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Abstract

Graph-theoretical methods have successfully provided
semantic and structural interpretations of images and
videos. A recent paper introduced a pattern-theoretic ap-
proach that allows construction of flexible graphs for rep-
resenting interactions of actors with objects and inference
is accomplished by an efficient annealing algorithm. Ac-
tions and objects are termed generators and their interac-
tions are termed bonds; together they form high-probability
configurations, or interpretations, of observed scenes. This
work and other structural methods have generally been lim-
ited to analyzing short videos involving isolated actions.
Here we provide an extension that uses additional temporal
bonds across individual actions to enable semantic inter-
pretations of longer videos. Longer temporal connections
improve scene interpretations as they help discard (tem-
porally) local solutions in favor of globally superior ones.
Using this extension, we demonstrate improvements in un-
derstanding longer videos, compared to individual inter-
pretations of non-overlapping time segments. We verified
the success of our approach by generating interpretations
for more than 700 video segments from the YouCook data
set, with intricate videos that exhibit cluttered background,
scenarios of occlusion, viewpoint variations and changing
conditions of illumination. Interpretations for long video
segments were able to yield performance increases of about
70% and, in addition, proved to be more robust to different
severe scenarios of classification errors.

1. Introduction
The problem of understanding activities in video data

and providing meaningful semantic interpretations is very
important. In recent years, a variety of solutions have been
proposed and, among other ideas, the techniques based on
encoding scene structure using graphs have shown promise
in this problem area. These approaches represent items of
interest – objects, actors, actions, etc. – as nodes in graphs
and ascertain their interactions through graph edges. The

main advantage of this framework is that one can naturally
associate probability models with such graphs, thus provid-
ing statistical interpretations to solutions. Also, one can use
both prior knowledge and the current data to deduce opti-
mal interpretations in a coherent way. The main limitation
in the current graph-theoretical solutions has been the rigid-
ity of graph structures. In most cases, the graph geometries
(connectivities, neighborhoods, etc) are pre-determined and
only the node values are allowed to be variable. Even when
the edges are allowed to change, they are usually based on a
simple thresholding, or decisions that are spatio-temporally
local, i.e. isolated from other nodes.

(a) (b)

Figure 1: Overview of the pattern theoretic framework pro-
posed in [1]. (a) shows basic elements of this framework:
a generator space containing basic ontological elements of
representation called generators, machine learning-based
concept classifiers and prior knowledge in terms of fre-
quency tables of concept co-occurrences. (b) shows a pat-
tern theoretic video interpretation that is a combination of
generators. Connections between generators that represent
ontological concepts indicate occurrence of certain interac-
tions. Features are connected to ontological generators to
support their semantic value in the interpretation.

Souza et al. [1] recently introduced a flexible graph-
theoretical approach that is based on Grenander’s pattern
theory [2]. Here the flexibility comes from the fact that both
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nodes and edges are allowed to be variables and are inferred
from available knowledge. There are two dominant sources
of knowledge: (1) the prior in form of frequency tables
of concept co-occurrences, contextual knowledge about ac-
tions represented by the underlying ontology extracted from
previous annotated videos, and (2) objects and actions de-
tected using machine learning techniques, and their detec-
tion scores, in the current video. In [1], the authors stud-
ied short videos containing individual actions (pick up, put
down, pour, stir, etc) and demonstrated the strength of this
pattern theoretic approach and the flexibility of its repre-
sentation. Here one does not need to explicitly model each
of the variants for an action. It is capable of discovering
hidden events or events not previously considered during
annotation phase. An illustration of this pattern theoretic
framework is shown in Figure 1.

The main limitation of [1]’s work is that it cannot per-
form well with large videos containing multiple actions and
complex interactions between actions. If one splits large
videos into smaller, disjoint time windows and performs in-
dividual inferences, then the overall interpretation can be
both inconsistent and sub-optimal. In this paper we pur-
sue a more comprehensive approach by introducing tempo-
ral bonds across sub-configurations that represent individ-
ual interactions (actions performed on/with objects). This
additional structure enables us to discard (temporally) local
solutions in favor of globally optimal and temporally con-
sistent configurations, as illustrated in Figure 2.

We demonstrate these ideas on a recent challenging data
set of cooking scenarios, the YouCook datasets. Its videos
depict high-level activities in unconstrained scenarios, with
cluttered background, clutter of objects, variable conditions
of illumination, different viewpoints and camera motion.

2. Related Work
Implicit and explicit structural models have been pro-

posed for tackling the problem of generating semantically
complex video interpretations. The main difference be-
tween these methods is in the way contextual, logical and
temporal dependencies are encoded. Implicit structural
models [3] [4] [5] attempt to capture these information im-
plicitly through some general form of data representation
[6], such as the BoVW framework [7] and Linear Dynam-
ical Systems (LDS) [8], or a set of coefficients learned us-
ing the max-margin framework [9]. Others compute dis-
tributions or some statistical summaries, such as the co-
occurrence of concepts, which serve to indicate or corrobo-
rate with certain probability the existence of more complex
ones and also used to derive semantic description through
text [10, 11, 12]. These approaches do not offer flexibility
in representation because if new concepts are later added
to redefine the characterization of a single complex event,
the models have to be reconstructed. Moreover, it is not

(a) (b) (c) (d)

(e) (f)

Figure 2: Illustration of advantage in using temporal bonds.
Top rows shows frames from two consecutive segments of
a video. The first segment depicts the interaction put bowl
down (the small one with the left hand) and second segment
depicts stir ingredients in a bowl using spatula. (e) shows
[1]’s interpretations for both segments. (f) shows our ap-
proach’s interpretation for both segments. Shaded circles
denote correctly identified generators.

clear how scalable these methods are for when the struc-
ture variability and semantic complexity of the target events
increase.

The traditional explicit structural models are most
closely related to our approach. These models are typ-
ically hand-crafted or algorithmically learned from the
training data. They can be generated in terms of dy-
namic Bayesian Networks (DBN) [13][14], Sum Product
Networks (SPN) [15, 16], Stochastic Context-free Gram-
mars (SCFG) [17][18][19][20], AND-OR graphs [21][22],
Petri Nets [23], or general hierarchical graphical models
[24] [25]. Complex events are usually sought to be com-
posed by a set of temporally ordered sequence of sub-
events [18], which can also suffer certain order variations or
have optional steps [19]. These works typically consist of
a low-level layer in which feature observations provide ev-
idence for concepts from the top layers, such as sub-events
or composite events. For example, Hilde et al. [19] use
HMMs to learn models for sub-events such as pour cof-
fee and take cup and model more semantically complex
events such as preparing coffee using a SCFG that describes
their syntax in the form of occurrence of sub-events. Other
works use the SVM framework to provide confidence val-
ues as evidence for the occurrence of sub-events. Context
and temporal dependence constraints are mostly supplied
by coefficients learned with the max-margin framework or
co-occurrence statistics of the target concepts.

Unlike the representation proposed by [1], these meth-
ods face limitations in representation caused by increase
in structural complexity and non-linearity with respect to
the variations in order, presence or absence of certain sub-



events, specially when structural learning is required [14].
Such models impose a typical order or a limited number of
variations [19] in which a complex events can occur given
a set of related sub-events. Automatic learning of structures
does not seem easily scalable for when updates on the mod-
els are needed to include new knowledge and can require
large amounts of data to be available for learning all possi-
ble structural variations. Additionally, it does not provide
a mechanism to discover new optional sub-events. Follow-
ing [1], our approach overcomes these limitations by putting
forward a representation model based on rules of domain
knowledge ontology that is formed mostly by simple con-
cepts, each having a combinatorial signature. These combi-
natorial signatures span a space of structures that may repre-
sent either interactions between concepts or complex events
of interest. By simple combinatorial rules, our method is ca-
pable of accounting for a larger space of structures, which
includes identifying different structural variations and un-
seen structures that represent one same event.

3. Pattern Theoretic Formulation
Knowledge representation through Pattern Theory con-

sists of using concepts and concept combination rules de-
scribed by some domain-specific ontology. In Pattern The-
ory, these concepts become generators and combination
rules are transformed into bond structures of generators.
Based on the target ontology, generators are organized into
levels of abstraction and at each level they are further classi-
fied into different modality groups, each group establishing
different properties of similarity (which can be structural or
semantic). A collection of generators organized in this fash-
ion forms a domain-specific generator space. Such genera-
tor space forms the basis for generating complex structures
by the combinations of generators. Formally,

Definition 1 Generators are building blocks used to con-
struct graph structures that represent patterns of interest.
They will be denoted by gi ∈ G, where G is a chosen gener-
ator space.

Remark 1 Each generator gi has a bond structure
B(gi) = (Bs(gi), Bv(gi)) that is defined by a structural
arrangement Bs(g) of in-bonds and out-bonds with coor-
dinates j = 1, 2, ..., w(g). Each bond has a bond values
βj(g) ∈ Bv(g). Bs(g) accounts for the set of bonds of a
generator g and Bv(g) is the set of bond values of bonds in
g.

Definition 2 A modality setM is a partition of G such that
any pair of generators in a modalityMk ∈M holds similar
properties.

Remark 2 A modality Mk ∈ M pertaining to G is in-
duced by a similarity s ∈ S, defining in which terms the

generators in that modality are similar to each other. An
example is the modality utensils = { bowl, cup, pan, spoon
}; the modality name is suggestive of the common property
among its generators.

The concept of modality adds flexibility to the construc-
tion of structures by allowing generators of same modality
to be exchangeable and take on different roles in one same
configuration. Generators combine to each other through
their bond structures to form configurations that represent
complex patterns of interest. Bond structures account for
ontological constraints stemming from logical, contextual,
and temporal dependence, which ensure construction of
configurations with coherent pattern structures. Formally,

Definition 3 A configuration c = σ(g1, g2, ..., gn) is a con-
nected graph structure composed by n generators gi ∈ G
that respect the bond relation ρ.

Remark 3 For each closed bond gi′′ ↓ gi′′ in a configu-
ration, ρ(βj′ (gi′ ), βj′′ (gi′′ )) returns TRUE to indicate that
the out-bond βj′ (gi′ ) and in-bond βj′′ (gi′′ ) are compatible.

A configuration is a graph structure whose connections
are identified as closed bonds by pairs of generators. Bonds
from a configuration carry energy values that collectively
measure the quality of the pattern structure they compose.
Such energy value is formulated as the response of an ac-
ceptor function A(βj′ (gi′ ), βj′′ (gi′′ )).

Definition 4 The acceptor function A(.) measures the
worth value of a closed bond gi′ ↓ gi′′ in terms some
ontological constraints to form a certain pattern structure.
A(.)’s computation varies with the type of compatibility be-
tween generators.

The probability of a configuration c = σ(g1, . . . , gn) is
expressed as a product of terms associated with its genera-
tors gi ∈ G and closed bonds gi′′ ↓ gi′′ .

p(σ(.)) =

∏n
(k,k′ )∈σ A1/T (βj(gi), βj′ (gi′ ))

Z(T )
, (1)

where k = βj(gi) and k
′
= βj′ (gi′ ) denote bonds of

generators, Z(T ) is the partition function, T is set to 1,
and n denotes the number of generators that form an in-
terpretation. Thus, its energy equivalent form is E(σ(.)) =
− log p(σ(.))Z(T ), which results in

E(σ(.)) = −
∑

(k,k′ )∈σ

logA(βj(gi), βj′ (gi′ )) (2)

Finding a certain pattern structure using some chosen
generator space as basis means to look into a combinato-
rial search space. Since it is computationally prohibitive to
enumerate all possible configurations and measure the qual-
ity of each one, it is typical to consider stochastic processes
for the purpose, which consists of minimizing E(σ(.)).
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Figure 3: This illustration shows a sample of generators
form the chosen generator space. They are shown with
the names of ontological concepts they represent and their
bond structures. (a), (b), and (c) depict generators of ac-
tions, objects and features, respectively. In-bond are shown
in shaded semi-circles and out-bonds in white-filled semi-
and blanket bonds are out-bonds. The bond values of these
bonds are the names of modality groups.

3.1. Generator Space

The chosen generator space G is organized into 3 levels
of abstraction. In each level resides elements with similar
characteristics. Level 1 consists of generators to represent
motion and shape features. Level 2 is formed by generators
that represent object labels. Level 3 contains generators to
represent actions. In each level generators can be further
clustered into modality groups. An illustration of the gen-
erator space is shown in Figure 3 and a through description
follows below.

In particular, motion features histograms of visual words
(BoVW) constructed using a visual dictionary of his-
tograms of optic flow (HOF). Shape features are given by
histograms of oriented gradients. For each video segment
there is a single HOF-based BoVW, formulated as a motion
feature generator. HOGs are computed for each bound-
ing box track available across the video segment sequence.
Thus, each video segment will be associated with multiple
shape feature generators, each corresponding to a bounding
box track of some detected object.

Feature generators provide support for concepts repre-
sented by ontological generators that convey he seman-
tics of a video interpretation.These connections are closed
bonds named support bonds. Ontological generators of
action concepts bond to ontological generators of object

concepts to indicate interactions (e.g., generator stir bond
to generator spatula) and ontological generators of objects
connect to other generators of objects to also indicate inter-
action between the involved objects; these connections are
called semantic bonds.

Generators of actions bond to other generators of actions
to sustain temporal coherence between actions in interpre-
tations of consecutive video segments.These are called tem-
poral bonds and is the main contribution of this work. Both
semantic and temporal bonds are considered ontological
bonds for forming connections between ontological gener-
ators.

3.2. Bonds: Combinations of Generators

Two arbitrary generators gi ∈ G and gj ∈ G connect to
each other through a single bond whose bond values con-
form to the bond relation ρ(.). Bond values of out-bonds
are names of modality groups. For example, the generator
stir has an out-bond with bond value stirrer, indicating
that it can connect to any of the generators in the modal-
ity group stirrer = {spatula, whisk}. For being in the
modality group stirrer, spatula has a variable number of
in-bonds of bond value stirrer, which means that it can be
connected to any other generator with an out-bond of bond
value stirrer.

Support, semantic and temporal bonds carry bond
energies that quantify how valuable for the interpreta-
tion a combination between two generators is. The
bond energies are computed using the acceptor function
A(βj′ (gi′ ), βj′′ (gi′′ )) = exp(tanh(kf(gi, gj))). For sup-
port bonds, f(gi, gj) is the classification score output by
the gi’s classifier that determine how likely is for the fea-
ture generator gj to belong to the concept represented by gi.
Here concept classifiers are multi-class linear-SVM classi-
fication models, for both actions and objects. For seman-
tic and temporal bonds, f(gi, gj) come from concept co-
occurrence tables.

3.3. Pattern Theoretic Video Interpretations

A long video consists of a sequence of video segments
with variable lengths. Each video segment depicts a basic
interaction depicting a steps of cooking a recipe. A video
interpretation is a sequence of interpretations for a tempo-
ral window containing a single video segment or multiple
consecutive segments. A unit of interpretation is defined
by the limits of a single temporal window. Each tempo-
ral window is associated with a set of feature generators.
An interpretation is generated for each temporal window by
solving the optimization problem indicated in Equation 2.
To this end, we implement a MCMC-based simulated an-
nealing algorithm. This inference algorithm makes use of
a local proposal function that makes small changes to vary
the interpretation structure and a global proposal function



that samples interpretations from a global jump configura-
tion built with the k best generators for each feature. Gen-
erating an interpretation is a combinatorial search problem
whose elements of comibations are generators. The search
space size varies with the number of features available. If a
temporal window consists of one motion feature generator
and two shape feature generators, then there are more than
1900 possible interpretations (6 actions × 18 objects × 18
objects); the search space size grows exponentially with the
number of features.

4. Results
In this section, we analyzed the numerical performance

and qualitative advantages of using the pattern theoretic ap-
proach with temporal bonds. First, we evaluated the quality
of output interpretations by analyzing samples taken from
the experiments. We discussed the effects of adding tempo-
ral bonds to the bond structure of generators and in which
scenarios temporal bonds can lead to more interesting (de-
sirable) interpretations. We also analyzed how critical the
inclusion of temporal bonds to the model is when interpre-
tations are based on multiple segments of videos.Then, we
evaluated the performance in controlled scenarios of clas-
sification errors stemming from synthetic concept classi-
fiers. We finalized our discussion with a comparative per-
formance analysis on the YouCook data set when using real
machine learning based concept classifiers.

For comparative analysis, we contrasted the performance
profile of the proposed approach with [1]’s and a base-
line algorithm that generates interpretations exclusively
based on the best classification scores using linear-SVM
classification models (i.e. a purely machine learning-based
method). The performance metric consisted of counting the
number of correct ontological generators found in the inter-
pretation given the ground-truth’s. The highest performance
rate is 1 and lowest is 0. For example, the performance rate
of the interpretation in Figure 6j is 0.86.

4.1. Interpretations with Temporal Bonds

Temporal bonds allow the pattern theoretic process to
take into account temporal dependence information be-
tween consecutive actions, accordingly, interpretations. We
found several cases in which temporal bonds helped identi-
fying the correct actions across multiple consecutive video
segment interpretations. Four of these cases of success are
illustrated in Figures 4, 5 and 6.

Figures 4e and 4f show two interpretations generated
by [1], each for one of two consecutive video segments. Re-
call that each video segment depicts some action that results
in an interaction with one or multiple objects. These inter-
pretations were generated by optimizing the energy func-
tion for each video segment, separately. [1]’s method fails
to find the correct action for the first video segment, in-

terpreting it as pick up instead of put down. Contrarily,
the pattern theoretic interpretation using temporal bonds,
shown in Figure 4k, successfully identifies the action put
down, while maintaining the good semantic bonds captured
by [1]. Unlike our approach, applying [1]’s method to gen-
erate an unified interpretation for the two segments at once
does not produce a better interpretation than the ones gen-
erated based on separate inference of each segment. In fact,
this interpretation, illustrated in Figure 4i, introduced more
errors, confusing pick up by put down in both segments.

Another example of success by our approach taken from
the experiments is depicted in Figure 4l, where the action
stir was correctly inferred for describing the interaction oc-
curring in the second segment. The approach in [1] failed to
determine the action stir, instead inferring pick up in the sin-
gle segment scenario and season in multiple segment one.

In both illustrated cases, not only was our approach able
to generate improved interpretations through the addition of
temporal bonds but it also preserved relevant generators of
objects and bonds correctly identified in the single-segment
based inference from [1]’s approach. This same effect
has been observed for larger set of segments, as illustrated
in Figures 5 and 6. We discussed these cases in the next
section to point the benefits of generating interpretations
for larger temporal windows containing multiple video seg-
ments. Since more degrees of freedom are available when
considering temporal bonds, this permitted our approach to
explore other possibilities of interpretations with more con-
fidence than when they were not present.

4.2. Interpretations for Multiple Segments

We identified several cases in which interpretations gen-
erated for multiple-segment temporal windows using our
approach helped determine the correct interpretations of ac-
tions for video segments that are misinterpreted by [1]’s ap-
proach. Temporal bonds allow our approach to not only
search for coherent local interactions but also naturally fo-
cus on identifying the correct temporal ordering of actions
in adjacent video segments.

For instance in Figures 5 and 6, our approach’s interpre-
tation (Figures 5j and 6j) was able to preserve the correctly
detected objects found in interpretations generated by [1]
(Figures 5e-5i and Figures 6e-6i) while fixing the action in-
terpretations of consecutive video segments. More inter-
estingly, the case depicted in Figure 5 shows that our ap-
proach’s interpretation leveraged the confidence of the ac-
tion interpretation in the third segment, put down, to prop-
agate multiple corrections in the two past segments and the
video segment ahead; the action interpreted sequence was
put down → pick up → put down → pick up (Figure 5j).
Nonetheless, the same effect was not observed when using
[1]’s method, which produced the sequence pick up→ put
down→ put down→ put down (Figure 5i).
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Figure 4: (a) and (b) illustrate two consecutive video seg-
ments describing steps for making french toast. (c) and
(d) illustrate two consecutive video segments describing
steps for making dough. The pairs (e)-(f) and (g)-(h) show
the corresponding interpretations by [1] based on single-
segment windows, while (i) and (j) are derived from two-
segment windows. (k) and (l) present corresponding inter-
pretations generated by our approach.

In this work, temporal bonds were only explored at the
level of actions under the assumption that coherence in de-
termining the participating objects in interactions is mostly
dependent on correctly identifying the action being per-
formed. The focus then revolves around finding tempo-
ral coherent interpretations in terms of actions. Identifying
the correct sequence of actions indirectly influences on the
quality of the overall sequence of interpretations.

4.3. Experiments with Synthetic Classifiers

Classification scores help measure the quality of an inter-
pretation; therefore, they are essential for ascertaining the
global optimal interpretation. We set up two controlled sce-

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

(j)

Figure 5: (a)-(d) illustrate four consecutive video segments
describing steps for making salad. (e)-(h) show interpreta-
tions by [1] based on single-segment windows, and (i) for
the four segments at once. (j) depicts the interpretation by
our approach.

narios of degradation stemming from concept classifiers in
order to evaluate our approach’s tolerance to classification
errors. First, we varied the classification error rates of the
classifiers from 10% to 60%. In these cases, the classifica-
tion score ranks of the correct labels for the affected features
are the second best. Then, we fixed the classification error
rate to 50% and vary the score rank of the feature’s correct
labels from 2 to 5.

Figure 7 shows the performance profile of the ap-
proaches for increasing rates of classification error. In Fig-
ure 7a, where interpretations are generated for each individ-
ual video segment, our approach and [1]’s were superior to
the baseline’s, but only for high rates of classification er-
ror (>20%). In this same case, our approach and [1]’s had
comparable performance rates, since no temporal data could
be explored. Our approach produced performance improve-
ment increase of more than 7% over [1]’s for larger tempo-
ral windows, multiple video segments at once (Figure 7b).
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Figure 6: (a)-(d) illustrate four consecutive video segments
describing steps for making sandwich. (e)-(h) show inter-
pretations by [1] based on single-segment windows, and (i)
for the four segments at once. (j) present the interpretation
by our approach.

In summary, if the concept classifiers are not sufficiently
good to be used alone, these results indicate that ontology-
based approaches like ours and [1]’s are imperative in order
to achieve reasonably sufficient performance.

Figure 8 shows the performance profiles in which ap-
proximately 50% of the features had their correct labels’s
classification scores as the kth best classification scores,
where k varies from 2 to 5. Overall, Figures 8a-8b show
that our approach was consistently capable of correcting
the feature labeling, even when the feature correct label had
the fifth best classification score. Figure 8b shows that for
multiple-segment based inference our approach is consis-
tently superior to [1]’s, with up to 12% increase. This sug-
gests that under uncertain scenarios, our approach would
be more advantageous because it improves performance
by generating video interpretations based on multiple seg-
ments.

4.4. Experiments with Real Classifiers

Overall our approach improved the total average inter-
pretation performance by approximately 5 times the base-

(a) 1-segment temporal window (b) 4-segment temporal window

Figure 7: Interpretation performance profiles for varying
scenarios of classification error rates, ranging from 10% to
60%.

(a) 1-segment temporal window (b) 4-segment temporal window

Figure 8: Interpretation performance profiles showing the
tolerance of comparative approaches for decreasing rank of
classification scores of the correct label for about 50% of
the video features.

line’s and by ∼30% over [1]’s when no bond types were
given preference over others (Table 1). Three types of
bonds contribute to measure the quality of an interpreta-
tion (see Section 3.2). Figure 9 shows how the overall aver-
age video interpretation performance varied as certain types
of bonds were given more participation weight than others.
In all cases, overweighting support bonds dropped the in-
terpretation performance rate to the baseline’s, which was
low because of the weak concept classifiers. More weight
on the participation of temporal bonds was sufficient to
achieve higher performance rates for all multiple-segment
cases (Figure 9b). This emphasizes our assumption that cor-
rect action interpretations should naturally lead to correct
identification of the true involved objects. Overweighting
semantic bonds was influential mostly in the single-segment
case (Figure 9a), where temporal bonds were not relevant.

We also observed the average performance when con-
sidering the top k interpretations for describing each video.
Figure 10a shows that our approach and [1]’s had com-
parable performance for the single-segment case when no
temporal information is available. When generating multi-
ple interpretations for temporal windows containing multi-
ple consecutive segments, our approach provided the best
overall performance. In comparison to [1]’s original idea of



Table 1: Comparison of overall average performance of
video interpretations for increasing temporal window sizes
(# video segments).

Method 1 2 3 4
Ours 0.40 0.52 0.50 0.52

Souza et al. 0.41 0.44 0.41 0.46
Baseline 0.11 0.12 0.13 0.13

analyzing individual segments, it nearly doubling the per-
formance, with improvements ranging from about 67% to
73%, depending on the number k (compare Figure 10b with
Figure 10b).

(a) 1-segment temporal window (b) 4-segment temporal window

Figure 9: Video interpretations performance profile of our
approach when different bond types have more participation
than others.

(a) 1-segment temporal window (b) 4-segment temporal window

Figure 10: Video performance interpretation when con-
sidering the top k best interpretations for describing each
video.

5. Time Complexity and Running Time
Our global and local proposal functions explore the

bond-constrained space of feasible solutions in an efficient
manner. The time computational complexity was worked
out to be O(k ∗ mc ∗ mo + k(nf + mo ∗ mo)), where k
is the total number of sampling iterations, mc is the number
bonds from a candidate generator for replacement,mo is the
total number of open bonds in a current interpretation and
nf is the number of feature generators. For all the experi-
ments we fixed k = 3000. The running time grows linearly

Table 2: Average CPU+I/O time of videos per number of
feature generators nf . Machine spec: 4 16-core 2.3 GHz
CPUs (AMD Opteron 6376), 16 16GB RAM units.

nf 30 33 34 36 37 44 46 48
sec 279 342 382 399 375 477 513 550

with the number of feature generators nf , consistent with
our analysis (see Table 2).

6. Conclusion

In this paper we advanced the adaption of Grenander’s
pattern theory originally proposed in [1] by introducing a
bond structure that captures temporal information. This al-
lowed us to generate temporally coherent semantic inter-
pretations of videos. Similar to [1], the basic units of inter-
est (i.e., actions and objects) are denoted by generators that
combine to each other to form graphical structures, which
represent video interpretations. The quality of an inter-
pretation is governed by the energies of its bonds. These
bond energies are defined using classification scores and
frequency tables of concept co-occurrences, which help de-
fine and seek optimal configurations. While previous ap-
plications have been restricted to analyzing short videos
containing isolated actions, we have extended this idea to
longer videos using additional bond structures, which al-
low interactions between actions that are adjacent in time.
The aforementioned experiments, involving more than 700
video segments from the YouCook data set, demonstrated
the power of adding action temporal bonds in the configu-
rations. Not only did we improve the performance in detec-
tion of generators but we also improved the overall scene
interpretations. In addition, the our approach was more
robust to degradation in feature-level classification perfor-
mance than its counterparts.

The use of additional bond structures clearly helped in-
terpret more complex scenes and allowed for enhanced in-
ferences. In view of the flexibility of this pattern theo-
retic framework in representing complex systems, in future
work, we plan to include additional (types of) generators
and bond structures. In this future extension, configurations
that represent interpretations of small video segments can
be turned into composite generators, naturally augmenting
the representation hierarchical system, which can be used to
help understand even longer videos depicting more complex
activities.
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