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The analysis of deformable 3D shape is often cast in terms of the shape’s in-
trinsic geometry due to its invariance to a wide range of non-rigid deforma-
tions. However, object’s plasticity in non-rigid transformation often result in
transformations that are not completely isometric in the surface’s geometry
and whose mode of deviation from isometry is an identifiable characteristic
of the shape and its deformation modes.

In this paper, we propose a new supervised technique to learn a statisti-
cal model build on the Riemannian metric variations on deformable shapes
based on the spectral decomposition of the Laplace-Beltrami operator. To
this end, we define a statistical framework that models a shape as two in-
dependent models for the eigenvectors and for the eigenvalues. The eigen-
vector matrices of a set of discrete representations (i.e. meshes representing
the shape in different poses) are assumed to be points on the manifold of
special orthogonal matrices SO(n). Here we assume the model to follow
a I"-distribution over the manifold geodesic distances from a manifold cen-
troid P
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where ©; are the angles of the residual rotation ¢7 ¢.

On the other hand, we assume that the eigenvalues are log-normally dis-
tributed for the same stability considerations presented by Aubry et al. [1].
The shape centroid is computed as follows:
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where the rotation matrix R; is introduced in order to align the eigenvectors
of the Laplacian of a mesh i, since its embedding is defined up to an isom-
etry. This is solved by separately optimizing for ¢g and R; in an iterative

process
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where both optimizations can be solved exactly through Singular Value De-
composition.

We tested our method on several standard shape retrieval datasets, show-
ing that the proposed approach is competitive with the current state-of-the-
art for non-rigid 3D shape retrieval.

Table 1: Comparison of different retrieval methods, in terms of average
precision on the SHREC’ 10 [2] datasets, broken down according to different
transformations.

Transformation [ vQ [ Sup. DL [ RMVM ‘

Isometry | 98.8 99.4 994

Topology | 100 100 100
Isometry+Topology | 93.3 95.6 99.5
Partiality | 94.7 95.1 90.0
Triangulation | 95.4 95.5 96.5
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Figure 1: Example of the learning process of the proposed method, from the
computation of the spectral decomposition of the Laplacian associated to a
mesh to the definition of the two separate independent models employed in
the inference phase.

Table 2: Comparison of different retrieval methods in terms of mean average
precision on the SHREC’ 14 [3] Humans datasets.

Method [ Synthetic | Scanned
ISPM 90.2 25.8
DBN 84.2 30.4
R-BiHDM 64.2 64.0
HAPT 81.7 63.7
ShapeGoogle (VQ) 81.3 514
Unsupervised DL 84.2 52.3
Supervised DL 95.4 79.1
RMVM 96.3 79.5
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