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This paper revisits the piecewise parametric optical flow estimation inves-
tigated in the 1990s [2]. We assume that the flow field can be piecewise
represented by (possibly hundreds of) parametric motion models. To ease
description, the 8-dof homography model is used. Our goal is to find suitable
pieces (e.g. large ones for homogeneous motion and small ones for complex
motion), and fit parametric models onto them for optical flow estimation.
Compared to joint motion estimation and segmentation [4, 7], we regard the
whole image as a single structure and piecewise approximate motion, rather
than dividing it into multiple regions with independent motions.

Contributions. i) We represent and estimate the flow field with piecewise
homography models, and solve the problem via joint discrete-continuous
optimization. ii) We propose a novel energy formulation which takes into
account both a piecewise constant model constraint, and a flow field conti-
nuity constraint. iii) We show that the piecewise parametric flow estimation
used in the early days can be adapted to produce accurate results outper-
forming or on par with state-of-the-arts.

Formulation. Denote by I1,I2 the two images, and Ω the domain of I1.
Let L= {1, ..,K} be the labels of a homography set H= {Hk}, and L : Ω→
L a labelling to generate pieces. Assigning label k = L(x) to pixel x means
that motion of x is induced by Hk. We define the energy function as

E(H,L) = ED(H,L)+λCEC(H,L)+λPEP(L)+λMEM(L)

ED – Data term. The data term ED enforces the brightness/color constancy
constraint using piecewise homography models as

ED(H,L)=∑
x∈Ω

ρ
(
(1−α)|I1(x)−I2(HL(x)x)|+α|∇I1(x)−∇I2(HL(x)x)|

)
.

Note the abuse-of-notation: x and Hx represent inhomogeneous coordinates.

EC – Flow continuity (inter-piece compatibility) term. This term enforces
the continuity constraint of the flow field, rather than the widely used 1st-
order or 2nd-order smoothness constraint (e.g. TV & TGV). Let E be the
4-connected neighbour set, EC is defined to be

EC(H,L)= ∑
(x,x′)∈E

w(x,x′) ·ρ
(
|HL(x)x̄−HL(x′)x̄|

)
,

where x̄ = (x+ x′)/2 is the midpoint of (x,x′), and w(x,x′) is color-based
weight. The cost at (x,x′) is nil if L(x) = L(x′), so EC does not penalize the
homography-induced motion variation within each piece even if it’s large.

EC enforces inter-piece motion compatibility; it allows compatible model
switch, no matter how different the two models are. See top right images for
an illustration of its effect.

EP – Potts model term. We additionally use a pairwise Potts model term
EP to encourage spatially coherent labelling. This term is defined only on
the discrete labelling variables as EP(L) =∑(x,x′)∈E δ

(
L(x) 6= L(x′)

)
, where

δ (·) is the 0-1 indicator function.
EP enforces intra-piece model constancy; it penalizes any model switch,

no matter how similar the two models are. See top right images for its effect.

EM – MDL term. To reduce model redundancy, we employ an MDL term
EM to penalize the total number of the used homography models, i.e., EM(L)

= ∑
K
k=1 τ(k), where τ(k) =

{
1, if∑x∈Ω δ (L(x) = k)> 0
0, othewise

.

Optimization. We approach the joint discrete-continues problem via block
coordinate descent that alternates between optimizing over L and H.

Solving for L with fixed H amounts to a labelling problem with multiple
labels. The two piecewise terms EC and EP are sub-modular functions. We
employ the graph-cut method [5] which can handel the label cost in EM .

Solving for H with fixed L is an unconstrained continuous optimization
problem. H appears only in ED and EC. As the models {Hk} interact with
each other in EC, we use an inner block coordinate decent to iteratively opi-
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Left: noisy flow estimates for foreground complex motions.
Mid: noisy piece estimates for background homogeneous motions.
Right: good piece and flow estimates for all motions.
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mize {Hk} one by one, with the downhill simplex method.
We generate initial H and L from the nearest neighbour field [1]. Occlu-

sion is detected via forward-backward consistency check. The Classic+NL-
fast method [6] is used for flow refinement (on original image scale).

Performance. The method currently achieves leading performance on the
KITTI benchmark (AEE 2.9), outperforms all published methods on the
clean pass of the Sintel benchmark (AEE 4.4), and yields competitive re-
sults on the Middlebury benchmark (avg. rank 20.6). The alternation-based
optimization takes about 200∼500 seconds on a 640×480 image pair.

We believe that piecewise parametric flow estimation deserves a posi-
tion in highly-accurate optical flow estimation, which is currently dominated
by per-pixel translation flow estimation methods.
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