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Abstract

Mid-level visual element discovery aims to find clusters
of image patches that are both representative and discrimi-
native. In this work, we study this problem from the prospec-
tive of pattern mining while relying on the recently popular-
ized Convolutional Neural Networks (CNNs). Specifically,
we find that for an image patch, activation extracted from
the first fully-connected layer of a CNN have two appealing
properties which enable its seamless integration with pat-
tern mining. Patterns are then discovered from a large num-
ber of CNN activations of image patches through the well-
known association rule mining. When we retrieve and visu-
alize image patches with the same pattern (See Fig. 1), sur-
prisingly, they are not only visually similar but also seman-
tically consistent. We apply our approach to scene and ob-
ject classification tasks, and demonstrate that our approach
outperforms all previous works on mid-level visual element
discovery by a sizeable margin with far fewer elements be-
ing used. Our approach also outperforms or matches recent
works using CNN for these tasks. Source code of the com-
plete system is available online.

1. Introduction

Mid-level visual elements, which are clusters of im-
age patches rich in semantic meaning, were proposed by
Singh et al. [1] with the aim of replacing low-level visual
words (play the game in Fig. 1 and then check your an-
swers below1). In this pioneering work, mid-level visual
elements must meet two requirements, that is, representa-
tiveness and discriminativeness. Representativeness means
mid-level visual elements should frequently occur in the
target category, while discriminativeness implies that they
should be visually discriminative against the natural world.
The discovery of mid-level visual elements has boosted per-
formance in a variety of vision tasks, including image clas-
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1Answer key: 1.aeroplane, 2.train, 3.cow, 4.motorbike, 5.bike, 6.sofa.
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Figure 1. Name that Object: Given the mid-level visual elements
discovered by our algorithm from the PASCAL VOC 2007 dataset,
can you guess what categories are they from? (answer key below)

sification [1, 2, 3, 4, 5, 6, 7], action recognition [8, 9],
discovering stylistic elements [10, 11], geometry estima-
tion [12] and 2D-3D alignment [13, 14].

Originally motivated by market basket analysis, associa-
tion rule mining is a well-known pattern mining algorithm
that aims to discover a collection of if-then rules (i.e., asso-
ciation rules) from a large number of records named trans-
actions. The main advantage of association rule mining lies
in its ability to process “Big Data”: association rules can be
discovered from millions of transactions efficiently. In the
context of mid-level visual element discovery, as noted by
Doersch et al. [2], finding discriminative patches usually
involves searching through tens of thousands of patches,
which has become a bottleneck in recent works. In this
sense, if appropriately used, association rule mining can be
an appealing solution for handling “Big Data” in mid-level
visual element discovery.

In this paper, building on the well-known association
rule mining, we propose a pattern mining algorithm, Mid-
level Deep Pattern Mining (MDPM), to study the problem
of mid-level visual element discovery. This approach is par-
ticularly appealing because the specific properties of activa-
tions extracted from the fully-connected layer of a Convolu-
tional Neural Network (CNN) allow them to be seamlessly
integrated with association rule mining, which enables the



discovery of category-specific patterns from a large num-
ber of image patches. Moreover, we find that two require-
ments of mid-level visual elements, representativeness and
discriminativeness, can be effortlessly fulfilled by associa-
tion rule mining. When we visualize image patches with
the same pattern (mid-level visual element in our scenario),
it turns out that they are not only visually similar, but also
semantically consistent (see Fig. 1).

To our knowledge, hand-crafted features, typically
HOG [15], are used as feature descriptors for image patches
in all current methods of mid-level visual element discov-
ery. Vondrick et al. [16], however, have illustrated the lim-
itations of HOG, implying that HOG may be too lossy a
descriptor to achieve high recognition performance. In this
sense, an extra bonus of our formulation lies in that we are
now relying on CNN activations, a more appealing alter-
native than the hand-crafted HOG, as indicated in recent
works [17, 18, 19, 20, 21, 22].

One issue must be considered before using any pattern
mining algorithms, that is, they have two strict requirements
for the transactions that they can process (Sec. 4.1). Thanks
to two appealing properties of CNN activations (Sec. 3),
these two requirements are effortlessly fulfilled in the pro-
posed MDPM algorithm (Sec. 4).

To show the effectiveness of the proposed MDPM algo-
rithm, we apply it to scene and generic object classification
tasks (Sec. 5). Specifically, after retrieving visual elements
from the discovered patterns, we train element detectors and
generate new feature representations using these detectors.
We demonstrate that we achieve classification results which
not only outperform all current methods in mid-level visual
element discovery by a noticeable margin with far fewer el-
ements used, but also outperform or match the performance
of state-of-the-art using CNNs for the same task.

In summary, our contributions are twofold.

1. We formulate mid-level visual element discovery from
the prospective of pattern mining, finding that its two
requirements, representativeness and discriminative-
ness, can be easily fulfilled by the well-known asso-
ciation rule mining algorithm.

2. We present two properties of CNN activations that al-
low seamless integration with association rule mining,
avoiding the limitations of pattern mining algorithms.

Preliminaries. To extract CNN activations, we rely on the
publicly available caffe [23] reference model which was
pre-trained on the ImageNet [24]. More specially, given
a mean-subtracted patch or image, we resize it to the size
of 227 × 227 and pass it to the caffe CNN. We extract
its non-negative 4096-dimensional CNN activation from the
sixth layer fc6 (the first fully-connected layer) after the rec-
tified linear unit (ReLU) transformation.

2. Related Work

Mid-level visual element discovery. Mid-level visual ele-
ment discovery aims to discover clusters of image patches
that are both representative and discriminative. Recent stud-
ies on this topic have shown that mid-level visual elements
can be used for image classification [1, 2, 3, 4, 5, 6, 7]. The
process typically proceeds as follows. Firstly, mining visual
elements and training element detectors. Secondly, gener-
ating new feature representations using the most discrimi-
native detectors. Various methods have been proposed for
the first step, such as cross validation training of element
detectors [1], ranking and selecting exemplar detectors on
the validation set [3] and discriminative mode seeking [2].

Convolutional Neural Networks. Although proposed by
LeCun et al. [25] for solving the handwritten digit recog-
nition in the late ’80s, CNNs have regained popularity
mainly because of having shown very promising result in
the ILSVRC challenge [26]. In the benchmark CNN ar-
chitecture of Krizhevsky et al. [17], raw pixels first pass
through five convolutional layers where responses of filters
are max-pooled in sequence, before producing an activa-
tion of 4096 dimensions at each of the two fully-connected
layers. Recent studies [18, 27] have demonstrated that
the 4096-dimensional activation extracted from the fully-
connected layer is an excellent representation for general
recognition tasks.

Pattern mining in vision. Pattern mining techniques have
been studied primarily amongst the data mining commu-
nity, but a growing number of applications can be found
in vision, such as image classification [28, 29, 30, 31], ac-
tion recognition [32] and recognizing human-object inter-
action [33]. The main advantage of pattern mining lies its
ability to process massive volumes of data, which is partic-
ularly appealing in this era of information explosion.

3. Properties of CNN activations of patches

In this section we provide a detailed analysis of the
performance of CNN activations on the MIT Indoor
dataset [34], from which we are able to conclude two im-
portant properties thereof. These two properties are key in-
gredients in the proposed MDPM algorithm in Sec. 4.

We first sample 128 × 128 patches with a stride of 32
pixels from each image. Then, for each image patch, we
extract its 4096-dimensional CNN activation using caffe.
To generate final the feature representation for an image, we
consider two strategies as follows.

1. CNN-Sparsified. For each 4096-dimensional CNN
activation of an image patch, we only keep the k largest
dimensions (in terms of magnitude) and set the remain-
ing elements to zero. The feature representation for an
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Figure 2. Pipeline of mid-level deep pattern mining. Given image patches sampled from both the target category (e.g. car) and the natural
world, we represent each as a transaction after extracting their CNN activation. Patterns are then discovered through association rule
mining. Mid-level visual elements are discovered by retrieving image patches with the same patterns.

k 10 20 50 100
CNN-Sparsified 50.10 56.33 60.34 61.68
CNN-Binarized 54.34 59.15 61.35 61.29

Table 1. The classification accuracies achieved by the two pro-
posed strategies for keeping the k largest magnitudes of CNN ac-
tivations of image patches on the MIT Indoor dataset.

image is the outcome of max pooling on the revised
CNN activations.

2. CNN-Binarized. For each 4096-dimensional CNN
activation of an image patch, we set its k largest di-
mensions to one and the remaining elements to zero.
The feature representation for an image is the outcome
of max pooling on these binarized CNN activations.

For each of the above cases, we train a multi-class linear
SVM classifier in the one-vs-all fashion. The classifica-
tion accuracy achieved by each of the above strategies for a
range of k values is summarized in Table 1. In comparison,
our baseline feature, which is the outcome of max pooling
on CNN activations of all patches in an image, gives an ac-
curacy of 65.15%. Analysing the results in Table 1 leads to
2 conclusions:

1. Sparse. Comparing the performance of “CNN-
Sparsified” with that of the baseline feature, it is clear
that accuracy is reasonably high when using sparsified
CNN activations with only k non-zero magnitudes out
of 4096.

2. Binary. Comparing “CNN-Binarized” case with its
“CNN-Sparsified” counterpart, it is observed that
CNN activations do not suffer from binarization when
k is small, accuracy even increases slightly instead.

Conclusion. The above two properties imply that for an
image patch, the discriminative information within its CNN
activation is mostly embedded in the dimension indices of
the k largest magnitudes.

4. Mid-level deep pattern mining
In this section, we give details of the proposed MDPM

algorithm, an overview of which is provided in Fig. 2. We
start by introducing some important concepts and terminol-
ogy in pattern mining.

4.1. Pattern mining revisited

Frequent itemset. Let A = {a1,a2, . . . ,aK} denote a set
of K items. A transaction T is a subset of A, i.e., T ⊆ A.
We also define a transaction databaseD = {T1,T2, . . . ,TN}
containing N transactions (N is usually very large). Given
I , a subset of A, we are interested in the fraction of trans-
actions T ∈ D which contain I . The support value of I
reflects this quantity:

supp(I) =
|{T |T ∈ D,I ⊆ T}|

N
∈ [0,1], (1)

where |·|measures cardinality. I is called a frequent itemset
when supp(I) is larger than a predefined threshold.

Association rule. An association rule I → a implies a rela-
tionship between I and an item a. We are interested in how
likely it is that a is present in the transactions which con-
tain I withinD . In a typical pattern mining application this
might be taken to imply that customers who bought items in
I are also likely to buy item a, for instance. The confidence
of an association rule conf(I → a) can be taken to reflect



Figure 3. Mid-level visual elements from PASCAL VOC 2007 (top, two per category) and MIT Indoor (bottom, one per category) datasets.

this probability:

conf(I → a) =
supp(I ∪ {a})

supp(I)

=
|{T |T ∈ D,(I ∪ {a}) ⊆ T}|
|{T |T ∈ D,I ⊆ T}|

∈ [0,1].
(2)

In practice, we are interested in “good” rules, that is, the
confidence of these rules should be reasonably high.

Two strict requirements of pattern mining. As noted
in [31], there are two strict requirements that must be met if
we use pattern mining algorithms.

1. Each transaction can only have a small number of
items, as the potential search space grows exponen-
tially with the number of items in each transaction.

2. What is recorded in a transaction is a set of integers,
as opposed to the real-valued elements of most vision
features (such as SIFT and HOG for example).

4.2. Transaction creation

Transactions must be created before any pattern mining
algorithms can process. In our work, as we aim to discover
patterns from image patches through pattern mining, an im-
age patch is utilized to create one transaction.

The most critical question now is how to transform an
image patch into a transaction while maintaining most of
its discriminative information. In this work, we rely on
its CNN activation which has two appealing properties
(Sec. 3). More specifically, we treat each dimension index
of a CNN activation as an item (4096 items in total). Thanks
to two properties in Sec. 3, each transaction is then repre-
sented by the dimension indices of the k largest magnitudes
of the corresponding image patch.

This strategy satisfies both requirements given in
Sec. 4.1. Specifically, due to the sparse nature of CNN acti-
vations (sparse property in Sec.3), each integer vector trans-
action calculated as described contains only k items, and k
can be set to be small (20 in all of our experiments).

Following the work of [28], at the end of each trans-
action, we add a pos (neg) item if the corresponding im-
age patch comes from the target category (natural world).
Therefore, each complete transaction has k + 1 items, con-
sisting of indices of k largest CNN magnitudes plus one
class label. For example, if we set k equals three, given
a CNN activation of an image patch from the target cate-
gory which has 3 largest magnitudes in its 3rd, 100th and
4096th dimensions, the corresponding transaction will be
{3,100,4096,pos}.

In practice, we first sample a large number of patches
from images in both the target category and the natural
world. After extracting their CNN activations from caffe,
a transaction database D is created containing a large num-
ber of transactions created using the proposed technique
above. Note that the class labels, pos and neg, are repre-
sented by 4097 and 4098 respectively in the transactions.

4.3. Association rule mining

Given the transaction database D, we use the Aprior al-
gorithm [35] to discover a set of patterns P through asso-
ciation rule mining. Each pattern P ∈ P must satisfy the
following two criteria:

supp(P ) > suppmin, (3)
conf(P → pos) > confmin, (4)

where suppmin and confmin are thresholds for the support
value and confidence.



Representativeness and discriminativeness. We now
demonstrate how association rule mining implicitly satisfies
the two requirements of mid-level visual element discovery,
i.e., representativeness and discriminativeness. Specifically,
based on Eq. 3 and Eq. 4, we are able to rewrite Eq. 2 thus

supp(P ∪ {pos}) = supp(P )× conf(P → pos)

> suppmin × confmin,
(5)

where supp(P ∪ {pos}) measures the fraction of pattern P
found in transactions of the target category among all the
transactions. Therefore, values of supp(P ) and conf(P →
pos) above their thresholds ensure that pattern P is found
frequently in the target category, akin to the representative-
ness requirement. A high value of confmin (Eq. 4) will also
ensure that pattern P is more likely to be found in the target
category rather than the natural world, reflecting the dis-
criminativeness requirement.

5. Application to image classification

We now apply our MDPM algorithm to the image clas-
sification task. To discover patterns from a particular class,
this class is treated as the target category while all other
classes in the dataset are treated as the natural world. Note
that only training images are used to discover patterns.

5.1. Retrieving mid-level visual elements

Given the set of patterns P discovered in Sec. 4, finding
mid-level visual elements is straightforward. A mid-level
visual element V contains the image patches sharing the
same pattern P , which can be retrieved efficiently through
an inverted index. This process gives rise to a set of mid-
level visual elements V (i.e. V ∈ V).

We provide a visualization of some of the visual ele-
ments discovered by the MDPM in Fig. 3. It is clear that
image patches in each visual element are visually similar
and depict similar semantic concepts. An interesting obser-
vation is that visual elements discovered by the MDPM are
invariant to horizontal flipping.

5.2. Ensemble merging and training detectors

We note that patches belonging to different elements
may overlap or describe the same visual concept. To re-
move this redundancy, we propose to merge elements in an
iterative procedure while training element detectors.

Algorithm 1 summarizes the proposed ensemble merg-
ing procedure. At each iteration, we greedily merge over-
lapping mid-level elements and train the corresponding
detector through the MergingTrain function in Algo-
rithm 1. In the MergingTrain function, we begin by
selecting the element covering the maximum number of
training images, followed by training a Linear Discriminant

Algorithm 1: Ensemble Merging Pseudocode
Input: A set of partially redundant visual elements V
Output: A set of clean mid-level visual elements V ′

and corresponding element detectors D
Initialize V ′ ← ∅, Dc ← ∅;
while V 6= ∅ do

[Vt,d]← MergingTrain(V);
V ← V \ Vt;
V ′ ← V ′ ∪ { ∪

V ∈Vt
V };

D ← D ∪ {d};
end
return V ′, D;

Function MergingTrain(V)
Select V ∗ ∈ V which covers the maximum
number of training images;
Initialize Vt ← {V ∗}, S ← ∅ ;
repeat
Vt ← Vt ∪ S;
Train LDA detector d using Vt;
S ← {V ∈ V \ Vt|Score(V,d) > Th} where
Score(V,d) = 1

|V |
∑

x∈V dTx (Th is a
pre-defined threshold, x is a CNN activation of
an image patch in V );

until S = ∅;
return Vt, d;

Analysis (LDA) detector [36]. We then incrementally re-
vise this detector. At each step, we run the current detector
on the patches of all the remaining visual elements, and re-
train it by augmenting the positive training set with positive
detections. We repeat this iterative procedure until no more
elements can be added into the positive training set. The
idea behind this process is using detection score as a simi-
larity metric, much inspired by Exemplar SVM [37, 38].

The final output of the ensemble merging step is a clean
set of visual elements and their corresponding detectors.

5.3. Selecting and encoding

We can now use the learned element detectors to encode
a new image. There is a computational cost, however, asso-
ciated with applying each successive learned element, and
particular elements may be more informative when applied
to particular tasks. We thus now seek to identify those ele-
ments of most value to the task at hand.

In practice, we rank all of the elements in a class based
on the number of training images that they cover. We then
select the detectors corresponding to the elements which
cover the maximum number of training images, akin to
“maximizing coverage” in [2]. This process is then repeated
such that the same number of detectors are selected from



each class and stacked together.
To generate a feature representation for a new image, we

evaluate all of the selected detectors at three scales. For
each scale, we take the max score per detector per region
encoded in a 2-level (1× 1 and 2× 2) spatial pyramid. The
final feature representation of an image is the outcome of
max pooling on the features from all three scales.

6. Experiments
We test our algorithm on two image classification tasks,

scene classification and generic object classification.
Implementation details. For each image, we resize its

smaller dimension to 256 while maintaining its aspect ratio,
then we sample 128×128 patches with a stride of 32 pixels,
and calculate the CNN activations using caffe. Because
the number of patches sampled varies in different datasets,
two parameters suppmin and confmin in the association rule
mining (Sec. 4.3) are set according to each dataset with the
goal that at least 100 patterns are discovered for each cate-
gory. The merging threshold Th in Algorithm 1 (Sec. 5.2)
is set as 150. For training classifiers, we use the Liblinear
toolbox [39] with 5-fold cross validation.

6.1. Scene classification

The MIT Indoor dataset [34] contains 67 classes of in-
doors scenes. Verified by recent works on mid-level visual
element discovery, indoor scenes are better characterized
by the unique objects that they contain (e.g., computers are
more likely to be found in computer room rather than laun-
dry). We follow the standard partition of [34], i.e., approx-
imately 80 training and 20 test images per class. suppmin

and confmin are set as 0.01% and 30% respectively.

Comparison to methods using mid-level visual elements.
We first compare our approach against recent works on mid-
level visual element discovery (See Table 2). Using only 20
visual elements per class, our approach yields an accuracy
of 68.24%. Increasing the number of visual elements to 50
makes our performance increases to 69.69%, outperform-
ing all previous mid-level visual element discovery meth-
ods by a sizeable margin. As shown in Table 2, compared
with the work of Doersch et al. [2] which achieved best per-
formance among previous mid-level visual elements algo-
rithms, our approach uses an order of magnitude fewer ele-
ments than [2] (20 vs. 200) while outperforming it by over
4 percent in accuracy. Also, our approach surpasses a very
recent work RFDC [7] by over 15% in the same setting (50
elements per class). Thanks to the fact that CNN activa-
tions from caffe are invariant to horizontal flipping [22],
we avoid adding right-left flipped images (c.f . [3, 2]).

Ablation study. As we are the first to use CNN activation
for mid-level visual elements discovery, a natural question
is that what is the performance of previous works if CNN

Method #elements Acc(%)
D-patch [1] 210 38.10
BoP [3] 50 46.10
miSVM [5] 20 46.40
MMDL [6] 11 50.15
D-Parts [4] 73 51.40
RFDC [7] 50 54.40
DMS [2] 200 64.03
LDA-Retrained 20 58.78
LDA-Retrained 50 62.30
LDA-KNN 20 59.14
LDA-KNN 20 63.93
Ours 20 68.24
Ours 50 69.69

Table 2. Classification results of mid-level visual element discov-
ery algorithms on the MIT Indoor dataset.

Method Acc(%) Comments
CNN-G 57.74 CNN for whole image
CNN-Avg 65.77 average pooling
CNN-Max 65.15 max pooling
CNN-SVM [18] 58.40 OverFeat toolbox
VLAD level2 [22] 65.52 VLAD encoding
VLAD level3 [22] 62.24 VLAD encoding
VLAD level1&2 [22] 66.64 concatenation
MOP-CNN [22] 68.88 concatenation
CNN-jittered [40] 65.50 jittered CNN
CNN-finetune [40] 66.30 fine-tuned CNN
Places-CNN [41] 68.24 Places dataset used
SCFVC [42] 68.20 new Fisher encoding
CL-45C [43] 68.80 cross-layer pooling
Ours 69.69 MDPM (50 element)
Ours+CNN-G 70.46 concatenation

Table 3. Classification results of methods using CNN activations
on the MIT Indoor dataset.

activations are adopted. To answer this question, we imple-
ment two baselines using CNN activations as image patch
representations. “LDA-Retrained” initially trains Exemplar
LDA using a sampled patch and then re-trains the detector
10 times by adding top-10 positive detections as positive
training samples at each iteration. This is quite similar to
the “Expansion” step of [3]. Another baseline “LDA-KNN”
retrieves 5-nearest neighbors of an image patch and trains a
LDA detector using the retrieved patches (including itself)
as positive training data. For both baselines, discriminative
detectors are selected based on the Entropy-Rank Curves
proposed in [3]. As shown in Table 2, we report much bet-
ter results than both baselines in the same setting, which
verifies that the proposed MDPM is an essential step for
achieving good performance when using CNN activations
for mid-level visual element discovery.



Figure 4. Discovered mid-level visual elements and their corresponding detections on test images on the MIT Indoor dataset.

Comparison to methods using CNN activation. In Ta-
ble 3, we compare our approach to others in which CNN ac-
tivation is involved. Our baseline method, using fc6 CNN
activations extracted from the whole image, gives an accu-
racy of 57.74%. Our approach (based on the MDPM algo-
rithm) achieves 69.69% accuracy, which is a significant im-
provement over all the baselines. Our work is most closely
related to MOP-CNN [22] and SCFVC [43] in the sense
that all these works rely on off-the-shelf CNN activations
of image patches. To encode these local CNN activations,
MOP-CNN [22] rely on the classical VLAD encoding [44],
whereas SCFVC [43] is a new Fisher encoding [45] strategy
for encoding high-dimensional local features. Our encod-
ing method, which is based on the discovered visual ele-
ments, not only outperforms MOP-CNN [22] on 128× 128
and 64 × 64 patches by a noticeable margin (69.69% vs.
65.52% and 69.69% vs. 62.24%), also slightly bypasses
that of SCFVC (69.69% vs. 68.20%).

Fine-tuning has been shown to be beneficial when trans-
ferring pre-trained CNN models on the ImageNet to another
dataset [19, 20, 21]. Jittered CNN features (e.g., crops,
flips) extracted from the fine-tuned network of Azizpour et
al. [40] offer 66.3% accuracy, which is still below ours.

After concatenating with CNN activations of the whole
image (both normalized to unit norm), our performance in-
creases to 70.46%, outperforming all previous works using
CNN on this dataset.

Computational complexity. Given pre-computed CNN ac-
tivation from about 0.2 million patches, the baseline method
“LDA-Retrained” takes about 9 hours to find visual ele-
ments in a class. However, our approach only takes about
3 minutes (writing transaction file and association rule min-
ing) to discover representative and discriminative rules.

Visualization. We visualize some visual elements discov-
ered and their firings on test images in Fig. 4. It is intuitive
that the discovered mid-level visual elements capture the
patterns which are often repeated within a scene category.
Some of the mid-level visual elements refer to frequently
occurring objects configurations, e.g., the configuration be-
tween table and chair in the meeting room category. Some
instead capture a particular object in the scene, such as the
baby cot in the nursery and screen in the movie theater.

6.2. Object classification

The Pascal VOC 2007 dataset [46] contains 9,963 im-
ages from 20 object classes. For this dataset, training and
validation sets are utilized to discover patterns and training
final classifiers. The parameters suppmin and confmin are
set as 0.01% and 60% respectively.

Comparison to methods using CNN activation. Table 4
reports our results along with those of other recent meth-
ods based on CNN activation. On this dataset, when using
50 visual elements per class, the proposed method achieves



Figure 5. Discovered mid-level visual elements and their corresponding detections on test images on the PASCAL VOC 2007 dataset.

Method mAP(%) Comments
CNN-G 67.3 CNN for whole image
CNN-Avg 70.9 average pooling
CNN-Max 71.1 max pooling
CNN-SVM [18] 73.9 OverFeat toolbox
PRE-1000C [20] 77.7 bounding box used
CNN-jittered [40] 72.2 jittered CNN
SCFVC [42] 76.9 new Fisher encoding
CL-45C [43] 75.0 cross-layer pooling
Ours 75.2 MDPM (50 elements)
Ours+CNN-G 77.9 concatenation

Table 4. Classification results of methods using CNN activations
on the PASCAL VOC 2007 dataset.

75.2% mean average precision (mAP), significantly out-
performing the baseline that using CNN activations as a
global feature (67.3%), as well as its average pooling and
max pooling counterparts. Compared with state-of-the-arts,
Oquab et al. [20] fine-tune the pre-trained network on the
ImageNet, however, it relies on bounding box annotation
which makes the task easier, so it is not surprising that it
outperforms ours which does not use bounding box anno-
tation. The best result on PASCAL VOC 2007 (77.9%)
is achieved when the proposed MDPM feature and global
CNN activation are concatenated, marginally outperform-
ing fine-tuning with bounding box annotation [20]. This is

despite the fact that the bounding box annotations constitute
extra information which is time-consuming to gather.

Visualization. We visualize some visual elements discov-
ered and their firings on the test images of the VOC 2007
dataset in Fig. 5. It is clear that the discovered mid-level
visual elements capture some discriminative parts of object
(e.g., dog faces). It is worth noting here that “parts” have
been shown to be extremely important for state-of-the-art
object recognition, such as Deformable Part Models [47]
and Poselets [48].

7. Conclusion
We have addressed mid-level visual element discovery

from the perspective of pattern mining. In the process we
have shown not only that it is profitable to apply pattern
mining technique to mid-level visual element discovery, but
also that, from the right perspective, CNN activations are
particularly well suited to the task. This is significant be-
cause CNNs underpin many current state-of-the-art meth-
ods in vision, and pattern mining underpins significant ele-
ments of the state-of-the-art in Big Data processing.
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