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Abstract

The analysis of deformable 3D shape is often cast in
terms of the shape’s intrinsic geometry due to its invari-
ance to a wide range of non-rigid deformations. However,
object’s plasticity in non-rigid transformation often result
in transformations that are not completely isometric in the
surface’s geometry and whose mode of deviation from isom-
etry is an identifiable characteristic of the shape and its de-
formation modes. In this paper, we propose a novel gen-
erative model of the variations of the intrinsic metric of de-
formable shapes, based on the spectral decomposition of the
Laplace-Beltrami operator. To this end, we assume two in-
dependent models for the eigenvectors and the eigenvalues
of the graph-Laplacian of a 3D mesh which are learned in a
supervised way from a set of shapes belonging to the same
class. We show how this model can be efficiently learned
given a set of 3D meshes, and evaluate the performance of
the resulting generative model in shape classification and
retrieval tasks. Comparison with state-of-the-art solutions
for these problems confirm the validity of the approach.

1. Introduction

The ability to retrieve similar 3D objects given a query
object has become of great importance in several field,
like medical research, automatic information retrieval sys-
tems and copyright protection. The main challenge in 3D
object retrieval algorithms is to define an invariant repre-
sentation of a shape capable of capturing geometrical and
topological properties of a shape [37, 7, 47]. A large
number of methods for 3D shape retrieval have been pro-
posed [35, 20, 44, 32, 3], but most of them are only suitable
for the representation of rigid 3D shapes. Non-rigid 3D
shape descriptors are more challenging to define. Indeed,
those representations still need to capture the most distinc-
tive properties of a shape, but they should be also insensitive
to many other transformations (e.g. inelastic transformation,

acquisition resolution and noise etc.).
Various methods have been proposed to address the non-

rigid shape retrieval problem. These can be mainly cate-
gorized according to two main directions: topology-based
approaches against surface-based methods and the employ-
ment of shape descriptors that can be local or global. The
first solution usually capture the global topological structure
of the shape [31, 25, 34], while the surface-based methods
usually exploit spectral shape analysis in order to build a
spectral descriptor [46, 5, 42] to be used for the task. Fi-
nally, one can employ global descriptors in order to char-
acterize the whole shape [46, 11] or define a set of of local
descriptors [13, 15] that characterize only parts of the object
(e.g. segments or points).

1.1. Related works

The methods which define a shape descriptor (both lo-
cal and global) to tackle the non-rigid 3D shape recogni-
tion are the ones we are most interested in. A popular ap-
proach to define shape descriptors is through spectral shape
analysis. Research efforts have recently resulted in sev-
eral spectral descriptors [46, 5, 40, 22] usually based on the
spectral decomposition of the Laplace-Beltrami operator. In
particular, the graph-Laplacian, the discrete counterpart of
the Laplace-Beltrami operator, has been extensively used to
provide spectral representations of structures [29]. Reuter
et al. [39] suggest to use the Laplace-Beltrami spectra as
fingerprints of surfaces, while Jain and Zhang [19] propose
to use the eigenvalues of the geodesic distance matrix of
a 3D object in order to build the associated shape descrip-
tor. Huang et al. [18], on the other hand, build the signature
directly over local features, selecting discriminative volu-
metric features over pre-aligned shapes.

The aggregation of local descriptors in order to build a
global descriptor is a general thread in the literature. For
this purpose, the Bag-of-Features (BoF) paradigm is quite
popular and has been successfully applied to 3D shape de-
scription [10, 12, 23, 48]. Li and Hamza [27] used the
BoF paradigm combining the exploitation of hierarchical



structures of the shape, such as pyramid matching [16]
and spatial relationship [10, 12, 23]. They proposed to
adopt the eigenfunction associated with the second-smallest
eigenvector of the Laplace-Beltrami operator in order to
build a global surface coordinate system which is insen-
sitive to shape deformation, showing that the introduction
of global spatial context could improve the effectiveness
of their descriptor in 3D shape recognition. Spatial pyra-
mid [30, 27, 24], is the term used to identify this approach.
Other approaches inspired by text-analysis have been pro-
posed. For instance, in [8, 17] the authors adopt higher-
order models defining relations between ‘geometric words’.

Within the bag of features model, features quantization
is generally performed through unsupervised learning. De-
parting from this approach, Litman et al. [28] recently pro-
posed a new supervised BoF framework mapping the dis-
criminative training directly into the dictionary construction
step.

1.2. Main contribution

In this paper, we propose a new supervised technique
to learn a statistical model build on the Riemannian metric
variations on deformable shapes based on the spectral de-
composition of the Laplace-Beltrami operator. To this end,
we define a statistical framework that models a shape as two
independent models for the eigenvectors and for the eigen-
values. The eigenvector and eigenvalue matrices of a set of
discrete representations (i.e. meshes representing the shape
in different poses) are assumed to be points of two separate
smooth Riemannian manifolds. The invariant representa-
tion of a certain shape is computed as the centroid of such
manifolds. The shape centroid acts as our invariant repre-
sentation of the shape. One of the main contributions is
indeed the definition of an efficient algorithm that compute
the spectral decomposition of this centroid. In particular,
we define it as a supervised data-driven optimization pro-
cess. For this purpose, we define a computationally efficient
intrinsic distance metric over the eigenvectors manifold. Fi-
nally, we define a statistical model over the variations of
such metric, assuming that the squared geodesic distances
follow a Γ-distribution. Moreover, in order to define a de-
scriptor that is robust to small non-isometric perturbations,
we assume that the eigenvalues are log-normally distributed
for the same stability reasons presented by Aubry et al. [5].

2. Background
We model a shape as a surface which is invariant

to rigid and non-rigid transformations, or, quoting D.G.
Kendall [21], a shape is ‘what is left when the differences
which can be attributed to translations, rotations, and di-
latations have been quotiented out’. A representation of
such shape is modelled as a smooth compact 2-manifold
S without boundary isometrically embedded in some Eu-

clidean space R3 with geometry induced by the embedding.
A 3D mesh is a discretization of a shape embedded in R3,
and a discrete Laplacian is a discretization of the continuous
Laplace-Beltrami operator on the mesh. There are various
ways by which such discretization can be obtained from the
mesh. Here we adopt the algorithm proposed by Belkin et
al. [6] which offers point-wise convergence guarantees and
was experimentally shown to be quite robust.

The spectral representation of the mesh can be obtained
from the Laplacian through singular value decomposition.
Given a Laplacian L, its decomposition is L = ΦΛΦT ,
where Λ = diag(λ1, λ2, ..., λ|V |) is the matrix whose
diagonal contains the ordered eigenvalues, while Φ =
(φ1|φ2|...|φ|V |) is the matrix whose columns are the or-
dered eigenvectors. This decomposition is unique up to a
permutation of the vertices of the mesh, a change of sign of
the eigenvectors, or a change of basis over the eigenspaces
associated with a single eigenvalue, i.e., the following prop-
erties hold:

L ' PLPT = PΦΛ(PΦ)T (1)
L = ΦΛΦT = ΦSΛSΦT (2)

where ' indicates isomorphism of the underlying surfaces,
P is a permutation matrix and S is a diagonal matrix with
diagonal entries equal to ±1.

3. Statistical model definition
One of the main contribution of this paper is the defi-

nition of an efficient algorithm to compute the spectral de-
composition of the manifold centroid from a set of points
lying on it. In order to address the classification task,
we study the variations of the metrics in the manifold,
casting them into a statistical framework. So let MS ={
MS1 ,M

S
2 , . . .M

S
N

}
be a set of meshes which represent a

discretization of the same underlying shape S in different
poses. In the proposed method, we assume that each com-
ponent of the spectral decomposition of the Laplacian of
each mesh MSi , i = 1, . . . , N , lies on a Riemannian man-
ifold. Let ∆MS

i
be the Laplace operator introduced in sec-

tion 2 applied to the mesh MSi . The spectral decomposition
of ∆MS

i
yields the eigenvectors ΦMSi and the eigenvalues

ΛMSi (Φi and Λi in short) such that

∆MSi
= ΦMSi ΛMSi ΦTMSi

(3)

These components are used as a basis for our invariant
representation of the shape S. Let MS0 =

{
ΦS0 ,Λ

S
0

}
be

such invariant representation. We treat the spectral compo-
nents independently, building a model for the eigenvectors
and a model for the eigenvalues. Since the Laplacian matrix
is a positive-semidefinite matrix, the eigendecomposition



of such matrix yields an orthogonal basis of eigenvectors,
φ ∈ O(n).

The set of orthogonal matrix is composed by two dis-
joint subsets, one with matrices with determinant +1 (i.e.
the special orthogonal group SO(n)) and one with matrices
with determinant −1. In the computation of the geodesic
distance, the two orthogonal matrices must belong to the
same subset. However, the arbitrarity of the sign of the
eigenvectors guarantee that we can always find represen-
tatives in the same connected component. In particular,
choosing the sign-flip S that minimizes the Frobenius dis-
tance between the eigenvector matrices, we guarantee that
we pick representatives that belong to the same connected
component and which are closest to one another in terms
of geodesic distance. This requires a pre-processing of the
eigendecomposition of the Laplacians of the whole class in
such a way that the direction of the eigenvectors are con-
cordant. To this end, we take a reference mesh and flip the
sign of the eigenvectors of the other meshes in such a way
as to make the dot product of corresponding eigenvectors
form the different meshes positive. Under this assumption,
we define ΦS0 as the solution to the following minimization
problem:

argmin
ΦS0 ∈O(n)

N∑
i

d2(ΦSi ,Φ
S
0 ) (4)

where d2 is the geodesic distance between the eigenvector
matrices, while N is the number of meshes representing the
same shape S. Given two orthogonal matrices R1 ∈ O(n)
and R2 ∈ O(n) belonging to the same connected compo-
nent of O(n), we can define the geodesic distance as

dg (R1, R2) = ‖log(RT1 R2)‖F (5)

where ‖·‖F is the Frobenius norm. For orthogonal matrices
belonging to the same connected component of O(n), we
have

d2
g (R1, R2) =

n∑
i

Θ2
i (6)

where Θi are the angles of the rotation RT1 R2 ∈ SO(n).
Using Taylor’s expansion of cos Θ, we obtain Θ2 = 2−

2 cos Θ + O(Θ4). Recalling that for A ∈ SO(n) Tr(A) =

Tr( 1
2 (A + AT )) =

n∑
i

cos(Θi), we can approximate the

geodesic distance as

d2
g (R1, R2) = 2n− Tr

(
RT1 R2

)
+O(Θ4

i ) (7)

resulting in the following approximation of 4:

argmin
φ0∈O(n)

2Nn− 2Tr

((
N∑
i

φTi

)
φ0

)
(8)

which is equivalent to

argmax
φ0∈O(n)

Tr

((
N∑
i

φTi

)
φ0

)
(9)

For this work, we assume that the geodesic distances be-
tween eigenvector matrices of the Laplacian of the meshes
that represent the same shape follow a Γ-distribution with
shape parameter k and scale parameter θ.

Γ(x; k, θ) =
1

θkΓ(k)
xk−1e−

x
θ (10)

where N is the number of meshes involved in the model
construction, x are the geodesic distances between the
eigenvectors of the meshes and the eigenvectors centroid,
and k and θ are estimated using the maximum likelihood
estimation. Since there is no closed form solution for the
parameter k, we approximate it using [33] and computing
the parameter s as

s = log

(
1

N

N∑
i=1

√
xi

)
− 1

N

N∑
i=1

log(xi) (11)

where xi in our instance is the geodesic distance between
the eigenvectors of the Laplacian of the mesh i and the
eigenvectors centroid of the class. Using s, we can approx-
imate k as

k ≈
3− s+

√
(s− 3)2 + 24s

12s
(12)

Once the shape parameter is computed, we use it to com-
pute the second parameter of the distribution, θ.

θ =
1

kN

N∑
i=1

√
xi (13)

Finally, thanks to 7, we are able to define the geodesic
distance between two eigenvector matrices, which is com-
puted as

d2(φi, φ0) = 2n− 2Tr(φTi φ0) (14)

The second component of the spectral decomposition of
our manifold centroid is simply the exponentiation of the
average of the logarithm of each j-th eigenvalue

Λj0 = e
1
N

N∑
i

logλji
(15)

We assume that the eigenvalues follow a log-normal dis-
tribution. In particular, we assume that each i-th eigenvalue
follows the same distribution, i.e. shares the same distribu-
tion parameters.

logN (x;µ, σ) =
1

x
√

2πσ
e−

(log x−µ)2

2σ2 (16)



where x is an eigenvalue, µ is the mean of the distribution
and σ is the standard deviation. Let λi0 be the i-th eigen-
value of the spectral decomposition of the manifold cen-
troid. Then, the distribution mean is defined as

µi = log λi0 (17)

Let λij be the i-th eigenvalue of the mesh j. We define
the standard deviation σ as

σi =

√√√√ 1

N

N∑
j=1

(
log λij − µi

)2
(18)

Finally, we can define the density of the i-th eigenvalue
of the j-th mesh as

λdij =
1

λij
√

2πσi
e
− (log(λij)−µi)

2

2σi (19)

Once both densities are computed, it is possible to com-
pute the density of a particular mesh as

p(j) =

(∏
i

λdij

)
Γ(k, θ)(gdj ) (20)

where gdj is the geodesic distance between the eigenvec-
tor matrix of the Laplacian of a mesh and the eigenvector
centroid of the shape we are considering.

4. Embedding, isometries and lack of corre-
spondences

The use of the whole Laplacian eigendecomposition of a
mesh is not necessary, nor encouraged, since we are usually
more interested in the smallest eigenvalues and the associ-
ated eigenvectors. In fact, most of the structural information
is stored in those eigenvalues and eigenvectors. And that is
why we embed the Laplacian matrix into a lower dimen-
sional space. Let p be the embedding dimension. In the
formulation of the geodesic distances 7 and 14, the embed-
ding dimension must be taken into account and p should be
used in place of n.

The use of spectral shape descriptor entails several ad-
vantages like the simple representation, scale invariance and
a very good performance for shape retrieval of non-rigid
shapes [38]. But there are also several issues that raise from
its employment. For example, the isometric embedding of
a Riemannian manifold on a lower dimensional space is
unique up to isometries. For this reason, we introduce a
new rigid transformation Ri which aligns the eigenvectors
of the Laplacian of a mesh i with the eigenvector centroid
of a certain shape. Hence, we can rewrite 9 introducing the
rotation matrixRi, obtaining

Figure 1. Example of known vertex correspondences between
meshes which represent the same shape. These meshes, the Cen-
taur (first row) and a human (second row), belong respectively to
the SHREC’10 and SHREC’14 dataset. For the former dataset the
correspondence ground-truth is known. In particular, we coloured
the vertex accordingly to the correspondence map between the
meshes. Thus, the same part (e.g. the head) takes the same color in
both the representations if our map is consistent. The second row
shows an example of two meshes which are not in correspondence.

argmax
φ0,Ri∈SO(p)

Tr

(
N∑
i

RiφTi φ0

)
(21)

The construction of our invariant representation of a
shape is based on the assumption that the correspondences
between the vertices of two meshes is known. But usu-
ally this kind of information is not available. Thus, the
second issue we dealt with is related to the lack of corre-
spondences between two meshes. There are several datasets
available that provide the ground-truth for the correspon-
dences (at least of the meshes that represent the same shape,
i.e. meshes that belong to the same class), like TOSCA
dataset [2] or the kids dataset [41]. But most of the datasets
used in shape retrieval task do not provide such information.
In order to make our method as flexible as possible, we cast
the problem of finding a fine matching between two meshes
to a maximum bipartite matching, solving the lack of cor-
respondences as an assignment problem. So let φi ∈ Rn×p
and φj ∈ Rm×p be the eigenvectors of the embedded Lapla-
cian of two meshes. Let R ∈ SO(p) the rotation matrix
which aligns the two meshes. We define a weight matrix W
as

W = φiRφTj (22)

This matrix is then used as input for the Hungarian al-
gorithm [9]. The Hungarian algorithm yields a permuta-



tion matrix P that minimize the assignment cost. Since we
want to maximize that cost, the input of the algorithm is the
negation of the weight matrix W . Hence, we can define the
introduced problem as the maximization problem

argmax
R,P

Tr
(
φjRφTi P

)
(23)

while the geodesic distance between two eigenvector matri-
ces is defined as

d2(φi, φj) = 2n− 2Tr(φjRφTi P ) (24)

5. Learning the invariant representation
The proposed method consists of two independent phase.

In this section we present the first one, whose main purpose
is to learn the invariant representation of each shape of a
given dataset. In other words, given a shape S, character-
ized in the dataset by a set of meshes {M1,M2, . . . ,MN},
we want to solve the problem 9 in order to compute the
eigendecomposition of the manifold centroid {Φ0,Λ0} of
the shape. For the eigenvectors component, we employ
an iterative optimization process. An iterative approach is
mandatory since we have to find the optimum eigenvector
centroid Φ0 while simultaneously optimizing each rotation
matrix Ri, one for each of the N meshes of the training
set. The adoption of the iterative optimization process al-
lows to split the problem defined in 21 in two parts, one for
the eigenvector centroid, defined as

Φ0 = argmax
Φ0∈O(n)

Tr

((
N∑
i

RiΦTi

)
Φ0

)
(25)

and one for the rotation matrix which align the i-th eigen-
vector matrix with Φ0.

Ri = argmax
Ri∈SO(n)

Tr

((
N∑
i

ΦTi Φ0

)
Ri

)
(26)

So, we define our iterative optimization process as

1. Computation of the mesh Laplacian of each mesh of
the training set, {∆1,∆2, . . . ,∆N}, using Belkin et
al. formulation [6].

2. Eigendecomposition of the Laplacians, which yields
the set {(Φ1,Λ1), (Φ2,Λ2), . . . , (ΦN ,ΛN )}. The
eigenvalues are used in the second part of the learning
phase in order to compute the eigenvalues centroid Λ0.

3. After the application of the rotation matrix Ri to
each Φi, we sum the eigenvector matrices together
ΣΦ =

∑N
i RiΦi. To estimate the eigenvector cen-

troid Φ0, we compute the singular value decomposi-
tion svd(ΣΦ) = ULV T . We compute the eigenvector
centroid as Φ0 = UV T .

4. To estimate the rotation matrix Ri, we compute the
sum ΣR =

∑N
i ΦTi Φ0. We use again the svd, ob-

taining svd(ΣR) = ULV T . Finally, we compute the
rotation matrix asRi = V UT .

The steps 3 − 4 are repeated till convergence, which is
usually reached after a low number of iterations (about 5
iterations).

Once the eigenvector centroid is obtained, we can pro-
ceed with the computation of the geodesic distances be-
tween each mesh of the training set and the centroid it-
self, using equation 14. This results in the vector dg =
{d1, d2, . . . , dN}. As already introduced in section 3,
we assume that the geodesic distances dg follow a Γ-
distribution. We use 12 and 13 to compute the distributions
parameters k and Θ.

The eigenvalues component of the invariant representa-
tion is computed in a more straightforward manner. Λ0 of a
certain class is computed through 15. The log-normal dis-
tribution parameters µ and σ for the eigenvalues component
of the centroid are computed using 17 and 18.

To summarize, the learning phase of the proposed
method applied to a training set with meshes that repre-
sent a shape S produces the manifold centroid {Φ0,Λ0}
and the distribution parameters

(
µSi , σ

S
i

)
, i = 1, . . . , p, and(

kS ,ΘS
)
. The described learning process is repeated for

each class of the dataset. Figure 2 shows the distributions
yielded by the learning phase introduced in this paragraph.

6. Models inference
In section 4, we introduced one of the problems which

raises from the computation of a distance metric between
two meshes, namely the lack of correspondences between
these meshes. In the learning phase of the proposed method
this was a minor issue, since the meshes that belong to the
same class can be assumed to be quite isometric between
them self. It is not the case for the meshes that represent
different shapes. In this case, we cast the lack of correspon-
dences problem into an assignment problem (see 23). In or-
der to solve this problem, we make use of another iterative
process where we are looking to optimize the parameters
R∗ (a rotation matrix) and P∗ (a permutation matrix). Let
Φ∗ be the eigenvector matrix computed on the Laplacian
applied to a mesh M∗. No prior knowledge about the shape
represented by M∗ is assumed. Let Φ0 be the eigenvector
centroid of a shape S. After a initialization step where we
assign the identity matrix to the rotation matrix R∗, we de-
fine the optimization process as

1. Computation of the weight matrix W to be used in our
assignment problem, W = Φ∗R∗ΦT0

2. The weight matrix −W is then used as the input of the
Hungarian algorithm, whose output is a cost matrix C



Figure 2. Distributions computed on the invariant representation of 3 shapes of the SHREC’10 dataset. The graphs in the second column
of the image show the first four distributions computed on the eigenvalues centroid of the shape represented in the first row (see 19). In
particular, the distributions refer to the first (red), second (blue), third (black) and fourth (green) eigenvalues of the corresponding centroids.

and a permutation matrix P∗

3. The rotation matrixR∗ is the orthogonal matrix which
most closely maps the permuted eigenvector matrix Φ∗
to the eigenvector centroid Φ0, which is the defini-
tion of the orthogonal Procrustes problem [43]. So,
to estimate the rotation matrix R∗, we use the svd,
svd(ΦT∗ P∗Φ0) = ULV T . We compute the rotation
matrixR asR = V UT .

The process converges after a low number of iterations
(≈ 3). Once the parameters R∗ and P∗ are computed,
we use 24 to compute the geodesic distance dS∗ between
the eigenvector matrix associated to M∗ and the eigenvec-
tor centroid of the shape S. Let kS and ΘS be the Γ-
distribution parameters computed as explained in section 5.
The probability density of M∗ with respect to the eigenvec-
tor model of the shape S is

φd(∗|S) = Γ
(
dS∗ ; kS ,ΘS

)
(27)

The eigenvalues of the mesh Laplacian are used straight-
forward after their computation. As introduced in section 3,
we assume that all the i-th eigenvalues follow a log-normal
distribution with parameters µi and σi, i = 1, 2, . . . , p,
with p the number of eigenvalues used (embedding dimen-
sion). So, let Λ∗ be the eigenvalues of the mesh M∗.
Let ΛS0 be the eigenvalue centroid of the shape S. The
probability density of each eigenvalue of M∗ with respect
to the eigenvalues model of the shape S is λd(∗|S) ={
λd(∗|S)1 , λd(∗|S)2 , . . . , λd(∗|S)n

}
, where λd(∗|S)i is defined

as

λd(∗|S)i = logN
(
λ∗i;µ

S
i , σ

S
i

)
(28)

Finally, we combine the afore-computed density us-
ing 20. For numerical stability, in place of the product of
the densities, we compute the sum of the logarithms of the

densities. Hence, the probability density of a meshM∗ with
respect to the models computed on a shape S is given by

log p (∗|S) = log φd(∗|S) +

n∑
i

log
(
λd(∗|S)i

)
(29)

Once the combined density is computed, a decision rule
is applied in order to assign the mesh to the most probable
class.

It is interesting to note that the lack of correspondences
does not affect the construction and use of the eigenvalues
model. This is due to the fact that we treat each eigenvalue
as an independent variable, while each i-th eigenvalue of a
mesh belonging to the same shape is an independent obser-
vation. The only implicit assumption regards the dimension
of the embedding p, which has to be consistent between all
the meshes involved both in the learning and in the infer-
ence phase. Since the Laplacian eigendecomposition of a
mesh is part of the pipeline, the former assumption holds
as long as the chosen embedding dimension is smaller than
the minimum number of vertex of each mesh involved in
the process.

7. Experimental results
In this section we evaluate the performance achieved by

our method, comparing our results with the current state-of-
the-art. Our approach was implemented in MATLAB and
the source code is available at the web page of the author 1.
Retrieval performance was evaluated using mean average
precision. The proposed method has been applied to several
popular datasets in the shape retrieval field.

SHREC’10 ShapeGoogle [10] dataset is the aggregation
of three public domain collections: TOSCA shapes [2],
Robert Sumner’s collection of shapes [45] and Princeton

1http://www.dsi.unive.it/~gasparetto/publications.htm



Figure 3. Example of the meshes from three datasets used in our experiments, from the easiest to the hardest (top to bottom). SHREC’10
ShapeGoogle dataset contains shapes of different bi and quadrupeds, SHREC’14 Humans (synthetic) dataset contains a collection of human
models created through 3D modelling/animation software. The last row shows the ”scanned” dataset which contains human models built
from the point-clouds contained within the CAESAR using the SCAPE method ( [4]). In the first column, a template of the shape is shown.
The central part shows meshes representing the same shape but in different poses, while the rightmost part shows some negatives (i.e.,
meshes representing a different shape).

Transformation VQ [10] Sup. DL [28] RMVM
Isometry 98.8 99.4 99.4

Topology 100 100 100
Isometry+Topology 93.3 95.6 99.5

Partiality 94.7 95.1 90.0
Triangulation 95.4 95.5 96.5

Table 1. Comparison of different retrieval methods, in terms of av-
erage precision on the SHREC’10 datasets, broken down accord-
ing to different transformations.

shape repository [1]. It consists of 1184 synthetic meshes,
out of which 715 meshes were obtained from 13 shape
classes with simulated transformation (55 per shape) used
as queries, while the 456 unrelated distractor shapes, which
are usually treated as negatives, were not used. The trans-
formations applied to the meshes show different levels of
strength. An example of the shapes included in this dataset
is shown in figure 3 in the first row. The results, which are
shown in table 1, were obtained using a 10-fold test over
100 iterations.

In particular, we subdivided the meshes belonging to the
same class in 10 randomly selected groups, using each one
as a test set, while the remaining meshes were used as the
training set in order to learn the invariant representation of a
particular shape and the associated distribution parameters.
This dataset contains a different number of representatives
(i.e. meshes) for each class, hence the number of positives
and negatives differs from class to class. For the smallest
subset of meshes (representing the same shape), we had 3
positives and 63 negatives, while for the largest we tested
our method against 13 positives and 54 negatives. Like
in Litman et al. work [28], we removed the ‘don’t-care’
ground-truth labels used in the original benchmark (e.g.,
male and female shapes were considered the same class).
Furthermore, in order to make the dataset more challenging,
we re-scaled all the meshes to have the same size. We com-
pared the performance of our method (which takes the name
of RMVM, i.e. Riemannian Metric Variation Model) with
respect to several methods that employ Bag-of-Features de-
scriptors. As the table shows, the proposed method obtains
a slight performance improvement (or be at least on par)



Figure 4. Example of partiality transformation on the SHREC’10
dataset. On the left there is the full mesh, on the right the same
mesh after the application of a partiality transformation of strength
3.

Transformation 1 ≤ 2 ≤ 3 ≤ 4

Partiality 100 100 97.5 76.7

Table 2. Average precision on the SHREC’10 datasets, broken
down according to the strength of the transformation applied.

Method Synthetic Scanned
ISPM [26] 90.2 25.8
DBN [36] 84.2 30.4
R-BiHDM [49] 64.2 64.0
HAPT [14] 81.7 63.7
ShapeGoogle (VQ) [10] 81.3 51.4
Unsupervised DL [28] 84.2 52.3
Supervised DL [28] 95.4 79.1
RMVM 96.3 79.5

Table 3. Comparison of different retrieval methods in terms of
mean average precision on the SHREC’14 Humans datasets.

in 4 out of 5 transformations with respect to the current
state-of-the-art approaches. We achieved lower classifica-
tion accuracy with meshes which represent only partially
the underlying shape. This is due to the fact that our ap-
proach exploits the prior-knowledge about the correspon-
dences between vertices of different meshes. The removal
of some parts of the mesh makes our assumption weaker,
and this leads to a lower accuracy in the retrieval task. This
issue is clear once we analyse the accuracy variation broken
down to the strength of the transformation. Table 2 shows
the results obtained for each level of strength of the trans-
formation, while figure 4 shows a partiality transformation
applied to a mesh.

SHREC’14 Humans [36] consists of two different sub-
sets. The first part (synthetic) contained 15 different hu-
man models created using DAZ Studio, each in 20 different
poses (total of 300 models, figure 3, middle row). The sec-
ond one (scanned) contained scans of 40 human subjects,

each in 10 different poses (400 shapes in total, figure 3, last
row). All shapes were down-sampled to have about 6× 103

triangles. Both datasets are extremely challenging, as they
contain geometrically similar human shapes. In particular,
the scanned dataset contains human shapes very difficult to
distinguish even for a human observer (see figure 3, third
row). We employed again a 10-fold test over the datasets.
After a random permutation of the datasets, we subdivided
the meshes into a training set and a test set. For the training
set we used 90% of meshes for each class in order to build
our shape invariant representation. For the synthetic dataset
test set, we employed 2 positives and 28 negatives per query,
while for the scanned dataset test set, the number of posi-
tives was 1 and the number of negatives was 39. The process
was repeated for each possible subset of the datasets and
the whole test was run 100 times. In addition to the same
Bag-of-Features approaches seen before, we compared our
model with the most accurate methods that participate to
the SHREC’14 benchmark. In particular, we compared our
approach to works based on Histograms of Area Projection
Transform (HAPT) [14], Deep Belief Network (DBN) [36],
Intrinsic Spatial Pyramid Matching (ISPM) [26], and Re-
duced Bi-harmonic Distance Matrix (R-BiHDM) [49]. Ta-
ble 3 shows the results yielded by those methods. The pro-
posed method performs slightly better with respect to the
current state-of-the-art, achieving high retrieval accuracies
in both the synthetic and scanned datasets.

Unfortunately, we are not able to conduct exhaustive ex-
periments with regards to the performance achieved by the
compared methods, since the performance analysis of the
different approaches is not available. Just to have an insight
about the performance achieved by the proposed method,
we compare with Litman’s approach [28], where the train-
ing time was reported to be approximately of 4 hours with a
3.2 Ghz CPU. On our 2.4 Ghz machine, we are able to learn
the model of a whole class in about 5s (about 80s for the
whole synthetic dataset). The prediction time is computed
in 9s, which means that the computation of the density of a
mesh with respect to a certain class requires about 0.6s.

8. Conclusion
In this work, we proposed a supervised data-driven

method for the definition of an invariant representation of an
arbitrary shape. Further, we defined a statistical framework
based on such representation that can be used to address
shape classification tasks. Moreover, we defined an efficient
intrinsic metric to approximate the geodesic distance be-
tween points over a manifold. One of the limitations of the
proposed method involves the knowledge of the correspon-
dence ground-truth between meshes. We tested our method
on several standard shape retrieval datasets. Experimental
results show that the proposed approach is competitive with
the current state-of-the-art for non-rigid 3D shape retrieval.
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