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Abstract

Low-level saliency cues or priors do not produce good
enough saliency detection results especially when the
salient object presents in a low-contrast background with
confusing visual appearance. This issue raises a serious
problem for conventional approaches. In this paper, we
tackle this problem by proposing a multi-context deep learn-
ing framework for salient object detection. We employ deep
Convolutional Neural Networks to model saliency of objects
in images. Global context and local context are both taken
into account, and are jointly modeled in a unified multi-
context deep learning framework.

To provide a better initialization for training the deep
neural networks, we investigate different pre-training
strategies, and a task-specific pre-training scheme is de-
signed to make the multi-context modeling suited for
saliency detection. Furthermore, recently proposed contem-
porary deep models in the ImageNet Image Classification
Challenge are tested, and their effectiveness in saliency de-
tection are investigated. Our approach is extensively evalu-
ated on five public datasets, and experimental results show
significant and consistent improvements over the state-of-
the-art methods.

1. Introduction

Saliency detection, aiming at highlighting visually
salient regions or objects in an image, has been a fundamen-
tal problem drawing extensive attentions in recent years. It
has a wide range of applications in computer vision and im-
age processing tasks, such as image/video compression and
summarization [38], content-aware image resizing [6], and
photo collage [53]. Saliency information has also been ex-
ploited in high-level vision tasks, such as object detection
[37], and person re-identification [62, 61]. A large number
of approaches [63, 52, 40, 39, 32, 35, 60, 57, 56, 47, 41,
31, 27, 25, 24, 23, 11, 44, 17, 8, 13, 1, 21] are proposed to
capture different saliency cues.

Many conventional saliency detection methods focus on
design of low-level saliency cues, or modeling background
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Figure 1. Examples to show problems in conventional approaches.
From top left to bottom right: image, groundtruth mask, our
saliency maps, and saliency maps of other five latest approaches,
including DRFI [25], HS [56], GBMR [57], PCAS [41], and
SF[44].

priors. There are noticeable problems in these methods. 1)
Computational saliency models need effective feature rep-
resentations to estimate saliency, but sometimes the contrast
between hand-crafted low-level features cannot help salient
objects stand out from context. 2) Moreover, contrast is not
only in terms of difference between visual cues, but also
relates to high-level cognition and understanding. For ex-
ample in Figure 1, a dark gray house appears in dark yellow
bush. Objects like the house cannot be classified as salient
objects from the low-contrast background either based on
low-level saliency cues or background priors, but they are
semantically salient in high-level cognition, i.e. they are dis-
tinct in object categories. Therefore, saliency detection is
considered as a high-level task in our work.

The deep Convolutional Neural Network (CNN) [30],
which recently showed its powerfulness in extracting high-
level feature representations [16], can well solve aforemen-
tioned problems. From another perspective, saliency de-
tection is a task to simulate the mechanism of human at-
tention, which is a neurocognitive reaction controlled by
human brains. Deep CNN aims to mimic the functions of
neocortex in human brain as a hierarchy of filters and non-
linear operations. For better detecting semantically salient
objects, high-level knowledge on object categories becomes
important. Suppose that if the deep model can recognize
the gray house, then the problems in Figure 1 can be eas-
ily solved. As indicated in [49], pre-training can provide
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Figure 2. Examples to show importance of global context. From
left to right: image, groundtruth saliency mask, our saliency map
predicted with local context, and our saliency map predicted with
global context.

a good initialization for training deep models, and is able
to preliminarily memorize some related high-level informa-
tion. Therefore, it is desirable to see the influence of pre-
training in modeling saliency.

An appropriate scope of context is also very important to
help a salient object stand out from its context meanwhile
keep those non-salient objects suppressed in background. In
Figure 2, high-level knowledge tells us information about
flowers, leaves, cars and guard fences, but cannot answer
which are salient objects. If a local context (e.g. the red
dashed boxes in Figure 2(a)) is adopted to determine the
saliency, then all these object are highlighted as salient ob-
jects, as shown in Figure 2(c). This becomes general object
detection and segmentation problems. Due to the extremely
large variation in positions and scales of objects of differ-
ent categories, a global context (including the full image)
is more suitable to determine object saliency. Because a
global context takes all objects in an image into account,
and only with a global context we can model the contrast
between all objects. As shown in Figure 2(d), if the flower
and the leaf are considered together, then only the flower is
classified as the salient object; if the car and the guard fence
are considered as in the same picture, then only the car is
detected as the salient object. In addition, it is known that
deep models are also powerful in learning global contextual
feature representations.

Based on the above motivations, a new multi-context
deep learning framework for saliency detection is proposed.
Our work has two major contributions:

First, a deep model with multiple contexts is designed
to capture object saliency. The global context is utilized
to model saliency in full image, while the local context is
used for saliency prediction in meticulous areas. The global
and local context are integrated into the multi-context deep
learning framework for saliency detection, and the global-
and local-context modeling are jointly optimized.

Second, we explore the influence of different pre-
training strategies, and introduce a task-specific pre-training
scheme to pre-train the deep models using the ImageNet im-
age classification dataset. In addition, several contemporary
deep architectures in ImageNet Image Classification Chal-

lenge are tested, and their effectiveness in saliency detection
are investigated.

2. Related Work
2.1. Salient Object Segmentation

Salient object segmentation approaches can be roughly
categorized into two groups: bottom-up methods and top-
down methods.

Bottom-up methods can be further divided into two cate-
gories, i.e. local and global. Local approaches (e.g. [22, 17,
36]) design saliency cues by considering the contrast be-
tween each image element (pixel, region, or patch) and its
locally surrounding neighborhood. Global approaches esti-
mate saliency scores by calculating the holistic statistics on
uniqueness of each image element over the whole image.
Cheng et al. [13, 10] used 3D color histograms as regional
features to compute global contrast with all image regions.
Perazzi et al. [44] applied two measures of contrast that rate
the uniqueness and the spatial distribution to derive image
saliency. However, these global features are weak in cap-
turing semantic information.

Top-down methods take advantages of high-level
category-specific information as prior knowledge, and are
usually task-dependent. Judd et al. [28] learned a top-down
saliency model object detectors such as faces, humans, ani-
mals, and text. Borji et al. [7] combine bottom-up saliency
cues with top-down features learned via multiple object de-
tectors. Yang et al. [58] proposed a top-down saliency
model by jointly learning a Conditional Random Field and
a dictionary. These methods explore high-level information
from 3 ∼ 5 object categories. However, our deep models
encodes prior knowledge on 1, 000 object classes from Im-
ageNet, and has much stronger generalization capability.

In addition, some other interesting priors were also pro-
posed to assist saliency detection, such as flash cues [18],
boundary and background priors [55, 57, 25, 63].

2.2. Objectness and Object Proposal

Objectness was introduced to measure how likely a re-
gion contains an object regardless of object categories.
Alexie [3, 4] proposed to combine local appearance con-
trast and boundary characteristics to measure the objectness
score of a bounding box. Based on such measures, some
object proposal methods [9, 64] further generated candi-
date object regions as a preprocessing step for object de-
tection, which can effectively speed up the process com-
paring to the classical sliding-window detection paradigm.
A recent work [54] proposed to extract generic objects by
jointly handling localization and segmentation tasks.

Different than object proposal, which enumerates pre-
liminarily likely candidates for object detection regardless
of their contrastive relations, saliency detection requires to
take the context of full images and the contrast between
objects into account. Also, objectness score in [3, 4] or



the ranking score in [9] was measured over a candidate
bounding box, which can only provide a rough score map
highlighting all possible objects. Contrarily, saliency detec-
tion aims to produce accurate segmentation over the salient
ones. Despite the difference, objectness score can be used
as high-level prior knowledge [23], which could be further
combined with with low-level saliency cues for saliency de-
tection.

2.3. Hierarchical Structure for Saliency Detection

Latest works on saliency detection have showed the
trend of using deep/hierachical architectures to model vi-
sual saliency. Yan et al. [56] presented a hierarchical frame-
work to reduce the influence of small-scale structures in
saliency detection. Lin et al. [34] proposed to unsupervis-
edly learn a set of mid-level filters to capture local contrast,
and to fuse multi-level saliency calculation by convolu-
tion. Unlike their methods where mid-level filters are hand-
crafted, filters of CNNs in our framework are automatically
and jointly learned in a discriminative manner. Jiang et al.
[26] introduced successive Markov random fields (sMRF)
to model visual saliency, which shared the similar spirit
as this work of mimicing the deep propagation (a chain of
synaptic communications) along visual cortex. However,
the sMRF is a hierachical graphical model, which is a gen-
erative model optimized by belief propagation, while visual
saliency in our work is computed in a discriminative model
optimized by stochastic gradient descent.

2.4. Deep Convolutional Neural Networks

Since the introduction by LeCun Yann [30], deep CNN
has been applied to a wide range of computer vision tasks
such as hand-written digit classification and face detection.
Recently, the latest generation of CNNs have substantially
outperformed handcrafted approaches in computer vision
field. Notably, best performing entries [29, 46, 59, 50, 42,
43] on ImageNet ILSVRC [14] and PASCAL VOC [15]
benchmarks are all variants of deep CNNs since 2012.

Some recent approaches close to our work included cas-
caded stages in deep learning to solve problems that need
meticulous refinement, such as in facial landmark detec-
tion [48] and human pose estimation [51]. Saliency detec-
tion also need such refinement since global-context model
cannot well capture the very detailed information in local
neighborhoods. However, we propose a multi-context deep
model to consolidate both global context and local context
in a unified framework.

3. Our Approach
In this paper, we propose a multi-context deep learn-

ing framework for saliency detection, and focus on mod-
eling saliency with global context and local context simul-
taneously. Furthermore, different pre-training strategies
are investigated, and an effective task-specific pre-training

scheme is introduced. Figure 3 shows an overview of our
approach.

3.1. Global-context Modeling by Deep CNN

As shown in Figure 3, the upper branch (global-context
modeling) of our saliency detection pipeline is a deep CNN
architecture with global and coarse context. Superpixel seg-
mentation is firstly performed on images using the SLIC
[2] method, and the input of global-context CNN is a
superpixel-centered large context window including the full
image. Regions exceeding image boundaries are padded
with mean pixel value of the training dataset. The padded
image are then warped to 227 × 227 × 3 as input, where
the three dimensions represent width, height, and number
of channels. With this proposed normalization and padding
scheme, the superpixel to be classified is always located at
the center of the image, and the spatial distribution of the
global context is normalized in this way. Moreover, it en-
sures the input covers the whole range of the original image.
The last layer of the network structure has 2 neurons fol-
lowed by a softmax function as output, indicating the proba-
bilities of centered superpixel whether being in background
or belonging to a salient object.

The winning model in the classification task of Ima-
geNet 2013, i.e. the Clarifai model [59], is adopted as
our baseline model. The Clarifai model contains 5 con-
volutional layers and 2 fully connected layers, as shown
in Figure 3. Denote by conv# a convolutional layer, by
lrn# a local response normalization layer, pool# a pool-
ing layer and by fc# a fully connected layer. conv#
and fc# layers consist of a linear transformation fol-
lowed by a nonlinear rectified linear unit function denoted
by relu#, and only conv# and fc# layers have learn-
able parameters. The structure of the network can be de-
scribed by the size of feature maps at each layer as conv1
(111 × 111 × 96) −relu1 −pool1 −lrn1 −conv2 (27 ×
27× 256) −relu2 −pool2 −lrn2 −conv3 (13× 13× 384)
−relu3 −conv4 (13 × 13 × 384) −relu4 −conv5 (13 ×
13×256)−relu5−pool5−fc6(4096)−relu6−dropout6
−fc7(4096)−relu7−dropout7−fc8(2). For conv layers,
the size of feature maps is defined as width×height×depth,
where the first two dimensions describe the spatial size and
the depth defines the number of channels. Pooling is ap-
plied after three layers. The total number of parameters in
the above model is about 58 million. We refer readers to
[59] for further details.

Apart from the Clarifai model, there are also other con-
temporary models such as AlexNet [29], NIN [33], Over-
Feat [46], DeepID-Net [42], and GoogLeNet [50]. It is flex-
ible to incorporate any of these contemporary deep models
into our framework, and in the experimental section we in-
vestigate the performance of saliency detection using some
of these contemporary architectures.
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Figure 3. Upper branch: Deep CNN-based global-context modeling for saliency detection with a superpixel-centered window padded with
mean pixel value. Lower branch: local-context modeling with a closer-focused superpixel-centered window, and global-context saliency
detection results are combined into finally fully-connected layer in the local-context model. We visualize the network layers with their
corresponding dimensions, where convolutional layers are in blue, fully connected layers (with parameters initialized using pre-trained
model parameters) in orange, and fully connected layers (with parameters randomly initialized) in red. Layers without parameters are
omitted in this figure.

3.2. Integrated Multi-context Model
While the CNN at the upper branch (global-context

model) aims to robustly model saliency with few large er-
rors, CNN at the lower branch are designed to look at de-
tails - it focuses on a smaller context to refine the saliency
prediction of the centered superpixel. In this work, the
local-context model takes an input with a similar form as
in the global-contex model, but with one third of the scope
of context, and then normalized to 227 × 227 × 3. The
local-context model shares the same deep structure with
the global-context model, but with independent parame-
ters. Other deep structures can also be flexibly incorpo-
rated in the local-context model. Overall, prediction of a
superpixel-centered input window is performed by estimat-
ing the saliency probability

score(xgc, xlc) = P (y = 1 | xgc, xlc; θ1), (1)

where xgc and xlc are output of the penultimate layer of the
global context model and the local context model respec-
tively. y is the prediction of saliency for the centered su-
perpixel, where y = 1 for salient superpixel and y = 0 for
background.

We train a binary classifier on top of the last network
layer to classify background and saliency by minimizing a
unified softmax loss between the classification result and
the groundtruth label.

L( θ; {x(i)
gc , x

(i)
lc , y

(i)}mi=1) =

− 1

m

∑
i∈{1,...,m}
j∈{0,1}

1{y(i)=j} logP (y(i) = j | x(i)
gc , x(i)

lc ; θj), (2)

In our approach, the parameters in our framework can be de-
composed to several parts, i.e. θj = { wgc,j , wlc,j , α, β},

where wgc,j are last-layer parameters in the neural network
for global-context modeling, wlc,j are last-layer parameters
for local-context modeling, and α, β are parameters of an
ambiguity modeling function controlling the need of local-
context modeling. Thus, the posterior probability in Eq.(2)
is factorized into product of experts [19], i.e. we aim to infer
the label probability via two components simultaneously:

P (y = j | xgc, xlc; θj) ∝ Φ(xgc; θΦ
j ) ·Ψ(xgc, xlc; θΨ

j ), (3)

θΦ
j = wgc,j , θΨ

j = { wgc,j , wlc,j , α, β}, j ∈ {0, 1}. (4)

Specifically, Φ tries to estimate the saliency probability
based on global-context modeling,

Φ(xgc; θΦ
j ) ∝ ewT

gc,jxgc , (5)

and Ψ is based on both the global context and local context,

Ψ(xgc, xlc; θΨ
j ) ∝ efu(αwT

gc,jxgc+β)·wT
lc,jxlc . (6)

Then, the corresponding unnormalized saliency prediction
score function is formulated as

f(xgc, xlc; θΨ
1 ) = wT

gc,1xgc + fu(αwT
gc,1xgc + β)wT

lc,1xlc, (7)

where fu(·) is defined as

fu(t) =

{
t for 0 ≤ t ≤ 1
0 for otherwise (8)

fu(αwT
gc,1xgc+β) models ambiguity of the saliency predic-

tion of the global context model, and α and β can integrate
multiple contexts in modeling to perform saliency detection
from a joint model. Intuitively, αwT

gc,1xgc + β in range
(−∞, 0]∪[1,+∞) leads to a zero fu(αwT

gc,1xgc+β), which



means it has a high-confidence prediction in the global-
context model so that f(xgc, xlc; θΨ

1 ) only relies on the
global context information. Properly setting α and β incor-
porate a non-zero fu(αwT

gc,1xgc + β) · wT
lc,1xlc (weighted

local-context modeling) to handle ambiguous predictions
with low confidence in global-context modeling.

To this end, our problem can be formulated as minimiz-
ing the following loss function:

argmin
{wgc,j ,wlc,j}1j=0,

α,β

L({wgc,j ,wlc,j}1j=0, α, β; {x
(i)
gc , x

(i)
lc , y

(i)}mi=1) =

−
1

m

∑
i∈{1,...,m}
j∈{0,1}

1{y(i)=j} log
ewT

gc,jx(i)gc +fu(αwT
gc,jx(i)gc +β)wT

lc,jx(i)
lc∑

l e
wT
gc,l

x(i)gc +fu(αwT
gc,l

x(i)gc +β)wT
lc,l

x(i)
lc

+λ1

∑
j∈{0,1}

‖wgc,j‖22 + λ2

∑
j∈{0,1}

‖wlc,j‖22,

(9)

where the parameters are simultaneously optimized with
other layers’ parameters by backpropagating the loss.

3.3. Task-specific Pre-training and Fine-tuning
It was demonstrated in [16] that fine-tuning a Deep CNN

model pre-trained for image classification with the target
task (e.g. object detection) data can significantly improve
the performance of target task. Particularly, deep model
structures at the pre-training and fine-tuning stages are only
different in the last fully connected layer for predicting la-
bels. Except for the last fully connected layers for classifi-
cation, the parameters learned at the pre-training phase are
directly used as initial values for the fine-tuning stage.

Similar strategy in [16] can be directly used to fine-
tune the contemporary CNN models for saliency detec-
tion. However, the pre-training task and fine-tuning task
have disparity in following aspects. 1) Input data. Im-
age classification task takes full images as inputs, while our
global-context model requires superpixel-centered windows
padded with mean pixel value, and the local-context model
takes a cropped input, which serves to provide local context
for finer prediction. Both the input of the global- and local-
context models have changed scales and translations com-
pared to the original images, which leads our multi-context
model to learning different feature representations. 2) Class
labels. Dataset in ImageNet for Image classification has
1, 000 classes, while saliency detection solves a binary clas-
sification problem. Despite the disparity in class labels, it
is shown that deep CNN pre-trained for 1, 000-class classi-
fication can be generalized for fine-tuning the classification
problem with fewer classes [16]. 3) Loss function. The
loss function in image classification task aims to differen-
tiate 1, 000 classes, while the loss function for saliency de-
tection in our approach is defined as in Eq. (9) to perform
binary classification.

To apply the contemporary models like the Clarifai
model to our problem, the disparities mentioned above need
to be considered. Therefore, we explore several pre-training

strategies, and propose task-specific initialization for fine-
tuning our deep saliency detection models. Task-specific
pre-training has been proved to be very effective on object
detection [42].
Pre-training We pre-train our models using image data
from ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2014 [45]. This challenge contains two different
datasets: 1) the classification and localization dataset and
2) the detection dataset. The classification and localization
dataset is divided into three subsets, train, validation, and
test data. We use the train dataset for pre-training, which
contains 1.2 million images with labels of 1, 000 categories.
In addition, labels are provided at the image-level and the
object-level, i.e. category labels are available for both full
image and object bounding boxes.

Based on the object-level annotations, we can easily
generate another type of annotations to suit the input for-
mat in saliency detection, which we call the superpixel-
level annotation. Specifically, we randomly sample a super-
pixel within a object bounding box (where the superpixel
is most likely located within the object region), and pro-
duce a superpixel-centered window including full image,
also padded with mean pixel value in ImageNet training
data. The label of each window is determined by threshold-
ing the overlap ratio between the centered superpixel and
corresponding groundtruth salient object mask. In our ex-
periments, the threshold is set to 0.5.

We investigate following strategies for pre-training:

Strategy 1. No pre-training, i.e. randomly initializing
model parameters for fine-tuning.

Strategy 2. Pre-training the deep models using training im-
ages with image-level annotations of 1, 000 classes.

Strategy 3. Pre-training the deep models using training im-
ages with object-level annotations of 1, 000 classes.

Strategy 4. Pre-training the deep models using training
images with superpixel-level annotations of 1, 000
classes.

In Table 1, we show two settings of pre-training schemes.
The R-CNN [16] for object detection and segmentation
adopted strategy 2 in training (denoted by S1). Differ-
ent from R-CNN, a new task-specific scheme (denoted by
S2) with pre-training strategies based on superpixel-level
and object-level annotation are proposed for the global- and
local-context modeling. Superpixel-level annotation aligns
spatial location of objects when pre-training the global-
context model, and it is consistent with the input format of
the global-context model. Features pre-trained with object-
level annotation are sensitive to the location of objects, and
they provide more appropriate pre-training information for
the local-context model.

In Section 4.3, we quantitatively investigate the influ-
ences of different pre-training strategies in saliency de-
tection, and validate our hypothesis that task-specific pre-



training strategy provides a better initialization for fine-
tuning.

Pre-training strategy global context local context
S1: R-CNN [16] strategy 2 strategy 2
S2: Task-specific strategy 4 strategy 3

Table 1. Pre-training strategies used for comparison.

Fine-tuning. We use the MSRA10k dataset [10] for fine-
tuning our deep saliency detection models. The MSRA10k
dataset is a subset of the MSRA Salient Object Dataset [36],
which originally provides salient object annotation in terms
of bounding boxes provided by 3-9 users. Cheng et al. [10]
selected 10, 000 images with consistent bounding box la-
beling in MSRA dataset, and provided pixel-level saliency
annotations. We randomly select 8, 000 images for train-
ing, and 2, 000 for validation. From each image, we se-
lect an average 200 ∼ 300 of superpixels, and in total
about 2.1 million input windows for training and 0.6 mil-
lion for validation are generated. Fine-tuning for 100, 000
iterations costs 31 hours on a PC with Intel I7 3.6GHz
GPU, 32GB RAM and a GTX TITAN GPU. Testing an im-
age with 200 superpixel takes about 0.8 seconds only us-
ing global-context model, and 1.6 seconds using the unified
multi-context model.

4. Experimental Results
4.1. Benchmark Datasets

ASD [1] includes 1, 000 images sampled from the
MSRA Salient Object Database [36]. Although our training
data originates from the same dataset, we separate images
in ASD dataset from our training set to avoid overlap.

SED1 [5] contains 100 images of a single salient object
annotated manually by three users.

SED2 [5] contains 100 images of two salient objects an-
notated manually by three users.

ECSSD [56] contains 1, 000 structurally complex im-
ages acquired from the Internet, and the groundtruth masks
were annotated by five labelers.

PASCAL-S [32] was built on the validation set of
the PASCAL VOC 2010 segmentation challenge. It con-
tains 850 natural images with both saliency segmenta-
tion groundtruth and eye fixation groundtruth. Saliency
groundtruth masks were labeled by 12 subjects.

Evaluation Metrics1. We follow the evaluation protocol
as in [1, 13, 32], where saliency maps are binarized at every
threshold within range [0, 255], and all saliency maps are
evaluated by the F-measure score [1], which is obtained as
a harmonic mean of average precision and average recall,
i.e. Fβ = (1+β2)×precision×recall

β2×precision+recall , where β2 is set to 0.3

following the convention as in [1, 56, 32].

1We use the code provided by [32] at http://cbi.gatech.edu/
salobj/ for evaluation of our results on all the five datasets.

Figure 6. Saliency detection performance (F-measure score) using
contemporary deep models, including AlexNet[29], Clarifai [59],
OverFeat [46], and GoogLeNet [50].

4.2. Evaluation on the Multi-context Model

We separate the global-context branch in our framework
as a baseline model, and we call it as the single-context
model. It is also trained and tested under the same exper-
imental settings for comparison. As shown in Figure 4(a),
our proposed multi-context model consistently outperforms
the single-context model on all the five datasets. Especially
on the PASCAL dataset, our multi-context model increases
the F-measure score by around 5%. Some examples of the
saliency maps are shown in Figures 4(d-e), and it is clearly
shown that the multi-context model refines the erroneous
predictions by the single-context model since it combines
both global context and local context.

4.3. Evaluation on Task-specific Pre-training

We evaluate the performance of the single-context model
with different pre-training strategies on the ECSSD dataset
and PASCAL-S dataset since evaluations on larger datasets
show more robust statistics. As shown in Figures 5(a-
b), evaluation results on both datasets have similar char-
acteristics: 1) random initialization (strat.1) of network
parameters leads to the worst performance; 2) image-
level pre-training strategy (strat.2) and object-level pre-
training strategy (strat.3) obtain similar results on the EC-
SSD dataset, while image-level pre-training slightly outper-
forms object-level pre-training on the PASCAL-S dataset;
3) superpixel-level pre-training strategy (strat.4) outper-
forms other pre-training strategies on both datasets.

Then we evaluate the performance of task-specific pre-
training strategies for the whole framework. As shown in
Table 1, we test two settings, the S1 follows the scheme
used in R-CNN [16], while the second one S2 is our
task-specific pre-training scheme introduced in Section 3.3.
From the results on five datasets in Figure 5(c), we can con-
clude that our task-specific pre-training scheme consistently
outperforms the conventional pre-training method adopted
in R-CNN, which validates the effectiveness of the pro-
posed task-specific pre-training approach.

http://cbi.gatech.edu/salobj/
http://cbi.gatech.edu/salobj/
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Figure 4. (a): F-measure scores on the five saliency detection datasets for evaluation of the single-context model and the multi-context
model. (b-e): Qualitative comparison between the single-context model and the multi-context model. (b) is input image. (c) is ground-
truth saliency map. (d) is our saliency map from the single-context model. (e) is our saliency map from the multi-context model. Red
arrows indicate that regions with erroneous prediction by single-context model are refined by the multi-context model.

(a) (b) (c)
Figure 5. Evaluation of the single-context model with different pre-training strategies on (a) ECSSD dataset and (b) PASCAL-S dataset.
The abbreviations “strat. #” in (a-b) represent the strategies introduced in Section 3.3. (c) Evaluation of multi-context model learned using
task-specific pre-training scheme on five datasets.

4.4. Evaluation on Contemporary Deep Structures
Our framework is flexible to incorporate other contem-

porary deep models, and for simplicity we replace the
model structure in the global-context model with other con-
temporary model structures for evaluation. Evaluated struc-
tures include AlexNet [29], Clarifai [59], OverFeat [46],
and GoogLeNet [50]. As shown in Figure 6, GoogLeNet2

slightly outperforms other deep models on the five dataset,
but performances of these contemporary deep models do
not vary very much. We expect extra performance gain if
GoogleNet is used in our multi-context model with task-
specific pre-training scheme, as introduced in Section 3.3.

4.5. Evaluation on Overall Performance
In Table 2, we compare our approach with nine latest

state-of-the-art methods, including IS [20], GBVS [17], SF
[44], GC [12], CEOS [40], PCAS [41], GBMR [57], HS
[56], and DRFI [25]. Our approach significantly outper-
forms all the state-of-the-art salient object segmentation al-
gorithms. The PASCAL-S dataset was proposed in CPMC-
GBVS [32], but we do not include their method in Table
2 for a fair comparison because they used eye fixation la-

2Our implementation of GoogLeNet is pre-trained with less extensive
data augmentation, and gets 67% top-1 ILSVRC accuracy.

ASD SED1 SED2 ECSSD PASCAL-S
IS [20] 0.5943 0.5540 0.5682 0.4731 0.4901

GBVS [17] 0.6499 0.7125 0.5862 0.5528 0.5929
SF [44] 0.8879 0.7533 0.7961 0.5448 0.5740
GC [12] 0.8811 0.8066 0.7728 0.5821 0.6184

CEOS [40] 0.9020 0.7935 0.6198 0.6465 0.6557
PCAS [41] 0.8613 0.7586 0.7791 0.5800 0.6332
GBMR [57] 0.9100 0.9062 0.7974 0.6570 0.7055

HS [56] 0.9307 0.8744 0.8150 0.6391 0.6819
DRFI [25] 0.9448 0.9018 0.8725 0.6909 0.7447

Ours 0.9548 0.9295 0.8903 0.7322 0.7930

Table 2. The F-measure scores of benchmarking approaches on
five public datasets.

bel in training. Our approach obtains a higher F-measure
score than theirs (0.7930 vs. 0.7457) on PASCAL-S dataset.
Also, we qualitatively compare our saliency maps with
those by other methods in Figure 7. It is obvious that our
approach is able to highlight the salient object parts more
coherently, and has a better prediction especially in com-
plex scene with confusing background, such as the cases in
the 6th and 7th rows in Figure 7. More comparisons can be
found at our project website.

5. Conclusion
In this paper, we propose a multi-context deep learn-

ing framework for saliency detection. Firstly, we intro-
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Figure 7. Example images from five datasets and the saliency maps by compared methods. Methods for comparison include DRFI [25],
HS [56], GBMR [57], PCAS [41], CEOS [40], GC [12], and SF [44].

duce multi-context saliency modeling using deep Convo-
lutional Neural Networks. Global context and local con-
text are utilized and integrated into a unified multi-context
deep learning framework for saliency detection. Global-
and local-context models are jointly optimized. Secondly,
different pre-training strategies are investigated to learn the
deep model for saliency detection, and a task-specific pre-
training scheme designed for our multi-context deep model
is proposed. Moreover, recently proposed contemporary
deep models in ImageNet Image Classification Challenge
are tested, and their effectiveness in saliency detection are
investigated. Experiments validate each component in our
framework, and show our approach significantly and con-

sistently outperforms all the state-of-the-art methods.
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