ∈ RN×R are the factor
matrices, and E = [εmn] ∈ RM×N denotes the additive
noise. The representation essentially decomposes Y into
two low-rank factor matrices with rank R� min(M,N).

For example, if the data is just a single image which is
assumed to be of low rank, then the matrix Y can simply
be set as the image. If the data is a video or a collection
of highly correlated images, then we need to first vectorize
each frame of the video or each image of the collection to
form one column of the matrix Y.

4.2. Dirichlet Process and Stick-Breaking Construc-
tion

Since we will define our noise model based on the DP-
GMM, we first review here some basic definitions and ap-
plications of the Dirichlet process.

4.2.1 Dirichlet Process

The concept of Dirichlet process (DP) was proposed by Fer-
guson [9]. We may consider a DP as an extension of the or-
dinary Dirichlet distribution by taking the number of com-
ponents K to infinity. Let us take DP-GMM as an example
for illustration. The DP is a distribution over an infinite
number of clusters, each of which has a set of parameters
χk for a Gaussian distribution, namely the mean and co-
variance. A draw from this DP will choose some cluster
k according to the Dirichlet distribution and return the pa-
rameters specific to the cluster. Consequently, we obtain a
Gaussian distribution with the parameter set χk. Hence a
DP is a “distribution over distributions”.

DP offers full flexibility in selecting the number of clus-
ters. Any model built on a DP is thus able to accommodate
multinomial distributions with arbitrarily many categories
or possible outcomes. Within the context of mixture mod-
els, DP provides a non-parametric Bayesian choice that is
capable of automatically determining the number of mix-
ture components required to model the target distribution.

4.2.2 Stick-Breaking Construction

Stick-breaking construction refers to a stochastic process
for constructing a DP [25]. Consider a unit-length stick
(0,1). We first draw a value β1 from the beta distribution
B(1, α). Then we let θ1 = β1, and pick the fraction 1−β1 as
the remainder of the stick. Then we draw β2 from B(1, α),

and make θ2 equal to β2(1−β1). Repeating this procedure,
we have a sequence of sticks with lengths

θk = βk

k−1∏
l=1

(1− βl), (2)

where βk are independent draws from the distribution
B(1, α). It is easy to show that

∑∞
k=1 θk = 1 with

probability one. Following the construction above, the
stick-breaking distribution over θ is written as θ ∼
GEM(α) [21].

5. Our Model
In this section, we first present the key methods and

motivation underlying our adaptive matrix factorization
(AMF) model. This is then followed by the detailed genera-
tive process of AMF. After that, we discuss the relationship
between AMF and existing methods based on the `2 or `1
loss.

5.1. Adaptive Matrix Factorization

The success of matrix factorization relies heavily on
model selection, which, as discussed before, includes de-
termining the capacity of the factor matrices and selecting
the noise model.

In most real-world applications, the actual rank R
needed for modeling the data is initially unknown. For in-
stance, in a background subtraction task with a static back-
ground, ideally it is adequate to set the rank to one. How-
ever, if the background is multimodal (e.g., due to peri-
odically changing objects such as a traffic light), the rank
needed is typically much higher. To determine the appro-
priate rank, a common approach is to try different values
of R by performing multiple runs and then choose the one
that yields the best performance. To avoid inefficient and
groundless attempts, we adopt the automatic relevance de-
termination (ARD) method [16] by imposing a prior on
each dimension (column) of U and V to curtail the irrel-
evant columns from impairing the performance. Specifi-
cally, we impose Gaussian priors with variance λr on the
rth columns of U and V:

p(U | λ) =
∏R

r=1
N (u·r | 0, λrIM ),

p(V | λ) =
∏R

r=1
N (v·r | 0, λrIN ),

(3)

where λ = (λ1, λ2, . . . , λR)T .
In terms of modeling the noise term E, although it has

been common to use a single Gaussian or Laplace distribu-
tion, this approach is often inadequate for many real-world
applications in which the noise may be of different types
or from different sources. Consequently, simply using an
`2 or `1 loss cannot give satisfactory results. Considering



that GMM has proved to be a universal approximator for
any continuous density function, it could be exploited to
better characterize the noise from unknown sources using
possibly multimodal probability distributions. For exam-
ple, when modeling images, we may use a Gaussian dis-
tribution with large variance to handle large deviations due
to shadow or occlusion while using another Gaussian dis-
tribution with smaller variance to fit the sensor noise. This
provides greater flexibility in real applications.

Indeed, this idea has recently been pursued by [18, 32].
Nevertheless, the number of Gaussian componentsK of the
GMM used in [18, 32] has to be specified a priori. Its value
often affects the performance of the model significantly. If
K is too small, the clusters may not be able to model well
the complicated noise from wide-ranging sources. If K is
too large, however, it will be time-consuming to take every
Gaussian component into consideration when most of them
contribute little to modeling the noise. Moreover, without
a proper prior on the mixing coefficients of the GMM, the
model is unstable and easy to overfit.

To remedy these problems, we use a DP-GMM here for
modeling the noise. On one hand, it retains the expressive
power of GMM. On the other hand, it takes advantage of
the non-parametric Bayesian approach by using a DP to de-
termine the number of Gaussians from data automatically.
An appealing advantage of the non-parametric Bayesian ap-
proach is that, instead of imposing assumptions that might
be wrong, it “lets the data speak for itself”.

Based on the stick-breaking construction, the GMM
noise model extricates itself from the dilemma of selecting
an appropriate number of components. After relaxing K to
infinity, the noise εmn can be expressed as:

p(εmn) =

∞∑
k=1

θkN (εmn | 0, σk), (4)

where the mixing proportion of each Gaussian compo-
nent is obtained from the stick-breaking process, i.e., θ ∼
GEM(α), with

∑∞
k=1 θk = 1. As a consequence, the noise

entries will cluster themselves into K groups without the
need for a complicated model selection procedure.

5.2. Generative Process

We now combine the desirable features of ARD and DP-
GMM to define the AMF model. We also place proper con-
jugate priors on the parameters if applicable. The graphical
model of AMF is depicted in Fig. 2 and the generative pro-
cess is given as follows:

1. Draw component mixing proportions θ ∼ GEM(α).

2. For each cluster k of noise:

• Draw variance σk ∼ IG(a0, b0).

Figure 2. Graphical model of AMF

3. For each dimension r of U and V (i.e., each column
of U and V):

• Draw variance λr ∼ IG(a1, b1).

4. For each element in U and V:

• Draw umr, vnr ∼ N (0, λr).

5. For each data element ymn:

• Draw noise cluster label zmn ∼Mult(θ);

• Draw observation ymn ∼ N (um·v
T
n·, σzmn).

Here θk , βk
k−1∏
l=1

(1 − βl) and βk is drawn independently

from B(1, α) according to the stick-breaking construction.
In the model, a0, b0, a1, b1, α are hyperparameters. Based
on the generative process, the joint distribution can be ex-
pressed as:

p(U,V,Y, z,σ,λ,β | a0, b0, a1, b1, α)

=p(Y | U,V, z,σ)p(U | λ)p(V | λ)p(λ | a1, b1)

p(σ | a0, b0)p(z | β)p(β | α).
(5)

5.3. Relationship with Existing Methods

Let us try to investigate how the proposed method is re-
lated to existing methods based on the `2 or `1 loss. First,
it is easy to see that using the `2 loss is equivalent to us-
ing a single Gaussian to fit the noise, which is obviously
less flexible. Second, as noted in [28], the `1 norm or the
corresponding Laplace distribution can be expressed as an
integrated Gaussian mixture with mixing distribution equal
to the exponential distribution. This means that for each en-
try in the matrix, it has its own GMM to represent the noise.
This scheme offers too much flexibility for noise modeling
since it is rarely the case for any noise to affect only a single
data entry. Our approach may be seen as a tradeoff between
the two approaches by allowing different entries to share the
same Gaussian distribution.

6. Variational Inference
The key problem in the parameter estimation of Bayesian

models is to compute the posterior distribution of the latent



variables given the observed data. Like in many Bayesian
models, exact inference of the posterior distribution in our
model is intractable and hence approximate inference is
needed. Although sampling methods such as Markov chain
Monte Carlo (MCMC) algorithms can provide very accu-
rate asymptotic approximation to the posterior, they are of-
ten prohibitively slow for high-dimensional data. Moreover,
convergence is not easy to detect. As a more efficient and
deterministic alternative to MCMC, we adopt a mean-field
variational method for AMF in this paper.

Variational methods approximate the posterior distribu-
tion of the latent variables by a factorized form consisting of
new variational distributions q for the latent variables with
free variational parameters. The approximation is made
as close to the target posterior distribution p as possible
by minimizing the Kullback-Leibler (KL) divergence of the
two distributions.

Based on the mean-field variational approach, we devise
the following variational distribution:

q(U,V, z,σ,λ,β) =

M∏
m=1

qum·(am·,Σ
u
m)

N∏
n=1

qvn·(bn·,Σ
v
n)

R∏
r=1

qλr (ηr)

K∏
k=1

qβk (γk)

K∏
k=1

qσk (τk)

M∏
m=1

N∏
n=1

qzmn(φmn),

(6)
where each row of U follows a Gaussian distribution with
mean am· and covariance Σu

m and it is similar for V, λr
and σk follow inverse-gamma distributions parametrized
by ηr,1, ηr,2, and τk,1, τk,2, respectively, qβk

(γk) is a beta
distribution, and qzmn(φmn) is a multinomial distribution.
Following the work in [2], the approximation is built on
truncated stick-breaking construction at K, which has been
proved to closely approximate a true DP as long as K is
chosen to be large enough [12]. Empirically K may be ini-
tialized to some value from tens to hundreds based on the
model complexity. The useless dimensions will gradually
be pruned automatically.

The optimization problem of minimizing the KL di-
vergence is equivalent to maximizing the following lower
bound:

L = Eq [log p(U,V,Y, z,σ,λ,β)]− Eq [logq(U,V, z,σ,λ,β)],

(7)
where Eq[·] denotes the expectation with respect to q. Max-
imization is performed via iteratively updating each param-
eter by setting the derivative of L with respect to the param-
eter to zero while keeping other parameters fixed.

6.1. Update γ, τ and φ:

We follow the stick-breaking procedure by setting a large
enough value of K for truncated approximation. Let Ω de-
note the set of indices of the observed data. The parameters

are updated as follows:

γk,1 = 1 +
∑

(m,n)∈Ω
φmnk,

γk,2 = α+
∑

(m,n)∈Ω

K∑
t=k+1

φmnt;

τk,1 = a0 +
1

2

∑
(m,n)∈Ω

φmnk,

τk,2 = b0 +
1

2

∑
(m,n)∈Ω

φmnkEq[(ymn − um·vn·
T )2]

(8)

for k = 1, . . . ,K and (m,n) ∈ Ω, where

φmnk ∝ exp
{
Eq[log βk] +

k−1∑
t=1

Eq[log(1− βt)]

− 1

2

τk,1
τk,2

Eq[(ymn − um·vn·
T )2]

− 1

2
[log τk,2 − ψ(τk,1)]

}
,

(9)

Eq[(ymn − um·v
T
n·)

2] = ymn(ymn − 2am·b
T
n·)

+ tr
(
(aTm·am· + Σu

m)(bTn·bn· + Σv
n)
)
,

Eq[log βk] = ψ(γk,1)− ψ (γk,1 + γk,2) ,

Eq[log(1− βk)] = ψ(γk,2)− ψ (γk,1 + γk,2) .
(10)

Here ψ denotes the digamma function.
Remarks: Note that after updating τ , we can easily obtain
the mixing proportions θ of the K clusters. After normal-
ization, we will prune those clusters with probabilities less
than a predefined threshold, since a very small θk indicates
that it is very unlikely for some entries to belong to the cor-
responding cluster. As such, components that do not play
any significant role can be removed.

6.2. Update am·, bn·, Σu
m, Σv

n and η:

We next update the parameters related to U and V:

am·
T = Σu

m ·

 ∑
n:(m,n)∈Ω

K∑
k=1

τk,1
τk,2

(
ymnφmnkb

T
n·

)
Σu
m =

 ∑
n:(m,n)∈Ω

K∑
k=1

τk,1
τk,2

φmnk
(
bTn·bn· + Σv

n

)
+ Λ

−1

(11)
where Λ = diag(λ)−1. The update for bn· is similar. We
omit it due to space constraint. For η, we know Eq[λr] =
ηr,2
ηr,1

:

Eq [λr] =
2b1 + aT·ra·r +

∑M
m=1(Σ

u
m)rr + bT·rb·r +

∑N
n=1(Σ

v
n)rr

2a1 +M +N
.

(12)



Remarks: If we find that Eq[λr] is less than some prede-
fined threshold, we will delete the corresponding dimension
r and decrement R by 1 before proceeding. The rationale
behind this is that, with a zero mean in the prior for this col-
umn, a very small variance indicates that this column will
shrink to zero and hence will not contribute to explaining
the data.

By repeating the update steps above, we discard the
scarcely used Gaussian components and the matrix dimen-
sions while adjusting the free variational parameters to ap-
proximate the original distribution until convergence.

7. Experiments
In this section, we empirically compare the proposed

AMF1 model with seven state-of-the-art methods. There
are non-Bayesian methods (CWM [19] and PCP [5]) and
Bayesian methods (VBLR [1], BRPCA [6], PRMF [28],
BRMF [29] and MoG-RPCA (MRPCA) [32]). For all the
experiments we have conducted, the hyperparameters of
AMF are fixed without further tuning: a0 = b0 = 10−4,
a1 = b1 = 0.1, α = 1.

7.1. Synthetic Experiments

In this part, we first follow [18] and design three sets
of synthetic experiments to compare the performance of all
the above low-rank matrix factorization methods. For these
three sets of experiments, we first add three different types
of noise to the corresponding sets of ground-truth matrices.
The noise details are shown in Table 1. And then we drop
20% of the each input to test the robustness of these meth-
ods. For each experiment we generate 10 ground-truth low-
rank matrices, each of which is denoted by Y0 ∈ R50×50,
the product of two randomly generated low-rank matrices
U ∈ R50×4 and V ∈ R50×4. We assume that each element
in U and V follows a normal distribution N (0, 1) and the
ground-truth rank is r = 4 for all Y0.

N (0, 0.52) U [−5, 5] U [−2, 2]
Gaussian Noise 100% 0 0
Sparse Noise 0 30% 0
Mixture Noise 15% 20% 20%

Table 1. Three types of noise. U denotes the uniform noise fol-
lowed by its range.

The recovered low-rank matrices are denoted by Ū and
V̄. In each set of experiment, we first compare these eight
methods under two different initial ranks. Considering that
some methods are incapable of tuning the rank automati-
cally, we initialize Ū and V̄ to have the ground-truth rank
R = 4, and then we set the initial rank to be twice the
ground-truth rank, R = 8, since the ground-truth rank is

1AMF codes are available at http://peixianc.me/research.html

generally unknown a priori in real-world applications. For
the number of Gaussian components K in AMF and MR-
PCA, we initially set it to 64 which is large enough to ac-
commodate various types of noise. With the same settings,
we later drop 20% data entries of each input and repeat the
experiments. Note that MRPCA, PCP, BRPCA and BRMF
are not designed to handle missing data, so we replace MR-
PCA with its previous version MoG [18] which is claimed
to be able to deal with missing data. We only compare
AMF, MoG, CWM, VBLR and PRMF in this part. For
performance comparison, we use the relative error of the
Frobenius norm with respect to the ground truth, defined as
‖Y0−ŪV̄T ‖F
‖Y0‖F . For each noise setting, we run 10 times with

different input Y0 and record their performance. The mean
values of the relative error are reported in Table 2.

From Table 2, when given complete input, we can see
that AMF outperforms all other methods by giving the
smallest relative error under three different types of noise,
even though no prior knowledge is available about the num-
ber of components and the correct rank. Even when 20%
of the input entries are corrupted, AMF shows distinguish-
ing robustness with small relative errors. As a full Bayesian
model, AMF achieves comparable speed, saving the cost for
hyper-parameter tuning and multiple trials for determining
a proper number of clusters or the matrix rank. When the
noise type is simple, Gaussian for example, MRPCA, BR-
PCA and VBLR with corrupted input achieve comparable
results as AMF’s. However, their performance fades next
to AMF when the noise gets more complex. This attributes
to AMF’s high flexibility to model unknown complex noise
and to correctly detect the rank.

We now shift our focus to AMF only and empirically
investigate its intrinsic properties by varying the rankR and
the initial number of Gaussians K. We decouple the effect
of the two parameters by varying only one of them at a time.
We first fix R = 4 which is exactly the ground-truth value
and varyK from 10 to 200. Then we fixK = 64 but change
R from 4 to 23. Each set of experiments is conducted based
on the same ground-truth matrix as input. For each distinct
setting of R and K, we run AMF five times with random
initialization. The mean and standard deviation for each
setting are recorded in Fig. 3.
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Figure 3. Intrinsic Analysis of AMF
In Fig. 3(a) and 3(b), the mean relative error of AMF al-

most stays unchanged with nearly indiscernible error bars
when either one of the parameters is varied. While in



Noise R AMF MRPCA/MoG CWM PCP VBLR BRPCA BRMF PRMF

Gaussian

4 0.0451(0.33) 0.0451(0.26) 0.0576(0.11) 0.0751(0.57) 0.0758(0.08) 0.0451(1.54) 0.0545(1.25) 0.0563(0.86)
8 0.0500(0.37) 0.0519(1.56) 0.0777(0.15) 0.0914(1.82) 0.0875(0.08) 0.0514(1.90) 0.0747(1.24) 0.0888(0.93)

4(w/m) 0.0468(0.45) 0.0517(5.55) 0.0572(0.27) - 0.0468(0.15) - - 0.0604(0.48)
8(w/m) 0.0485(0.49) 0.0847(7.08) 0.0738(0.71) - 0.0485(0.16) - - 0.0853(0.51)

Sparse

4 6.9E-7(1.31) 1.9E-6 (0.48) 0.0920(0.23) 0.1342(0.52) 0.0645(0.07) 0.0354(1.31) 0.0320(1.16) 0.0519(0.77)
8 7.9E-7(1.51) 3.1E-6(0.61) 0.1880(0.64) 0.1471(1.48) 0.0433(0.07) 0.0797(1.80) 0.1856(1.24) 0.2359(0.89)

4(w/m) 1.9E-5(0.87) 0.0513(1.24) 0.0024(0.28) - 0.3016(0.13) - - 0.0273(0.31)
8(w/m) 2.2E-5(0.89) 0.2821(4.11) 0.1722(0.87) - 0.3085(0.17) - - 0.2219(0.45)

Mixture

4 0.0050(1.17) 0.0052(1.13) 0.0754(0.29) 0.1318(0.76) 0.2837(0.11) 0.0096(1.92) 0.0276(1.28) 0.1025(0.23)
8 0.0062(1.27) 0.0150(1.60) 0.2152(0.74) 0.1653(1.54) 0.2848(0.14) 0.0442(2.56) 0.1994(1.36) 0.2468(0.24)

4(w/m) 0.0272(1.21) 0.0730(1.61) 0.1245(0.63) - 0.3246(0.18) - - 0.1636(0.26)
8(w/m) 0.0311(2.11) 0.4427(3.41) 0.3265(0.38) - 0.3053(0.17) - - 0.3413(0.25)

Table 2. Mean relative error of eight methods under three types of noise with different initial ranks. Numbers in brackets are the corre-
sponding time records (in second) of these methods. (w/m) indicates the situation with missing input. Best results are shown in bold.

Fig. 3(c), as the initial number of Gaussians K is varied,
the number of components remaining always stays around
33. Both these two experiments show that AMF is quite
stable no matter how the initialization and parameters are
set.

7.2. Text Removal

We next follow [29] to conduct a text removal simulation
experiment. The task is to remove some text embedded in
an image which has a certain pattern as background. The
size of the clean image is set to 256 × 256 with the cor-
responding data matrix of rank 10. Fig. 4 shows the input
image (Fig. 4(a)) which is formed from the (background)
clean image (Fig. 4(b)) and the (foreground) outlier mask
(Fig. 4(c)).

(a) Input image (b) Clean image (c) Outlier mask

Figure 4. Image for text removal simulation

As the true rank is often unknown beforehand in real-
world data, we set the maximum rank of the initial Ū and V̄
to be twice the true rank for all the algorithms. We replace
BRMF by MBRMF since, as demonstrated in [29], the latter
performs better in dealing with contiguous outliers. Fig. 5
demonstrates the text recovered and the reconstructed back-
ground images using different algorithms.

By visually examining the recovered masks in Fig. 5, we
note that both masks by AMF and MBRMF appear to be
most sharp. The masks recovered by MRPCA , PRMF and
PCP come close. The one by BRPCA is recognizable but
the results of CWM and VBLR are quite fuzzy. With regard
to reconstruction of the low-rank matrices, AMF gives the

cleanest recovered background, followed by MBRMF, PCP
and MRPCA. PRMF and BRPCA leave behind too many
outliers although they do a fair job in outlier detection. To
some extent CWM fails both tasks while VBLR performs
slightly better in recovering the background.

Table 3 shows the quantitative results. On detecting out-
liers, although MBRMF yields highest AUC values, AMF
comes very close. With regard to background recovery,
AMF obviously gains lower relative error than the other
methods, showing that the quantitative results are in line
with the qualitative results above.

AMF MRPCA CWM PCP VBLR BRPCA MBRMF PRMF
AUC 0.991 0.954 0.867 0.976 0.899 0.921 0.993 0.960
RE 0.068 0.101 0.185 0.103 0.163 0.205 0.102 0.144

Table 3. Comparison of different methods. We use the area under
curve (AUC) to measure outlier mask detection and the relative
error of the Frobenius norm for background recovery. Best results
are shown in bold.

7.3. Face Shadow Removal

In this section, we study a real application using face
images captured under varying illumination. Such a face
shadow removal task is often applied as an important pre-
processing step by many face recognition systems. Sources
of the noise, such as low illumination, self-shadowing
and specularity, pose great challenges to this task. We
use the images of two persons from the Extended Yale B
database [10] for illustration. For each person, we use all
the 64 images in the database. Since well-aligned face im-
ages of the same person under varying illumination lie very
close to a 4-dimensional linear subspace, the rank is set to
8 for all the methods with the exception of PCP which is
allowed to choose the rank automatically. First we use the
original faces as input and compare all the eight methods.
Then for each face, we randomly drop half of the pixels and



(a) AMF (b) MRPCA (c) CWM (d) PCP (e) VBLR (f) BRPCA (g) MBRMF (h) PRMF

Figure 5. Background and foreground masks recovered by different algorithms

Figure 6. Face shadow removal results. Each of the nine groups from left to right shows the original face and those recovered by AMF,
MRPCA, CWM, PCP, VBLR, BRPCA, MBRMF, and PRMF.

use these corrupted images as input. Since only AMF, MR-
PCA, CWN, VBLR and PRMF are claimed to be able to
handle missing data, we give the results of these five algo-
rithms. Fig. 6 7 shows some of the results. By observing

Figure 7. Face shadow removal results with input corrupted. Each
of the six groups from left to right shows the original face and
those recovered by AMF, MoG, CWM, VBLR and PRMF.

the first row of Fig. 6, we can see that all the algorithms
show good performance under normal situations in elimi-
nating the shadow on the lady’s face and removing the eye
glint from the man. However, in extreme cases when a large
portion of the face is shadowed, AMF outperforms the other
methods by recovering the face as much as possible while
preserving the features of the original face. Although MR-
PCA and BRPCA can sometimes obtain comparable results,
their effects are often influenced by artifacts especially for
images of the man. Most results from MBRMF are noisy
and unable to preserve such features as the beard of the man.

Also in Fig. 7, AMF shows impressive robustness though
half of the pixel entries are corrupted. Compared to the
other four methods, AMF is capable of recovering the orig-
inal face with much less noise. These results again demon-
strate the necessity for decomposing the noise sources and
AMF has great potential for applications in such situations.

8. Conclusion and Future Work
We have proposed a novel non-parametric Bayesian

method for matrix factorization. It addresses two crucial
model selection issues by placing an ARD prior and a DP
prior on the factor matrices and the noise model, respec-
tively. Based on the stick-breaking representation of DP,
we have devised an efficient variational inference algorithm.
From the experimental results, we have demonstrated that
the proposed method has high potential to handle a wide
range of applications with automatic model selection.

To take this work further, as in [34, 29], we also want to
exploit the fact that contiguous outliers often occur in many
computer vision applications. This implies some cluster-
ing structure of the noise pattern in the matrix. Represent-
ing this property explicitly in the model may lead to further
performance improvement. We will explore this research
direction in our future work.
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