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Abstract

In this work, we propose a new type of visibility mea-
surement named Continuous Visibility Feature (CVF). We
say that a point q on the mesh is continuously visible from
another point p if there exists a geodesic path connecting p
and q that is entirely visible by p. In order to efficiently esti-
mate the continuous visibility for all the vertices in a model,
we propose two approaches that use specific CVF properties
to avoid exhaustive visibility tests. CVF is then measured
as the area of the continuously visible region. With this
stronger visibility measure, we show that CVF better en-
codes the surface and part information of mesh than the tra-
dition line-of-sight based visibility. For example, we show
that existing segmentation algorithms can generate better
segmentation results using CVF and its variants than us-
ing other visibility-based shape descriptors, such as shape
diameter function. Similar to visibility and other mesh sur-
face features, continuous visibility would have many appli-
cations.

1. Introduction
Feature extraction often serves as a fundamental engi-

neering task for higher level applications. For example, al-
most all of the recognition tasks start with defining or learn-
ing features. This is particularly true for two-dimensional
image that has a simple and uniform grid structure and pix-
els can be indexed by a 2D vector in a continuous coordi-
nate system. Each pixel has fixed number (usually 4 or 8) of
neighbors. Thus most of the image features are defined by
the convolution operations of the local areas. Consequently,
there are some default features like SIFT [15] and HOG [5]
used widely in computer vision research.

Unlike images, 3D models are usually modeled in the
continuous domain which makes defining 3D features chal-
lenging. Consequently, many of the features defined for 3D
models usually are designed for specific types of shapes.

For example, visibility among points inside a given
shape has been used directly or indirectly as shape features,
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in particular for the task of semantic shape segmentation.
The intuition behind most of these visibility-based features
is from the observation that two points sampled from the
same semantic part tend to be visible from each other. For
example, shape diameter function (SDF) [18] is a descriptor
to describe the thickness of a mesh defined via local visibil-
ity. The idea is initially proposed for shape segmentation
based on the assumption that a visually meaningful compo-
nent should have similar thickness everywhere. However,
this assumption does not hold in many cases. For example,
for a long component, such as a leg, the thickness at one
end of the component may have different thickness from the
other end. Another example is a flat component or a com-
ponent whose size grows gradually in a certain direction.

We believe that the traditional line-of-sight visibility
used in all existing visibility-based shape features is insuf-
ficient. In this paper, we will describe a new feature named
continuous visibility feature. The feature provides stronger
visibility measure by considering the continuously visible
region for a vertex or facet. Thus this feature is defined in a
per-vertex manner. We say that a q is continuously visible
by a point p if there exists a geodesic path connecting p and
q that is entirely visible by p. CVF of p is defined as the
area of a set of continuously visible points by p. A more
precise definition of CVF can be found in Sections 3. We
show that CVF better encodes the surface and part infor-
mation of mesh than SDF does. Figure 1(a) illustrates some
example models color mapped by CVF and SDF values. We
also show that existing segmentation algorithms can gener-
ate better segmentation results using CVF than using other
shape descriptors, such as shape diameter function [18]. We
will demonstrate the segmentation results using the Prince-
ton Segmentation Benchmark and applications of CVF and
its variants (namely CVFavg, strong CVF and weak CVF)
beyond segmentation in Section 5.

A major technical challenge of computing CVF is the
computational efficiency because it is known the determin-
ing the visibility of two points is expensive and determining
their continuous visibility will require many more pairwise
visibility checks. In Section 4, we will present two ways
to compute CVF efficiently. The first approach will use the
continuous property of CVF to construct the continuously
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Figure 1. Examples of SDF and CVF on the same models. Red and blue indicate the largest and smallest SDF and CVF values, respectively.
From these examples, we can see that CVF provides a better metric to distinguish visually different parts of a model. More extensive
comparison can be found in Section 5.

visible region in a Breadth-First-Search manner. The sec-
ond approach further improves the efficiency by first col-
lecting the potential continuous visible region and then us-
ing visibility test to search the true boundaries of the con-
tinuous visible region. We find that the second approach
provides significant speedup over the first approach.

2. Related Work

Extracting shape features from 3D model is a fundamen-
tal operation in shape segmentation, matching, retrieval and
even deformation. These features can be roughly classified
into per-vertex/facet features and global signatures. How-
ever, we should point out that some global signatures are
also generated from per-vertex/facet features via statistical
approaches. Osada et al. [16] introduced Shape Distribu-
tions to capture the statistical information of vertices’ and
facets’ shape function values. Shape matching is achieved
by measuring the similarity between two shapes’ distribu-
tion. Even though the feature function used in [16] is sim-
ple, it paves the way for many research works in shape
matching, shape retrieval and other shape analysis tasks.

Features can be further classified into several categories
depending on whether they are invariant to translation,
scaling, and deformation. Some features are designed to
be invariant to rigid transformation, e.g., spin image [9]
and shape context [2]. Invariance to deformation has at-
tracted more attention. For example, geodesic distance is
used to build deformation invariance features in a multi-
dimensional scaling based approach [6] and spectral do-
main analysis [8]. The idea of heat diffusion process has
triggered the emergence of diffusion geometry [4]. These
features are usually using Laplaca-Beltrami operator, e.g.,
heat kernel signature [20], global point signature [17] and
multi-solution spectral descriptor [12].

Most of the aforementioned features are designed for
shape matching, retrieval and correspondence. In shape
segmentation, researchers have developed other types of

features. These features directly control the quality of
the final segmentation results for the approaches based on
k-means clustering [19], fuzzy clustering [11], Gaussian-
mixture model followed by graph cut [18]. Some other re-
cent work on segmentation which acquires better result also
needs some feature definition [1, 21]. Liu et al. [13] used
concavity as features. Kalogerakis et al. [10] and Huang
[7] proposed the learning-based segmentation using a rich
collection of the features.

Visibility-based Features. Several recent works use vis-
ibility to derive part-aware features. The intuition behind
most of these visibility-based features is that two points in
the a visually or functionally meaningful part (such as the
leg of a table) tend to be visible from each other. For ex-
ample, Shape Diameter Function (SDF) [18] captures the
thickness of a shape locally among visible points. SDF is
determined by sampling rays inside the cone in the anti-
normal direction of a facet. The SDF value is the sum of
the projected length of the rays inside the model. However,
SDF may not correspond well to a visually meaningful com-
ponent if the thickness is not evenly distributed. For exam-
ple, as shown in Figure 1(c), the tabletop has quite different
feature values at its center from those on the boundary. In
addition, the feature values at the ends of the leg are also
quite different from those closer to the tabletop.

Another visibility-based feature is Volumetric Shape Im-
age (VSI) [14]. With the motivation of capturing the gen-
eral volumetric context instead of only getting the local vol-
umetric context of the local cone used for sampling rays,
VSI tries to sample rays in more directions. The VSI fea-
ture is computed by first finding the proxy center for each
vertex and then sampling ray at fixed direction. The field
of VSI is achieved by comparing the difference between the
sampling of a source vertex and other vertices on the mesh.

Recently, weak convex decomposition proposed by [1]
also uses lines-of-sights. It first computes the pairwise vis-
ibility between all pairs of the vertices/facets on the mesh.
Then the similarity matrix is constructed with each entry’s



value to be 0 or 1 indicating the pairwise invisibility or
visibility, followed by spectral clustering. Even though
the mathematical background seems to be quite straight-
forward by referring to the similar issues in machine learn-
ing problem, the decomposition sometimes is not satisfying
especially when a mesh model has a large area of bended
parts. van Kaick et al. [21] used the technique in [1] as pre-
processing step to over-segment the mesh, but it also needs
a lot of post-merging.

In all of these features [18, 14, 1, 21], traditional line-
of-sight visibility is used. However, from the Figure 2, we
could see that the continuous visibility makes more sense
than the general visibility in terms of charactering a poten-
tial component.

3. Definitions and Properties of CVF
Visibility among the points inside a given shape has been

used directly or indirectly as shape features in the past. The
intuition behind most of these visibility-based features is
from the observation that two points sampled from the same
(visual or functional) part tend to be visible from each other.
It usually remains true if we state the property the other
way around: two points that are visible from each other are
likely to be from the same part. However, there are many
exceptions. For example, in a human model in a standing
pose, a point from the head may see a point in the heel and in
most cases we would distinguish head and heel as different
parts of the model.

To overcome the drawbacks of the line-of-sight based
visibility approaches and to better capture the component
information of a mesh, we define a new feature named con-
tinuous visibility feature (CVF). We say that a point q
on the mesh is continuously visible by p if there exists a
geodesic path connecting p and q that is entirely visible by
p. Note that, this path may not be the shortest geodesic path
between p and q. More specifically, we define the function
CV(p,q) that returns TRUE if and only if

∃π such that ∀r ∈ π, pr ∩M = ∅ ,

where π is a geodesic path connecting p to q on mesh M .
An illustration of the continuous visibility is shown in Fig-
ure 2 (a).

Intuitively, by applying this stronger version of visibil-
ity measure, two points from the same part not only should
see each other but the entire path connecting them should
be visible. Under these definitions, we say a continuously
visible region (CVR) of a point p is a collection of all points
that are continuously visible by p. That is, we can express
CVR of p as the set {q ∈M | CV(p, q) = TRUE} CVF of a
given point p can be represented either in vector or in scalar
form. In this paper, we will focus on scalar representation,
in which CVF is the area of p’s CVR. If the input model is
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Figure 2. (a) Example of 2D continuous visibility. The vertex r
is continuously visible from the vertex p but the vertex q is not.
(b) While p is continuously visible from q, q is not continuously
visible from p.

convex, then all vertices in this convex model have the same
CVF, which is the surface area of the model.

Unlike visibility, continuous visibility is not commuta-
tive. That is, if CV(p,q) is true, CV(q,p) may not be true. A
2D example is illustrated in Figure 2 (b), in which the point
v cannot continuously see the point w because the visibil-
ity continuity is interrupted by edges e1 and e2. Therefore,
when both CV(p,q) and CV(q,p), we say that p and q have
strong continuous visibility.

4. Computing CVF

In this section, we discuss how continuous visibility can
be determined for all vertices of a given mesh. Without loss
of generality, we will focus the computation of the contin-
uous visibility of a given vertex v. In Section 4.1, we first
introduce a flooding approach using Breadth-First Search
(BFS) rooted at v. However, BFS-based approach requires
many visibility check between v and all vertices visited by
the BFS tree. We propose the second approach to address
this efficiency issue in Section 4.2.

4.1. BFS-based Approach

This first approach uses the property that the continuous
visible region of the vertex v must be continuous because,
by definition, every vertex in the continuous visible region
is connected to v via a path that is entirely visible by v.
In this Breadth First Search (BFS) based method, we itera-
tively expand the search only at the vertices that are visible
to v and stop at the vertices that are invisible to v. We can
prove the correctness of this approach by saying that, it is
impossible to find a vertex u that is continuously visible by
v but is not discovered by the BFS approach.

Although the BFS-based method is simple to implement
and provably correct, it may require many visibility checks.
In the next section, we propose an alternative approach to
speed up the computation.



4.2. Filtering

We further propose a more efficient way to compute the
feature values. The main idea is to filter out the faces that
guaranteed to be outside the continuously visible region of
a given vertex v. If a triangle f and v form a tetrahedron of
positive volume, then, we say that f is a positive triangle.
Then a continuously positive region of v is a set Tv of pos-
itive triangles continuously connected to v. It is clear that
v’s continuously visible region must be a subset of Tv , and
we can construct Tv using the same BFS-based approach
discussed in the previous section, except that we start from
the incident facets of v.

The next step involves finding the boundaries between
the continuously positive region CV Rv and the continu-
ously visible region Tv . This is done iteratively by connect-
ing v to a vertex u that is adjacent to Tv but is not in Tv . This
guarantees that CV(v, u) must be FALSE. A geodesic path
π connecting v and u now must cross at least one boundary
between CV Rv and Tv . Let w be the vertex closest v on π
that is invisible to v and w′ be the last visible vertex on π
before we arrive w. By definition, w′ is continuously visi-
ble and edge e = {w′, w} connecting w′ and w must be a
boundary edge. To determine the entire boundary including
e, we first identity the visibility of the third vertex of the tri-
angle t incident to e and then move on to the edge e′ 6= e of
t whose end points also form a pair of visible and invisible
vertices. This process repeats until a closed loop is discov-
ered. Using this loop removes vertices that not continuously
visible by v. The algorithm sketching this idea can be found
in the supplementary materials.

4.3. Running Time

We use the models from Princeton Segmentation Bench-
mark to obtain the running time reposted below. Some of
the benchmark models are shown in Figure 4. The results
are obtained from our implementation in C++ on a machine
with Intel Xeon 2.30GHz CPU and 32 GB memory, with 24
models running parallely. Using the BFS-based approach,
for models with about 1.5K vertices, the number of inter-
section test is around 0.9 million and the running time is 10
seconds on average. A model with about 5K vertices and
10K facets, BFS-based approach requires about 8 million
intersection tests and the total running time is around 100
seconds. For a model with 10K vertices, the total intersec-
tion number is around 70 million and the running time is
about 900 seconds.

On the other hand, if we use the filter-based approach
on the same set of models, the intersection tests for models
with less 5K vertices reduce by 72% and the running time
reduces by 30%. For models with 5K ∼ 10K vertices, the
intersection tests and running time reduce by 82% and 37%
respectively. For models with more than 10K vertices, the
intersection tests and running time reduce by 89% and 49%.

5. Comparison and Applications
In this section, we compare continuous visibility fea-

ture (CVF) to shape diameter function (SDF). SDF has
been widely used in part-based shape analysis. For exam-
ple, MeshLab has adopted it as a filter and CGAL has re-
implemented SDF for extracting features from shape and
then used it for shape segmentation.

5.1. Visual comparisons

Figure 3 shows a visual comparison between CVF and
SDF. From the pictures, we can see that semantic parts in
these examples have more constant CVF in each part and
higher variance when SDF is used. For example, the head
of the octopus model has more consistent CVF values than
SDF. For the tool model, the differences between parts are
more distinct than those in SDF. Furthermore, SDF color-
map shows four spots on the tabletop because the rays sent
from these places would reach the leg of the table. Finally,
in the legs, hands and torso of the Armadillo model, CVF
provides better distinction between the neighboring parts
and, again, more consistency within the parts.

5.2. Shape Segmentation

Segmenting a mesh into meaningful parts is a standard
step toward part-based shape analysis. In order to have a
fair comparison with SDF, we modified CGAL implemen-
tation by replacing the SDF features with CVF. The shape
segmentation implemented in CGAL first infers a Gaussian
Mixture Model (GMM) on the distribution of the feature
values (SDF or CVF), and then each facet is assigned a
soft label based on the inferred Gaussian Mixture Model.
The final segmentation is achieved by applying the k-way
graph cut. The data term of the graph cut is encoded by the
soft labels, and the smoothness term is encoded by dihedral
angle and edge length. Figure 4 shows segmentations us-
ing CVF with CGAL implementation. Figure 5 shows the
segmentation evaluation results with CVF, SDF and other
segmentation algorithms from the Princeton Segmentation
Benchmark [3]. The evaluation is measured by Rand Index
(RI) scores. Lower RI scores indicates higher similarity to
human generated segmentations. Additional comparisons
evaluated using other metrics such as consistency error, cut
discrepancy, Hamming distance all show similar trend as RI
and can be found in the supplementary materials.

The bar labeled as “CVF” shows the evaluation results
using the original CVF (as oppose to CVFavg that will be
discussed later). We find that the RI score of CVF (0.17) is
slightly better than the RI score of SDF (0.18). That fact that
CVF does not provide more significant difference leads us
to investigate deeper into the segmentation results. Table 1
shows the RI scores for all categories in the benchmark.

Note that the methods compared in the Benchmark used
the features such as geodesic distance, cut perimeter, com-



(a) CVF (b) SDF

Figure 3. Side-by-side comparison between CVF and SDF values.
In the ideal situation, each semantic part should have a constant
feature value. In these pictures, the CVF values have lower vari-
ance in each semantic part than SDF values do.

Figure 4. Segmentation created using CVF.

ponent area, etc. Some recent approaches do not intro-
duce new features, but instead combing existing features via
heuristics or learning techniques. For example, Kalogerakis
et al. [10] use a set of descriptors to learn the segmenta-
tion, including curvature, PCA, shape contexts, geodesic
distance, spin image etc. van Kaick et al. [21] employ a
multi-step process: 1. Generate over-segments; 2. Merge

Figure 5. The comparison of segmentations using Princeton Seg-
mentation Benchmark. The y-axis indicates errors measured in
Rand Index values.

segments with SDF dissimilarity lower than a threshold; 3.
Cut boundary refinement. Thus it is also worthwhile to try
to incorporate CVF with the feature-rich approaches to un-
derstand how CVF can be combined with other features and
how it performs in the combination.

From Table 1, we found that segmentation using CVF in
the cup, airplane, and bird categories performed poorly with
respect to the human data collected in the benchmark. Fig-
ure 6 shows the distinct CVF values from the inside (con-
cave part) and the outside (convex part) of the cup. The rea-
son that CVF would be different for inside and outside parts
is that the inside part is concave everywhere. The vertices in
the inside parts can hardly continuously see any facets ex-
cept the ones adjacent to it, while the outside part is convex,
the vertices there can continuously see a lot of facets. The
top left picture in Figure 6 shows the visualization of the
cup. The bottom left shows the segmentation result using
the CVF. The GMM-based shape segmentation separates
the inside from the outside, which in some sense is a rea-
sonable segmentation but makes the evaluation score rather
low because most results from the benchmark segment the
cup handle from the cup body. In the next section, we will
discuss three variants of CVF that will address these issues.

5.3. CVF variants

CVF is versatile and can be defined in various ways to
address several issues identified in plain CVF. In this sec-
tion, we will describe three variants of CVF that provide
better results than CVF. Due to space limitation, detailed
comparisons between these variants can be found in the sup-
plementary materials.

In the first CVF variant, we propose to average the CVF
values of a facet (or vertex) p. That is, we send a ray in
its counter-normal direction and get the nearest facet q in-
tersected by the ray. Then the CVFavg of p is the average
between original CVFp and CVFq . The upper right picture
in Figure 6 shows the visualization of the CVFavg , and the
lower right picture in Figure 6 shows the segmentation us-
ing CVFavg. We can see that the results are more consistent
to human segmentation.

In Table 1, we show the RI scores of CVFavg . We no-



(a) CVF (b) CVFavg

Figure 6. Segmentations created using CVF.

tice that CVFavg improves CVF significantly in the cup cat-
egory (from 0.45 to 0.23). Moreover, surprisingly, CVFavg

also improved most of the RI scores from other categories
(with the exceptions in airplane, plier, and fourleg). Con-
sequently, we can see that CVFavg outperforms SDF in 11
categories (out of 19). Even when SDF has lower RI scores,
the differences between CVFavg and SDF are usually small,
except in the Airplane category. Figure 7 shows an example
in this category.

(a) CVF (b) SDF

Figure 7. Limitation of CVF. In the left figures, the vertices (col-
ored in yellow) between the airplane body and wings can continu-
ously see both the wing and body. This results in large CVF values
can causes the segmentation cuts to be at the middle of the wings.

The second CVF variant is called strong CVF that re-
quires mutual continuous visibility. We say that two points
p and q have strong continuous visibility if both CV(p,q) and
CV(q,p). The first two columns in Fig. 9 show the color-
map of CVF and strong CVF. In most examples, CVF and
strong CVF are almost identical, except in the last example
(bottom of Fig. 9). Notice the checker board-like pattern in
CVF. The strong CVF provides much more consistent fea-
ture values than CVF in this example.

The third CVF variant is designed to address the issues

Table 1. Compare CVF and CVFavg with SDF . The CVFavg

means the the feature values for a vertex are are achieved by av-
eraging the CVF values between original CVF values and the the
facet that is hit by the ray sent out from that vertex in its anti-
normal direction (counter-normal direction.)

RI
SDF CVF CVFavg Diff

Human 0.18 0.16 0.14 0.02
Cup 0.36 0.45 0.23 0.22

Glasses 0.2 0.21 0.19 0.02
Airplane 0.09 0.17 0.2 -0.03

Ant 0.02 0.04 0.04 0
Chair 0.11 0.1 0.07 0.03

Octopus 0.05 0.04 0.03 0.01
Table 0.18 0.12 0.09 0.03
Teddy 0.06 0.08 0.07 0.01
Hand 0.2 0.17 0.13 0.04
Plier 0.38 0.21 0.22 -0.01
Fish 0.25 0.18 0.18 0
Bird 0.12 0.25 0.18 0.07

Armadillo 0.09 0.11 0.1 0.01
Bust 0.30 0.31 0.30 0.01
Mech 0.24 0.21 0.14 0.07

Bearing 0.12 0.14 0.13 0.01
Vase 0.24 0.18 0.18 0

Fourleg 0.16 0.16 0.17 -0.01
Average 0.18 0.17 0.15 0.03

q

πq

p

πp

e

Figure 8. An example of the continuous visibility between two
points v andw through different paths. The point v is continuously
visible by the point w via path πw and w is continuously visible
by v via a much longer path πv .

found in the airplane or bird-like models, in which the fuzzy
regions between the wings and the body cause poor segmen-
tation as shown in Fig. 7. Now, let us go back to the defini-
tion of continuous visibility. Even if both points p and q are
continuously visible to each other, the geodesic paths that
prove their mutual continuous visibility may be different. A
such example illustrated in Fig. 8 shows that two different
geodesic paths are taken by points p and q. One can see that
path πp that witnesses CV(p,q) is much longer than the path
πq that witnesses CV(q,p). In fact, we can make the path



πv arbitrary long by moving the right most (shaded) face in
Fig. 8 to its right. Intuitively, there is a negative correlation
between the likelihood of v and w belong to the same part
and the ratio between the continuous visibility path length
and the length of the shortest geodesic length. Similarly,
the edge length of e in Fig. 8 also has negative effect on
the relationship between CVF and the likelihood of v and
w belonging to the same part. In all cases, it will be desir-
able to take the visibility along the shortest geodesic path
into consideration. Consequently, we propose that a mea-
sure of weak continuous visibility WCV. Given two points
p and q, {WCV(p, q) = TRUE} if p and q are visible to
each other but the length of the invisible part of the short-
est geodesic path connecting p and q is smaller than a user
defined value τ . Let π be the the shortest geodesic path con-
necting p and q and let π̄w and π̄v be subset of π invisible
to v and w, respectively. The function WCV(p, q) returns
TRUE if max(||π̄w||, ||π̄v||) ≤ τ .

The last column in Fig. 9 shows the results of weak CVF.
It is clear that weak CVF provides significantly sharper
boundaries that can lead to better segmentation. See seg-
mentation results using weak CVF with varying values of
tau in the supplementary materials.

Since the CVF and its variants are based on visibility
checking, one question may be raised by people is whether
CVF and its variants are robust to noises. We believe that
CVF is insensitive to bumps and noise. With the original
or strong CVF in 3D, it is unlikely that noise or random
bumps block the visibility of all paths between two points
on the surface. In addition, the weak CVF can tolerate a cer-
tain amount of invisibility since it allows part of the shortest
geodesic path to be invisible.

5.4. Application: Part-based Retrieval

In most shape retrieval problems, the objective is to re-
trieve a shape that is globally similar to a query shape. Since
CVF can be used to generate segmentation and encode
shape signature of each component, we follow the strategy
described in [18] to provide a context-aware part retrieval
method. We first generate the segmentation using CVF as
described in the previous sections and construct a hierarchi-
cal part structure of the given shape from the segmentation.
In this hierarchical part structure, the whole model is the
root of the tree and the leaves are the components in the
segmentation. Then each node in the tree is encoded with
the CVF histogram as its signature. During the retrieval
stage, we reduce the retrieval as a bipartite matching prob-
lem. Given a query component, we compare it with all the
components in the dataset. To match two nodes (compo-
nents) p and q, we build a bipartite graph between nodes of
the paths leading the root to p and q in the hierarchy.

The total matching score is achieved by solving this max-
imum weight bipartite matching problem. Fig. 10 shows

Figure 9. Results obtained from CVF (left) vs. strong CVF (mid-
dle) vs. weak CVF (right).

two examples and top 9 matching parts in the database.

5.5. Application: Medial Axis Extraction

In Figure 11, we show the medial axis sample points gen-
erated by CVF. We use the idea of reference points in [14]
to construct the skeleton points. Basically, for a vertex p,
we send ray to the continuously visible region and each ray
gives a reference point. We can see that the skeleton points
provide a good approximation of the medial axis.

6. Discussion and Conclusion
In this paper, we showed a new shape feature called con-

tinuous visibility feature (CVF). We proposed two algo-



query retrieved models with similar part ranked from left to right

Figure 10. Part-based retrieval using CVF.

Figure 11. Medial-axis samples created using CVF.

Figure 12. Invariance to pose change and deformation.

rithms to compute CVF for each vertex of a given mesh:
one is based on BFS and the other one is based on identify-
ing potential continuous visibility regions. We showed that
the second approach is significantly faster than the BFS ap-
proach. In the experimental results, we show that CVF pro-
vides good results comparing to the methods in Princeton
segmentation benchmark. If the CVF values are averaged
between vertices on the opposite sides of their anti-normal
directions, called CVFavg then we see significant improve-
ment over CVF and SDF. We demonstrated a couple of ap-
plications beyond shape segmentation, like shape retrieval
and medial axis sampling.

Our experiments show that CVF is insensitive to pose
change and deformation. It is true that the CVF value is not
isometry invariant; however, it is the distribution of CVF
that matters. Pose change or deformation does not change
the CVF of one vertex only. Rather, many vertices’ CVF

change. If we consider the overall distribution of all ver-
tices’ CVF, for most poses, the overall distribution still pre-
serves part-awareness. For example, in Fig 12, even though
the legs of octopus (fingers of hand) have different poses or
deformation, the distribution of CVF can still capture the
part information.

We believe the continuous visibility feature would have
more applications. Currently we only focus on the scalar
representation, more applications of CVF can be explored
with vector representation, a list of Booleans representing
the continuous visibility of all vertex pairs. For exam-
ple, modifying the existing features with the constraints of
CVF’s vector representation.

Acknowledgement

We would like to thank anonymous reviewers for help-
ful feedback. Authors Liu and Lien are supported in part
by NSF IIS-096053, CNS-1205260, EFRI-1240459 and
AFOSR FA9550-12-1-0238. And author Gingold is sup-
ported in part by the NSF (IIS-1451198 and IIS-1453018)
and a Google research award.

References
[1] S. Asafi, A. Goren, and D. Cohen-Or. Weak convex decom-

position by lines-of-sight. In Computer Graphics Forum,
volume 32, pages 23–31. Wiley Online Library, 2013.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 24(4):509–
522, 2002.

[3] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark
for 3d mesh segmentation. ACM Transactions on Graphics
(TOG), 28(3):73, 2009.

[4] R. R. Coifman and S. Lafon. Diffusion maps. Applied and
computational harmonic analysis, 21(1):5–30, 2006.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. IEEE, 2005.



[6] A. Elad and R. Kimmel. On bending invariant signatures for
surfaces. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 25(10):1285–1295, 2003.

[7] Q. Huang, V. Koltun, and L. Guibas. Joint shape segmen-
tation with linear programming. In ACM Transactions on
Graphics (TOG), volume 30, page 125. ACM, 2011.

[8] V. Jain, H. Zhang, and O. van Kaick. Non-rigid spectral
correspondence of triangle meshes. International Journal
of Shape Modeling, 13(1):101–124, 2007.

[9] A. E. Johnson and M. Hebert. Using spin images for efficient
object recognition in cluttered 3d scenes. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 21(5):433–
449, 1999.

[10] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning
3d mesh segmentation and labeling. ACM Transactions on
Graphics (TOG), 29(4):102, 2010.

[11] S. Katz and A. Tal. Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM Trans. Graph., 22(3):954–
961, 2003.

[12] C. Li and A. B. Hamza. A multiresolution descriptor for
deformable 3d shape retrieval. The Visual Computer, 29(6-
8):513–524, 2013.

[13] G. Liu, Z. Xi, and J.-M. Lien. Dual-space decomposition
of 2d complex shapes. In 27th IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Columbus,
OH, Jun. 2014. IEEE.

[14] R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or. A part-aware
surface metric for shape analysis. In Computer Graphics
Forum, volume 28, pages 397–406. Wiley Online Library,
2009.

[15] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004.

[16] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin.
Shape distributions. ACM Transactions on Graphics (TOG),
21(4):807–832, 2002.

[17] R. M. Rustamov. Laplace-beltrami eigenfunctions for de-
formation invariant shape representation. In Proceedings of
the fifth Eurographics symposium on Geometry processing,
pages 225–233. Eurographics Association, 2007.

[18] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh
partitioning and skeletonisation using the shape diameter
function. The Visual Computer, 24(4):249–259, 2008.

[19] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of poly-
hedral surfaces using decomposition. In Computer Graphics
Forum, volume 21, pages 219–228. Wiley Online Library,
2003.

[20] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and prov-
ably informative multi-scale signature based on heat diffu-
sion. In Computer Graphics Forum, volume 28, pages 1383–
1392. Wiley Online Library, 2009.

[21] O. van Kaick, N. Fish, Y. Kleiman, S. Asafi, and D. Cohen-
Or. Shape segmentation by approximate convexity analysis.
ACM Trans. on Graphics, to appear, 2014.


