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Abstract

We propose a novel approach to compute the camera
pose with respect to a reference object given only mirrored
views. The latter originate from a planar mirror at differ-
ent unknown poses. This problem is highly relevant in sev-
eral extrinsic camera calibration scenarios, where the cam-
era cannot see the reference object directly. In contrast to
numerous existing methods, our approach does not employ
the fixed axis rotation constraint, but represents a more el-
egant formulation as a rotation averaging problem. Our
theoretical contribution extends the applicability of rota-
tion averaging to a more general case, and enables mirror-
based pose estimation in closed-form under the chordal L2-
metric, or in an outlier-robust way by employing iterative
L1-norm averaging. We demonstrate the advantages of our
approach on both synthetic and real data, and show how
the method can be applied to calibrate the non-overlapping
pair of cameras of a common smart phone.

1. Introduction
The present paper discusses the calibration of extrin-

sic camera parameters, meaning a Euclidean transformation
that defines the camera position and orientation with respect
to another frame. For instance, in virtual reality we ought to
know the transformation between a camera and a reference
frame, thus enabling virtual objects to be added onto real
scene video. While this can be recovered by well-known
relative or absolute pose computation algorithms, there re-
main several important applications where the pose compu-
tation can no longer rely on basic geometric constraints:

• A camera that is custom-mounted in the front or back
of a car. The corresponding calibration task is com-
monly denoted eye-body calibration. Despite the fact
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Figure 1. Extrinsic calibration of a smart phone’s camera-pair: The
green rectangle contains a mirrored scene captured by the smart
phone’s front camera. As can be observed in the right figure, both
front and back camera can see the chessboard only via mirror re-
flections. Mirror based pose estimation consists of finding both
cameras’ absolute pose with respect to the target object given only
(at least 3) mirrored views of the object (i.e. the mirror’s position is
changed and unknown). By combining the absolute poses, we can
then easily retrieve the relative pose between the non-overlapping
pair of cameras.

that a 3D model of the vehicle might be readily avail-
able, it is not visible inside the camera’s field of view,
thus blocking a calibration based on object pose esti-
mation. The problem is typically solved by comput-
ing the egomotion of the camera and aligning it with
dynamic sensor information, for instance given by an
odometer or an inertial measurement unit.

• Multiple cameras pointing into different directions
such that their fields of view are no longer overlap-
ping. Deriving the relative pose from the absolute
poses with respect to a commonly observed calibra-
tion target hence becomes impossible. The problem
of calibrating non-overlapping cameras is often ap-
proached by again computing the trajectory of each
camera under motion, and then aligning the trajectories
by solving the so-called hand-eye calibration problem.



A daily-life example of a non-overlapping camera pair
is given by smart-phone devices equipped with a front-
back camera pair (cf. Figure 1).

Many cases deny the above calibration methods because
they constrain the camera motion and thus render certain
parameters unobservable (e.g. a car exerting planar mo-
tion, or a static setup such as surveillance cameras). An
important stream of extrinsic camera calibration therefore
is given by employing mirrors in the calibration process,
allowing (co-)visibility of known objects or calibration tar-
gets. Mirror-based camera pose computation consists of us-
ing planar mirrors to observe the reflections of the reference
object and then computing the extrinsic parameters along
with the location and orientation of planar mirrors (cf. Fig-
ure 1). It is the main subject of this paper.

Most of the existing solutions to the problem are derived
from the fixed-axis rotation constraint discovered in [5].
This work proves that the relative transformation between
two mirrored views is a pure rotation about the intersection
line of the corresponding mirror planes. Various forms of
this constraint [14, 8, 15, 13] allow us to recover the direc-
tion vectors of intersection lines, from which the mirror and
camera poses can then be derived.

The present paper introduces a novel and certainly more
elegant solution to the problem: We show that the combina-
tion of an arbitrary number of mirrored images of a calibra-
tion target—seen from a camera with constant pose within
a reference frame—turns out to be a generalization of the
rotation averaging problem introduced in [7]. This notably
allows us to solve for all virtual poses1 individually, and
then combine them within a single fusion stage. Extended
from [7], our rotation averaging formalism allows us to de-
vise different strategies:

• A closed-form solution based on singular value de-
composition of the sum of all virtual cameras’ rotation
matrices. This formulation minimizes the chordal L2-
norm of the rotation residuals, resulting in state-of-the-
art noise resilience under elegant linear complexity.

• L1-averaging as presented in [7]. This variant is able to
transparently handle real world situations where part of
the mirrored images are captured wrongly, and without
depending on Ransac [4].

The paper is organized as follows. Section 2 describes
related prior techniques. Section 3 briefly introduces the
geometry of planar mirror reflections. Section 4 introduces
our rotation-averaging approach. Section 5 shows compar-
ative results on both synthetic and real world data. We
furthermore show a successful application of the approach

1A virtual pose is the pose of a (left-handed) camera frame that returns
the same observation than a real camera, without employing a mirror.

to find the extrinsic parameters of a smart phone’s non-
overlapping pair of cameras. Section 6 concludes the work.

2. Related work

The work of Sturm and Bonfort [14] is the first to in-
troduce the problem of estimating the pose of an object in
the absence of a direct view (i.e. using mirror reflections).
It proves that a unique determination of mirror positions
and camera pose requires at least 3 virtual views, and dis-
cusses singular configurations. The approach is construc-
tive in that—for a certain virtual view—it first computes
the fixed-axes of rotation in combination with the other two
virtual views in closed form. It then determines the mirror
position by fitting a plane to the estimated 3D lines, and fi-
nally recovers the real camera pose by reflecting the virtual
view with respect to the mirror. The method works for non-
parallel mirror planes exclusively, thus ensuring that the in-
tersection of fixed-axes of rotation is feasible.

Rodrigues et al. [13] build on top of this result by pre-
senting a linear reformulation of the fixed-axis rotation con-
straint. The method leads to improved performance over
[14] since it utilizes an arbitrary number of fixed-axis con-
straints for each mirror pose, and computes the correspond-
ing mirror plane parameters in a single shot rather than re-
covering it from 3D lines. It also enables a transparent han-
dling of parallel mirror planes. Hesch et al. [8] and Taka-
hashi et al. [15] study further minimal solutions to the prob-
lem that exploit the relative pose between virtual cameras.
The latter work in particular uses the 3D points directly
rather than the relative motion parameters, thus providing
an orthogonality constraint that is more beneficial for es-
timating the orientation of the mirror. Kumar et al. [10]
provide a linear estimator that does not rely on the fixed-
axis rotation constraint. However, the algorithm requires
at least five mirrored views and—as typical for highly lin-
earized solvers—the resulting algebraic error metric leads
to reduced noise resilience. More recently, Agrawal and
Ramalingam [1] present an approach that utilizes spheri-
cal mirror reflections, thus avoiding the problem of parallel
mirror configurations. However, planar mirrors are much
easier to find, thus ensuring that planar mirror based pose
estimation remains a practically relevant problem.

In conclusion, all solutions to mirror-based pose estima-
tion (except the less accurate one presented in [10]) rely
on the fixed-axis rotation constraint, and thus utilize at
least pair-wise combinations of mirror poses. This leads
to quadratic complexity. In contrast, we show that mirror-
based pose estimation can be solved in an easier way by
first finding all virtual poses individually, and then the cam-
era orientation through a rotation-averaging step.



3. Geometry of planar mirror based
pose estimation

This section summarizes a number of geometric con-
cepts substantial to mirror-based camera pose estimation.
We will see the notations used throughout this paper along
with the basic geometric formulation of the problem. The
section then goes into further geometric details, such as the
algebraic formulation of planar mirror reflections, the mod-
ified camera projection model that takes mirror reflections
into account, and finally the concept of a virtual camera and
what we call an improper rotation matrix.

3.1. Problem formulation

The geometry of the problem is described in Figure 2.
Let Fc be a camera frame without a direct view onto 3D
points {p1, . . . ,pm} defined inside a reference frame Fr.
Let {π1, . . . , πn} be different mirror positions rendering
the 3D points visible inside the camera’s field of view.
Let T describe the pose of the camera with respect to Fr.
Mirror-based camera pose estimation consists of computing
T while the coordinates of the 3D points are known, and the
parameters of all πi are unknown.

3.2. Planar mirror reflections

A planar mirror can be described by the plane parame-
ters π = {n, d} within a given reference frame. The unit
vector n denotes the normal vector of the mirror plane, and
d represents the orthogonal distance between the origin and
the plane. A point x lies on the plane if it satisfies the con-
straint nTx = d. The relation between the point p and its
mirrored point p̃ reflected by π is given by[

p̃
1

]
= S

[
p
1

]
, where S =

[
I− 2nnT 2dn

0 1

]
(1)

denotes the symmetric transformation induced by π. Note
that S = S−1, and (I− 2nnT ) is a Householder matrix.

3.3. Mirrored camera projection model

The rigid transformation that transforms points from the

reference to the camera frame is given by T =

[
R t
0 1

]
,

where t denotes the origin expressed inside the camera
frame, and R denotes the rotation that rotates points from
the reference into the camera frame. We ignore camera in-
trinsics and adopt a normalized perspective camera model
where points are projected onto the plane z = 1. Taking
the mirror reflection into account, the 3D point correspond-
ing to a normalized image point actually corresponds to its
mirrored point. Concatenating the camera model with the
mirror reflection, the mirrored camera projection model be-
comes

v∼
[
I 0

]
T

[
P̃
1

]
=
[
I 0

]
TS

[
P
1

]
, (2)

Figure 2. The geometry of the mirror-based camera pose estima-
tion problem.

where v denotes a normalized image point expressed in ho-
mogeneous coordinates, and ∼ means equality up to a non-
zero scale factor.

3.4. Virtual cameras and improper rotations

Let T̃ = TS. The transformation T̃ includes a reflection
and a rigid transformation, and is given by

T̃ =

[
R̃ t̃
0 1

]
=

[
R(I− 2nnT ) 2dRn + t

0 1

]
(3)

The projection of a mirrored point by a real camera can be
regarded as the projection of a real point by a mirrored cam-
era. While T denotes the pose of the real camera, T̃ denotes
the pose of the mirrored camera, which is also called a vir-
tual camera.

R̃ is the reflection of R by the normal vector n and
denotes an improper rotation matrix satisfying R̃T R̃ =
R̃R̃T = I and det(R̃) = −1. As introduced in [3], im-
proper rotation matrices hold a number of additional prop-
erties that are key to our rotation averaging formulation:

• (a) Improper rotation matrices must have one eigen-
value equal to -1. This property is key to our closed-
form chordal L2 algorithm. The proof is given in [12].

• (b) Improper rotation matrices can be uniquely decom-
posed into a product of a planar reflection and a rota-
tion around the corresponding normal vector. The de-
composition is given by

R̃ = R(e, θ)(I− 2eeT ), (4)

where e is the eigenvector of R̃ corresponding to the
eigenvalue of -1, and R(e, θ) is a rigid rotation by an
angle θ around the axis e, with θ = cos−1

(
tr(R̃)+1

2

)
.

The proof can be found in [3].

• (c) Property (b) further means that there does not exist
a rotation axis for which the decomposition would lead



to a smaller rotation angle about the chosen axis of e.
The proof consists of first multiplying both sides of (4)
by -1, thus turning improper rotations into proper ones:
−R̃ = R(θ, e)(2eeT−I). (2eeT−I) can be regarded
as a rotation by π about the axis e. We obtain

−R̃ = R(θ, e)(2eeT − I) = R(θ, e)R(π, e)

= R(θ + π, e). (5)

(θ + π, e) is an axis-angle representation of the rota-
tion−R̃. From Euler’s rotation theorem, we know that
axis and angle are unique. This in turn means that it is
impossible to obtain a smaller rotation angle than θ.2

4. Rotation-averaging for mirror-based pose
estimation

The present section describes how rotation averaging can
be extended from proper to improper rotations. It then con-
cludes with practical solutions to the problem formulation,
namely a closed-form solution finding the L2-mean based
on the chordal distance between rotation matrices, and an
iterative L1-norm minimization scheme. Both schemes are
effective in solving mirror-based pose estimation, a problem
in which improper rotation matrices naturally appear.

4.1. Rotation-averaging with improper
rotation matrices

Let
{

T̃1, . . . , T̃n

}
be a set of (improper) transformation

matrices obtained by a modified absolute pose algorithm ap-
plied to the mirrored projections of known 3D world points
defined in a certain reference frame. Let the mirror pose
be the only difference between the various mirrored views.
The problem of mirror-based absolute pose estimation con-
sists of finding the pose T of the camera directly with re-
spect to the reference frame, as well as the plane param-
eters {π1, . . . , πn} of every mirror pose. We first solve a
sub-problem in which we only seek the proper absolute ro-
tation R as well as the mirror plane normal vectors ni such
that they minimize the cost function

C(R,ni) =

n∑
i

ε(R̃i(I− 2nin
T
i ),R)p, (6)

where ε represents the geometric, chordal, or quaternion
metric, and p = 1 or p = 2.

The problem has similarities with the rotation averaging
formulation of [7]. The difference lies in the existence of
improper rotation matrices generated by mirror reflections
that are expressed by the Householder matrices (I−2nin

T
i ).

The additional unknown planar normal vectors ni render

2These statements are true if bounding the rotation angle to the interval
[0, π), and ignoring the special case where it is 0 anyway.

the problem a more difficult one compared to [7], which is
based on proper rotation matrices only. However, as shown
in the remainder of this section, the exploitation of the prop-
erties of improper rotation matrices still allows us to solve
the problem in similar ways.

4.2. Chordal L2-mean algorithm

We first consider rotation averaging under the L2 chordal
metric (p = 2) which—in analogy to the original case with
proper rotation matrices—leads to a closed-form solution
for finding the global minimum of the objective function3.
(6) will notably appear as

E(R,ni) =

n∑
i=1

‖R̃i(I− 2nin
T
i )−R‖2F . (7)

If 〈·, ·〉 represents the Frobenius inner product— i.e. the sum
of the element-wise products of two matrices—, (7) can be
rewritten as

E(R,ni) =

n∑
i=1

〈
R̃i(I− 2nin

T
i )−R, R̃i(I− 2nin

T
i )−R

〉
=

n∑
i=1

(〈
R̃i(I− 2nin

T
i ), R̃i(I− 2nin

T
i )
〉

−2
〈
R̃i(I− 2nin

T
i ),R

〉
+ 〈R,R〉

)
= 6n− 2

n∑
i=1

〈
R̃i(I− 2nin

T
i ),R

〉
= 6n− 2

n∑
i=1

〈
R̃i,R

〉
+ 4

n∑
i=1

〈
R̃inin

T
i ,R

〉
(8)

Let
E1 =

n∑
i=1

〈
R̃i,R

〉
=

〈
n∑

i=1

R̃i,R

〉
(9)

E2 =

n∑
i=1

〈
R̃inin

T
i ,R

〉
=

n∑
i=1

nT
i R̃

T
i Rni. (10)

It is easy to see that minimizing E is equivalent to a simul-
taneous maximization of E1 and minimization of E2 over
R and all ni’s.

Minimization of E2: Consider that ni is a unitary vec-
tor and R̃T

i R must be an improper rotation matrix with re-
spect to any true rotation R. It is obvious that the minimum
value of nT

i R̃T
i Rni is -1: Recall property (a) in Section 3.4,

stating that an improper rotation R̃T
i R must have an eigen-

value -1. This means that nT
i R̃T

i Rni will always reach its
minimum value of -1 if ni is computed as the eigenvector
corresponding to the eigenvalue -1 of R̃T

i R. This statement
is true for any rotation R, and the problem is reduced to
maximizing E1.

3The induced metrics of the chordal and the geodesic distance differ
only by a scale factor of

√
2. For small residuals, the chordal L2-norm

is very close to the geodesic L2-norm. For large residuals (up to and in-
cluding the maximum residual), the chordal L2-norm can be regarded as a
robust alternative to the geodesic L2-norm. Please refer to [7] for further
details.



Maximization of E1: From the trace-maximization
problem[9], it is well known that

argmax
R∈SO(3)

〈G,R〉 = argmin
R∈SO(3)

‖G−R‖2F . (11)

Maximizing E1—and thus minimizing (7)—therefore is
equivalent to finding the rotation R that is closest to G =∑n

i=1 R̃i under the Frobenius norm, which indeed—as
shown in [9]—has the closed-form solution

R̂ = USVT , (12)

where U and V are given by the singular value decomposi-
tion SVD(G) = UΣVT , and S = diag(1, 1,det(UVT )).

Uniqueness conditions of the solution: The problem
of rotation averaging with improper rotations needs at least
3 rotations to find a unique solution. This stands in con-
trast with the original rotation averaging with proper rota-
tions which only needs one rotation. More specifically, let
F = [n1 n2 · · · nn]. The presented chordal L2-mean
algorithm can obtain a unique solution iff rank(F) = 3.
The detailed proof is provided in Appendix A. Degenerate
configurations have already been observed by both Sturm et
al. [14] and Rodrigues et al. [13]. Our condition means that
the presented L2-averaging algorithm will only work if the
normal vectors of the mirror planes are not coplanar.

4.3. Geometric L1-mean algorithm

We now proceed to the derviations of our L1 averaging
scheme. The goal is to reduce the geometric distances (i.e.
geodesic distance) between R and R̃i(I − 2nin

T
i ). This

in turn means that RT R̃i(I − 2nin
T
i ) needs to be close to

identity, and indeed represents our residual. RT R̃i is an im-
proper rotation matrix that differs from the proper residual
rotation only by the reflection (I − 2nin

T
i ). According to

property (c) in Section 3.4, ni can be obtained by eigende-
composition of RT R̃i, and this ni is optimal in the sense of
characterizing the reflection that leads to a minimal residual
rotation. Note that n is optimal regardless of ε and p.

The entire algorithm is inspired by the practical solution
to L1-mean averaging presented in [7]. Each iteration pro-
ceeds by deriving the sum of axes of residual rotations r
obtained via the log map. This is followed by an update of
R: We seek an ideal rotation angle s? about r, and thus per-
form a 1 dimensional search for an optimal correction. The
cost function is evaluated with p = 1, ensuring L1-norm av-
eraging. After each update, all ni’s have to be recomputed
via eigen-decomposition. Algorithm 1 provides a descrip-
tion in form of pseudo-code. For a convergence analysis of
L1 rotation averaging, the reader is referred to [7].

4.4. Recovering camera position and
mirror distances

Looking at the translational part of (3), we can easily
observe that t̃i = 2diRni + t. After rotation averaging,

Input: R̃i, Rinitial, ε > 0
Result: Optimal R
R = Rinitial;
repeat

ni = V(:, c), with
{

[V,D] = eig(RT R̃i)
c such that D[c] = −1

;

r =
∑n

i=1
log(RT R̃i(I−2nin

T
i ))

‖ log(RT R̃i(I−2ninT
i ))‖ ;

s∗ = argmin
s≥0

Cp=1(R exp(s∗r)) ;

R = R exp(s∗r) ;
until ‖s∗r < ε‖;

Algorithm 1: Practical solution to L1-mean averaging
presented in [7] and adapted to the case of improper
rotations.

only t and all di’s remain unknown. It is easy to recognize
that the separation

2Rn1 I
. .

. .
2Rnn I



d1
.
.
dn
t

 =


t̃1
.
.

t̃n

 (13)

allows for a linear computation of t and all di. The solu-
tion can be found in linear time by computing the pseudo-
inverse using the Schur-complement trick and block-wise
matrix inversion.

5. Experimental evaluation
This section presents both synthesized and real exper-

iments to demonstrate the advantages of the proposed ro-
tation averaging solutions with respect to alternative algo-
rithms.

5.1. Performance in terms of accuracy

We first compare our chordal L2 averaging method
with the state-of-the-art closed-form solutions presented in
[14, 15, 13]. The simulation experiments are generated
as follows: We assume a camera with an image size of
1000 × 1000 pixels, and a field of view of 45 degrees. 3D
reference points are randomly generated within the volume
[−25, 25] × [−25, 25] × [−25, 25]. A set of virtual mirror
planes are randomly generated ensuring that all 3D refer-
ence points can be observed by the camera. For every mir-
rored image, the corresponding virtual pose is computed by
using the modified left-handed PnP algorithm [11]4.

We compare our algorithms against three other meth-
ods, which are given by the algorithms of Sturm [14], Ro-

4Any PnP algorithm can be employed: Let [2D-points, -3D-points] be
the input of the PnP algorithm, and [t,R] be the result. The corresponding
virtual pose is then given by [t,−R]
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Figure 3. Rotation and translation errors in synthesized experiments on accuracy. Each point represents median values over 1000 trials.
First column: Median error in terms of varying pixel noise. The number of mirrors and landmarks is 9. Second column: Median error
in terms of different numbers of mirrors. The pixel noise level is 1.0, and the number of landmarks is 9. Third column: Median error in
terms of different numbers of landmarks. The pixel noise level is 1.0, and the number of mirrors is 9.

drigues5 [13], and Takahashi [15]. We did not include the
algorithms presented by Kumar et al. [10] and Hesch et al.
[8] since their inferior accuracy has already been demon-
strated in previous works [13, 15]. Note that Takahashi’s
original algorithm [15] served as a minimal solver to the
problem of mirror-based pose estimation. We modified their
published implementation such that it can handle the case
of multiple mirrors and points. The modification is sim-
ply based on encoding more mirrors and points within their
large system of linear equations.

The performance of the algorithms is evaluated in terms
of different levels of pixel noise, different numbers of mir-
rors, and different numbers of landmarks. For each test the
simulation performs 1000 runs and returns the median error.
The results are presented in Figure 3.

Sturm’s algorithm is more accurate than Rodrigues’ in
case the virtual cameras’ poses have small errors (i.e. they
are estimated with less pixel noise or more landmarks),
which confirms the results in [13]. Most importantly, we
can see that the presented chordal L2 rotation averaging

5We adopt method 2 from their paper.

algorithm consistently outperforms the state-of-the-art. It
shows highest accuracy for all analyzed noise levels and
numbers of mirrors and landmarks. We also compared es-
timates of the mirror plane parameters, and our algorithm
outperforms equally well in this regard.

5.2. Performance in terms of robustness

This section evaluates the performance of the presented
geometric L1 averaging method in terms of robustness. We
only compare it against the chordal L2 averaging method,
directly applied to simulated improper rotation matrices.
To setup our experiments, we first generate a random axis-
angle rotation r, and translate it into our proper rotation ma-
trix R. We then generate a group of random mirror planes
and derive the corresponding improper rotations R̃i based
on (3). Noise is added by left-multiplying each improper
rotation with a rotation sampled from another normally dis-
tributed axis-angle rotation. Outliers are simulated simi-
larly, however using normally distributed noise with a stan-
dard deviation of 50 degrees. We compare the L1 and L2
averaging algorithms under different noise conditions and
different outlier levels. Note that the L1 averaging is an
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Figure 4. The median errors of the geometric L1 averaging algo-
rithm compared with the chordal L2 averaging approach for vary-
ing noise parameters. The total number of averaged improper rota-
tions is 20. The noise level represents the standard deviation of the
angle of the disturbance rotation. Each point represents median
values over 1000 trials.

iterative algorithm initialized with the output of L2 averag-
ing. For each test the simulation performs 1000 runs and
the median error is recorded.

The results are shown in Figures 4 and 5. It can be ob-
served that L1 averaging with improper rotations is more
robust than L2 averaging, especially in the presence of out-
liers. The observation is consistent with the findings in
[2, 7].

Note: The reader might wonder about the practical use-
fulness of the L1 averaging scheme. The L1 averaging
scheme enables an alternative way of dealing with outliers
besides the traditional Ransac approach. Its practical ben-
efits are demonstrated in the following real world experi-
ment. Furthermore, as argued in [6], the optimality of a so-
lution to a geometric problem is not clearly definable. The
L1 metric always has to be considered a valid alternative
with respect to the L2 metric. For further discussion on this
topic, the reader in kindly referred to [6].

5.3. Real world experiment

In this experiment, we employ mirror-based pose estima-
tion to perform the extrinsic calibration between an iPhone
4’s front and back camera. As shown in Figure 1, a calibra-
tion chessboard is placed besides the iPhone such that both
the front and back cameras can observe the chessboard only
via mirror refections. Multiple images are captured by each
camera for individual mirror poses. Each camera’s pose is
then related to the chessboard by applying the modified PnP
algorithm presented in [11] and using the presented mirror-
based rotation averaging methods. Finally, we can easily
derive the relative pose between the two non-overlapping
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Figure 5. The median errors of geometric L1 averaging compared
with chordal L2 averaging for varying levels of outliers. The total
number of averaged improper rotations is 20. Outliers are simu-
lated by sampling rotation matrices with normally distributed an-
gles having a standard deviation of 50 degrees (noise: 3 degrees
std. dev.). Each point represents the median over 1000 trials.

cameras.
The MLE (Maximum Likelihood Estimate) is computed

by non-linear minimization of the re-projection errors over
both cameras’ extrinsic and intrinsic parameters as well as
the poses of all mirrors. The relative rotation between the
MLEs of the front and back cameras is [-179.46, -1.80,
-0.71] degrees in terms of Euler angles, and the relative
translation is [3.43, -34.8, -11.5] mm. This value for the
relative pose between the front and back camera frames of
an iPhone 4 agrees with our visual observation.

We compared the outputs of the algorithms of Sturm
[14], Rodrigues [13] and Takahashi [15] with the presented
Chordal L2-mean and geometric L1-mean algorithms for
the back camera’s mirror-based pose estimation. Table 1
shows the errors computed by using the MLE as ground
truth. As we can see, the Chordal L2 algorithm got the clos-
est result to the MLE among the closed-form algorithms.
This is consistent with the conclusions from the simulation
experiments. Furthermore, it should be noted that the geo-
metric L1 averaging algorithm yields more accurate results
than the L2 algorithm. We consider this a possible outcome
because in a real-life scenario, the virtual poses may be es-
timated with different levels of accuracy since noise charac-
teristics may be different for every image. This means that
the L2 mean may not be the optimal metric as previously
discussed.

To further prove the practical advantages of L1 aver-
aging, we added 3 mirrored outlier images to our compu-
tations. The outlier images are captured with varied (i.e.
wrong) relative displacement between the camera and the
chessboard. This displacement should remain fixed during



the entire calibration process. Table 2 shows the result-
ing error with respect to the MLE result from the previous
outlier-free experiment. As we can see, the L1 averaging
algorithm clearly outperforms other algorithms in the pres-
ence of outliers. Please note that the non-linear minimiza-
tion of re-projection errors cannot do its job in this situation.
We could certainly run Ransac followed by non-linear min-
imization, but our L1 averaging is a much easier alternative.

6. Discussion
We presented a novel solution to mirror-based camera

pose estimation that does not rely on the commonly em-
ployed fixed-axis rotation constraint. Instead, we show how
the problem can be tackled by an elegant generalization of
rotation averaging able to handle the improper rotations of
mirrored views. Our theoretical contribution also lies in the
extension of the applicability of rotation averaging to a more
general case. The practical usefulness of our formulation is
supported by the quality of our results. We outperform the
state-of-the-art in terms of accuracy, computational com-
plexity, and robustness with respect to outlier images.

Perhaps the major drawback of our approach is that the
matrix of all mirror plane normal vectors is required to have
full rank. This is partly due to the ignorance of translations
in the averaging stage, which leads to a loss of informa-
tion. Our follow-up research direction therefore consists of
pursuing complete motion averaging strategies as opposed
to averaging rotations only. In most practical applications,
however, degenerate situations hardly ever appear, as the
mirror poses can be chosen accordingly.

Appendix A
Proof that (12) is unique iff rank(F) = 3, where F =

[n1 n2 · · · nn].
Theorem 1 (given in [9]): If UΣVT is the SVD of G,

R̂ = U diag(1, 1,det(UVT ))VT is unique if

• rank(G) > 1 and det(UVT ) = 1.

• rank(G) > 1 and the minimum singular value of G is
a simple root.

We now give a group of definitions and conclusions
which are useful for the subsequent proof:

• Let J =
n∑

i=1

(I− 2nin
T
i). Let λ1 ≥ λ2 ≥ λ3 be the

eigenvalues of J, and σ1 ≥ σ2 ≥ σ3 ≥ 0 the singular
values of F. It is obvious that J = nI − 2FFT , and
we have λ1 = n− 2σ2

3 , λ2 = n− 2σ2
2 , λ3 = n− 2σ2

1 .

• Considering that λ1 = n − 2σ2
3 ≤ n and

3∑
i=1

λi = tr(J) = n, we have λ2 + λ3 ≥ 0. Recalling

that λ1 ≥ λ2 ≥ λ3, we obtain |λ1| = λ1, |λ2| = λ2.

Sturm Rod˜ Taka˜ Cho L2 Geo L1
R (deg) 1.121 1.524 1.241 1.106 0.821
T (mm) 12.15 23.56 13.38 12.11 11.85

Table 1. Rotation and translation errors with respect to the MLE
on a real world experiment.

Sturm Rod˜ Taka˜ Cho L2 Geo L1
R (deg) 8.01 8.68 4.69 7.87 1.08
T (mm) 175.66 148.97 91.80 210.28 42.25

Table 2. Rotation and translation errors in an outlier-affected case
and with respect to the MLE obtained from the previous outlier-
free experiment.

• Furthermore, considering that J = JT, we know that
the singular values of J are {λ1, λ2, |λ3|} .

• Since J = RTG, we have det(G) = det(J) =
3∏

i=1

λi, and the singular values of G are the same as

those of J, namely {λ1, λ2, |λ3|} .

Proof of Sufficiency: If rank(F) = 3, σ3 > 0, and

λ1 = n − 2σ2
3 < n. Recall that tr(J) = n =

3∑
i=1

λi, and

that λ2 + λ3 > 0. This means that there are 3 cases:

• Case 1 : λ2 > 0, λ3 > 0. In this case det(G) > 0,
and therefore det(UVT ) = 1. R̂ is unique according
to Theorem 1.

• Case 2 : λ2 > 0, λ3 < 0. In this case det(G) < 0, and
λ2 > −λ3. Recalling that λ2 ≥ λ3, we have |λ2| 6=
|λ3|, which means that the minimum singular value is
a simple root. R̂ is unique according to Theorem 1.

• Case 3 : λ2 > 0, λ3 = 0. In this case rank(G) = 2,
and the minimum singular value is 0 and thus a simple
root. R̂ is unique according to Theorem 1.

Proof of Necessity: We only need to prove that R̂ is not
unique in the case of rank(F) = 1 or rank(F) = 2.

In case rank(F) = 1, we have σ2 = 0 and σ3 = 0.
It follows that {λ1 = n, λ2 = n, and λ3 = −n}. Thus
det(G) = −n3 < 0, and all of the 3 singular values of G

are the same. R̂ is not unique according to Theorem 1.
In case rank(F) = 2, we have σ3 = 0, and thus λ1 = n

and λ2 + λ3 = 0. There are two cases:

• If λ2 = λ3 = 0, then rank(G) = 1, and R̂ is not
unique according to Theorem 1.

• If λ2 = −λ3 6= 0, then det(G) = λ1λ2λ3 < 0, and
the minimum singular value λ2 = |λ3| is not a simple
root. R̂ is not unique according to Theorem 1.
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