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Image representations have been a key focus of the research in com-

puter vision for at least two decades. Notable examples include textons [6],

histogram of oriented gradients (SIFT [7] and HOG [2]), bag of visual

words [1][12], sparse [15] and local coding [14], super vector coding [18],

VLAD [4], Fisher Vectors [8], and the latest generation of deep convolu-

tional networks [5, 10, 16]. However, despite their popularity, our theoreti-

cal understanding of representations remains limited. It is generally believed

that a good representation should combine invariance and discriminability,

but this characterisation is rather vague; for example, it is often unclear what

invariances are contained in a representation and how they are obtained.

In this work, we propose a new approach to study image representations.

We look at a representation φ as an abstract function mapping an image x

to a vector φ(x) ∈ R
d and we empirically establish key mathematical prop-

erties of this function. We focus in particular on three such properties. The

first one is equivariance, which looks at how the representation changes

upon transformations of the input image. We demonstrate that most repre-

sentations, including HOG and most of the layers in deep neural networks,

change in a easily predictable manner with the input. The key result is that

the CNN features globally change in an easily predictable way in term of

linear transformations; importantly, the same linear transformation works

for any input image, and hence any object category, suggesting that geome-

try is factored in a uniform way for all of them. This is observable mainly

for the first three convolutional layers as the latter layers start to be more

class specific.

We show that such equivariant transformations can be learned empiri-

cally from data and that, importantly, they amount to simple linear transfor-

mations of the representation output. In the case of convolutional networks,

we obtain this by introducing and learning a new transformation layer which

allows us to e.g. use a method based on back-propagation to visualise the

filters, as shown in figure 1. By analyzing the learned equivariant trans-

formations we are also able to find and characterize the invariances of the

representation, our second property. This allows us to quantify invariance

and show how it builds up with depth in deep models.

The third property, equivalence, looks at whether the information cap-

tured by heterogeneous representations is in fact the same. CNN models,

in particular, contain millions of redundant parameters [3] that, due to non-

convex optimization in learning, may differ even when retrained on the same

data. The question then is whether the resulting differences are genuine or

just apparent. To answer this question we learn stitching layers that allow

swapping parts of different networks. Equivalence is then obtained if the

resulting “Franken-CNNs” perform as well as the original ones. We show

that a very good level of equivalence can be established between networks

with different weights trained for the same task. We also observe that for

networks trained for different tasks (such as ILSVRC 2012 [9] and Places

dataset [17]) it is harder to find the projection between the image represen-

tations with increasing depth as shown in table 1. This corroborates the

intuition that the representation generated by lower convolutional layers are

generic image codes, whereas the higher layers are task-specific.

As a complement of the theoretical investigation we show a direct prac-

tical application of the learned equivariant mappings to structured-output

regression [13] on the task of pose estimation. We show that the equivari-

ant map can significantly accelerate the regressor in a simple and elegant

manner for both HOG and CNN features.
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Figure 1: Equivariant transformation of CNN filters. Top: Conv1 and

Conv2 filters of a convolutional neural network visualised with the method

of [11]. Other rows: geometrically warped filters reconstructed from an

equivariant transformation of the network output learned using the proposed

method for Horizontal flip, Vertical flip and Rotation 90◦.

Layer
IMNETA → IMNETB PLCS → IMNETB

Top1 Top5 Top1 Top5

Conv1 0.43 0.20 0.43 0.20

Conv2 0.46 0.22 0.47 0.23

Conv3 0.46 0.22 0.50 0.25

Conv4 0.46 0.22 0.54 0.29

Conv5 0.50 0.25 0.65 0.39

Table 1: CNN equivalence. Performance on the ILSVRC12 validation set

of several “Franken-CNNs” obtained by stitching the first portion of IM-

NETA, PLCS up to a certain convolutional layer and the last portion of IM-

NETB where IMNETA and IMNETB are different networks trained on the

ILSVRC 2012 object classification task and PLCS on the Places dataset - a

scene recognition task. For reference, the top-1 and top-5 error of the un-

modified IMNETB are 0.43 and 0.20 respectively and without the stitching

layer in all cases the top-1 error is > 99%.
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