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The goal of image stitching is to create natural-looking mosaics free of ar-
tifacts that may occur due to relative camera motion, illumination changes,
and optical aberrations. Parallax error in overlapping areas is one of the
main challenges. One of the first approaches that estimates a smooth stitch-
ing field is the smoothly varying affine (SVA) stitching proposed in Lin et
al. [3]. A global affine transform is estimated, which is then relaxed to form
a smoothly varying affine stitching field. It is flexible enough to handle par-
allax while retaining the extrapolation and occlusion handling properties of
parametric transforms. However, it fails to impose global projectivity. This
drawback is alleviated by the As-Projective-As-Possible (APAP) approach
proposed in [4], which estimates a smoothly varying projective stitching
field and hence provides excellent alignment accuracy. A simple moving
Direct Linear Transformation (DLT) method is used to estimate the local
parameters, by providing higher weights to the closer feature points and
lower weights to the farther ones.

Since APAP extrapolates the projective transform in the non-overlapping
regions, it introduces severe perspective distortions in regions far from the
boundary. The authors in [1], propose the shape-preserving half-projective
(SPHP) warp to preserve shapes in the non-overlapping areas. The stitch-
ing provides for shape preservation, but does not guarantee against parallax.
Although the combination of SPHP and APAP can be claimed to the state-
of-the-art approach, it is sensitive to parameter selection. Furthermore, if the
overlapping areas has multiple distinct planes, deriving a single global sim-
ilarity transformation from the global homography may lead to undesirable
and unnatural visual effects in the mosaic.

We propose a new method that incorporating several assumptions to
make the panorama look more natural. To mitigate perspective distortion
that occurs in APAP, we linearize the homography in the regions that do
not overlap with any other image. We then automatically estimate a global
similarity transform using a subset of corresponding points in the over-
lapping regions. Finally, we extrapolate smoothly between the homogra-
phy and the global similarity in the overlapping regions, and using the lin-
earized homography (affine) and the global similarity transform in the non-
overlapping regions. The smooth combination of two stitching fields (ho-
mography/linearized homography and global similarity) help us achieve: (a)
a fully continuous and smooth stitching field with no bending artifacts, (b)
improved perspective in the non-overlapping regions using a global simi-
larity transform, (c) full benefits of the state-of-the-art alignment accuracy
offered by APAP.

Within the overlapping areas, a local homography is estimated using
moving DLT framework[4], h j = argmin

h
‖W jAh‖2. Here, the weight ma-

trix, W j = diag([ω1, j ω1, j . . . ωN, j ωN, j]), the elements of the observa-
tion matrix, A, are functions of the corresponding points, and h j is a 9× 1
vector containing the parameters of the homography transformation. The
weights are obtained using the Gaussian kernel between the points pi and
p j: ωi, j = exp(−‖pi−p j‖2/σ2). Note that the local homography can be
computed only in the regions of the target image that overlap with the refer-
ence image.

To mitigate perspective distortion on non-overlapping areas, the local
transformation is obtained using the linearized homography transformations.
For a set of R anchor points {pi}R

i=1 at the boundary with possibly different
local homographies, the weighted combination of linearizations is given as
hL(q) = ∑

R
i=1 αi (h(pi)+Jh(pi)(q−pi)) , where Jh(p) is the Jacobian of

the homography h at the point p. We assume αi to be a function of ‖q−pi‖,
and in particular we consider the Gaussian weighting or the Student’s t-
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weighting where αi =
(

1+ ‖q−pi‖2

ν

) −(ν+1)
2 . Student’s t-weighting is more

robust since that tail of the distribution decays slowly compared to Gaussian
and hence when q is far from anchor points, all the anchor points are given
similar weighting. However, if Gaussian weighting is chosen, the tail should
be made flat at the offset parameter γ to avoid “wavy” effects (e.g. see Fig.
1(a)).

The keypoint matches are grouped using recursive RANSAC [2]. The
global similarity transformation S is obtained by the group of matches that
can calculate the similarity transformation with smallest rotation angle. Then,
we gradually update the local transformations of entire target image to the
global similarity transformation using the following equation: Ĥ(t)

i = µhH(t)
i +

µsS, where H(t)
i is ith local homography, Ĥ(t)

i is updated local transforma-
tion, S is the global similarity transformation, µh and µs are weighting co-
efficients, and the superscript (t) refers to the target image. µh and µs are
computed as: µh(i) = 〈

−−−−→
κm p(i),−−−→κmκM〉/

∣∣−−−→κmκM
∣∣ , µs(i) = 1− µh(i), where

κ is the projected point of warped target image on the −−→orot direction. or and
ot are the center points of the reference image and the warped target image.
κm and κM are the points with smallest and largest value of 〈

−−−→
or p(i),−−→orot〉 re-

spectively. Here, p(i) is the location of the ith location in the final panorama.
Then, the local transformation of the reference image can be obtained as
Ĥ(r)

i = Ĥ(t)
i (H(t)

i )−1.
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Figure 1: Illustration of proposed algorithm. (a) Warp after applying moving
DLT with Gaussian weighting. (b) Extrapolation of non-overlapping areas
using homography linearization and Student’s t-weighting, (c) Proposed fi-
nal warps after integrating global similarity transformation, and (d) Final
stitched result.
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