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Abstract

Video segmentation has become an important and
active research area with a large diversity of pro-
posed approaches. Graph-based methods, enabling top-
performance on recent benchmarks, consist of three essen-
tial components: 1. powerful features account for object ap-
pearance and motion similarities; 2. spatio-temporal neigh-
borhoods of pixels or superpixels (the graph edges) are
modeled using a combination of those features; 3. video
segmentation is formulated as a graph partitioning prob-
lem. While a wide variety of features have been explored
and various graph partition algorithms have been pro-
posed, there is surprisingly little research on how to con-
struct a graph to obtain the best video segmentation perfor-
mance. This is the focus of our paper. We propose to com-
bine features by means of a classifier, use calibrated classi-
fier outputs as edge weights and define the graph topology
by edge selection. By learning the graph (without changes
to the graph partitioning method), we improve the results
of the best performing video segmentation algorithm by 6%
on the challenging VSB100 benchmark, while reducing its
runtime by 55%, as the learnt graph is much sparser.

1. Introduction
Video segmentation recently witnesses growing inter-

est [4, 5, 6, 9, 17, 26, 33, 35, 38, 39, 44, 49, 55, 59]. On the
one hand, this is motivated by its usefulness for applications
such as semantic scene understanding [26], activity recog-
nition [50], or geometric context classification [41]. In these
cases, organizing a video into spatio-temporal tubes allows
the joint consideration of appearance and motion, while re-
ducing the search space for the solution. On the other hand,
video segmentation poses interesting research questions. In
addition to the scene and scale ambiguities of image seg-
mentation [3, 16, 25, 42], various parts of the scene will
change over time as well as appear or disappear.

Graph-based approaches are among the top-performing
methods for video segmentation [21, 17, 32, 7, 38, 44, 56,

BPR Video GT

VPR Galasso et al. ’14 [19] Proposed [L(G)]

Figure 1: Climbing up! We consider state-of-the-art features for
the computation of superpixel similarities and the graph partition-
ing theory of recent work [19]. We contribute theory and best-
practices for graph construction and set a new state-of-the-art per-
formance on the challenging VSB100 [20] (BPR and VPR re-
ported here, more details in Section 4.)

19]. The use of graphs is long established in segmenta-
tion [45, 3, 25, 11, 21, 35, 7, 38, 47]. Graphs provide a nat-
ural representation of image/video sequences, where edges
encode the spatio-temporal structure, and allow long-term
reasoning due to their transitivity property. Graph-based
video segmentation techniques: 1. compute features among
pairs of pixels or superpixels; 2. design a graph according
to the spatio-temporal neighborhood of the pixels or super-
pixels and manually combine features to weight its edges;
3. partition the graphs with spatio-temporal clustering.

Previous work has used a variety of features and has pro-
posed various graph partitioning algorithms. However, we
argue in this paper that constructing the underlying graph
is a crucial step for best performance of such graph-based
methods that has received little attention in the literature.
This paper therefore explicitly addresses the problem of
graph construction. We propose and empirically evaluate
procedures and validation-based best practices to learn both
the edge topology and weights. Our contribution includes
1. using a classifier for learning the pairwise similarities
between superpixels, leveraging the recent availability of
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a larger training set for video segmentation [20]; 2. using
different classifiers for differently-neighboring superpixels
(within the same frame or across time) and further conside-
ring the neighboring topology (superpixels directly neigh-
boring or connected by longer-term links); 3. calibrating the
confidence of the various classifiers with their classification
accuracy; 4. selecting edges based on the classifier confi-
dence which, while further improving the quality, also re-
duces the graph size and thus the computational load. These
topics are respectively treated in Section 3.

In Section 2 we present the features and the graph par-
titioning model we use. The proposed approach based on
learning allows the seamless integration of multiple features
from recent literature [7, 3, 38, 19]. We build upon the graph
partitioning model of [19] based on spectral clustering and
show that addressing the graph construction explicitly helps
to achieve better performance (cf. Fig. 1) without altering
the graph partitioning or the underlying features.
Related Work: Meaningful features are necessary for good
video segmentation. Much literature [7, 21, 38, 18] has pro-
posed features for appearance, motion or shape similarities
among the graph nodes. Most works are currently limited
in the number of features they can leverage, as often the re-
searchers hand-design the feature combination to measure
similarity between pixels or superpixels. In this work we
learn classifiers to combine features and seamlessly inte-
grate them.

Much research has been devoted to graph partitioning
models [12, 56, 35, 2, 10, 26, 19]. While measurable dif-
ferences have been observed we intentionally focus on the
graph construction problem instead. Therefore, we adopt
the recent and successful graph partitioning model [19],
which is based on spectral clustering [36, 45, 7, 17, 47].
However, our proposed graph construction is directly appli-
cable to other graph-based techniques (see Sec. 4).

Constructing the graph is a vital step for ensuring the per-
formance of clustering methods [34, 27] Although graph-
based methods have been extensively studied, there have
been limited efforts for building effective graphs. The most
popular method for constructing a sparse graph is the near-
est neighbor (NN) approach, including different variants
such as k-nearest neighbor and ε-nearest neighbor meth-
ods. Another contender approach is the b-matching pro-
cedure [28], which prunes graph edges such that the degree
of each node is b, producing a more balanced variant of k-
nearest neighbor. Several works explored semi-supervised
learning of the graph [27, 1], i.e. learning the graph from
its partial labelling. By contrast our method is applied to
unlabeled test-set videos.

To the best of our knowledge, graph construction based
on classifier-learnt combination of features is novel in video
segmentation. While learning the edge weights of the graph
has been exploited in image segmentation [43, 51, 30], our

work addresses the topology of the graph, raising novel is-
sues, such as weight-calibration and edge-selection, which
we discuss in Section 3. Learning the topology provides
larger performance gains and benefits efficiency due to a
sparser structure of the constructed graph.

2. Graph-based video segmentation
Let us represent a video sequence as a graph G = (V, E).

Nodes i ∈ V are superpixels, extracted at each frame from
a specific hierarchical level of an image segmentation algo-
rithm [3]. Following [19], we do not consider the lowest
level (finest superpixels), but rather extract them by thresh-
olding the ultrametric contour map (ucm) at a higher value
(0.12), whereby fewer of them (larger superpixels) provide
a comparable model error.

Edges of the graph eij ∈ E connect pairs of superpixels
i and j with non-negative weight wij , which expresses their
similarity. Following [21, 32, 18, 38], edges may connect
neighbors:
within frame: i and j are neighbors if they share a common
part of their superpixel contour or are close by in the spatial
domain of the frame;
across 1 frame: connected by coordinate correspondences
over time;
across 2 frames: connected by across-1 correspondences,
further propagated over one more frame;
across > 2 frames: linked if overlapping with common
long-term point trajectories.

Graph based video segmentation proceeds in three main
steps:
1. Feature computation. Depending on the edge type, a
number of features are available to compute the similar-
ity between superpixels. For example, superpixels on the
same frame may be related by the strength of the image
segmentation boundary between them (aba) and by the χ2

distance between their color histograms (staχ2 ); if neigh-
boring across frames, just staχ2 applies (see Sec. 3.1 and
Tab. 1 for more details).
2. Graph construction. State-of-the-art approaches use
edges eij if the two superpixels are neighbors, either within
or across frames. Then, they compute edge weights wij by
combining the similarities from the applicable features lin-
early. Current video segmentation literature [7, 21, 18, 38]
sets the combinations manually on a validation set.
3. Graph partitioning. Video segmentation S is defined as
a partition S = {S1, S2, . . . , SK} of the vertex set V , i.e.
∪kSk = V, Sk ∩ Sm = ∅ ∀ k 6= m. Given S the set of
all partitions, graph partitioning looks for the optimal video
segmentation S∗ = {S∗1 , S∗2 , . . . , S∗N} ∈ S (where N is
the number of visual objects) which minimizes an objective
function, implicitly [21, 57, 40] or explicitly [45, 36, 53, 9].

Different tot state-of-the-art literature, our work focuses
on the graph construction. Since we use discriminatively



trained classifiers to combine features, we name ours a
learnt graph L(G). Furthermore, we investigate graph
topology, classifier output confidence mapping and edge se-
lection in detail in Section 3.

In the rest of this Section, we present the features which
we use, from state-of-the-art video segmentation, and the
graph partitioning model which we adopt, based on spectral
clustering and the graph-equivalent reweighting from [19].
We use the publicly available code of [19] for the original
graph construction and partitioning method.

2.1. Superpixel features

Adopting learning allows to seamlessly integrate an ar-
bitrary number of features into the computation of the graph
edge weights, letting the classifier work out the optimal
combination. We consider 14 features from state-of-the-
art video segmentation [24, 7, 3, 18, 38, 19], which apply
to superpixels. We present them by grouping appearance,
motion and shape features.

Appearance Based Features
Across boundary appearance [aba]. This measures simi-
larity in the close vicinity of the common boundary between
two superpixels if and jf by averaging the common bound-
ary strength (here and in the following we explicitly indicate
the frame f which the superpixel belongs to for clarity). We
take vijf the average ultrametric contour map of [3] as a mea-
sure of the boundary strength between i and j and define:
aba(if , jf ) = vijf .
Spatio-temporal appearance [sta, staχ2 ]. This uses
the distance between the median brightness and color
of a superpixel in Lab-color-space as a measure of the
overall similarity among two superpixels i and j, from
the same or different frames f and f ′: sta(if , jf ′) =
exp

{
−λsta‖Labif − Labjf′‖

}
.

Similarly staχ2 measures the overall appearance similar-
ity using Lab (8-bin) color histograms and their χ2 distance:
staχ2(if , jf ′) = exp

{
−λstaχ2dχ2(h(Labif ), h(Labjf ))

}
.

Texture [text, textχ2 ]. Texture information may
be encoded (cf. [24] for more details) with (a sub-
set of) the textons designed by Leung and Ma-
lik [31]. We consider the L2 distance between
the mean absolute filter responses text(if , jf ′) =
exp

{
−λtext‖T if − T jf′‖

}
and the chi-squared distance

between the histograms of maximum filter responses
textχ2(if , jf ′) = exp

{
−λtextχ2dχ2(h(Tif ), h(Tjf ))

}
.

Size ratio [size]. We further consider the relative size dif-
ference of superpixels as an indication of appearance simi-
larity size(if , jf ′) =

∣∣|if |−|jf ′ |
∣∣/max{|if |, |jf ′ |}.

Motion Based Features
Across boundary motion [abm]. We consider an optical
flow estimate [58], which we smooth spatially (preserving
the across-superpixels boundaries with bilateral filtering)

and temporally (median filtered ±2 frames). The resulting
uf (x) (simply indicated as uf in the following) allows
to compute the motion similarity in the vicinity of the
boundary between two superpixels by averaging their uf

distance across the common boundary ψijf : abm(if , jf ) =

exp
{
−λabm

(∑
(xmi ,x

m
j )∈ψijf

‖uf (xmi )− uf (xmj )‖2
)
/|ψijf |

}
.

Spatio-temporal motion [stm, stmχ2 ]. This measures the
overall motion similarity between two superpixels if and
jf ′ based on their median optical flow u: stm(if , jf ′) =
exp

{
−λstm‖uif − ujf′‖

2
}

.
Similarly, we may compute the similarity with

the χ2 distance between the superpixel opti-
cal flow (22 bin) histograms: stmχ2(if , jf ′) =
exp

{
−λstmχ2dχ2

(
h(uif ), h(ujf′ )

)}
.

Spatial distance [sd]. As a measure of motion-
displacement, we additionally consider the spatial distance
between centroids of superpixels cif and cjf′ across frames:
sd(if , jf ′) =‖cif − cjf′‖.

Shape Based Features

Short term temporal [stt]. We measure the shape sim-
ilarity by comparing mjf′ the shape (its binary mask m)
of a superpixel j at frame f ′ with the shape of if propa-
gated with optical flow to frame f ′ (its projected maskmf ′

if
).

stt is given by the Dice coefficient between the true mjf′

and optical-flow-projected mf ′

if
binary mask: stt(if , jf ′) =

2
∣∣mf ′

if

⋂
mjf′

∣∣/(∣∣mf ′

if

∣∣+∣∣mjf′

∣∣).
Long term temporal [ltt, cit, td]. In a similar spirit to
stt, ltt measures the similarity between superpixels if and
jf ′ which belong to frames potentially further in time from
each other (f ′ = f + m, m ∈ (0, F ] where F scales
up to the whole length of the video sequence). We con-
sider the dense point trajectories of [46] as a measure of the
shape (binary mask) projection. Let Φif be the subset of
trajectories intersecting superpixel if . The similarity is the
Dice measure between the intersection sets Φif and Φjf′ :
ltt(if , jf ′) = 2

∣∣Φif ⋂Φjf′ ∣∣/(∣∣Φif ∣∣+∣∣Φjf′ ∣∣).
We additionally provide the classifier with the number

of common intersecting trajectories (the fewer dense tracks
are available, the less it should rely on ltt as a reliable shape
similarity): cit(if , jf ′) =

∣∣Φif ⋂Φjf′ ∣∣ and temporal dis-
tance between superpixels td(if , jf ′) =|f − f ′|.

2.2. Graph partitioning

We consider the graph partitioning model of [19],
currently performing best on VSB100 [20]. The ap-
proach seeks to determine the graph partition S =
{S1, S2, . . . , SN} (complete and disjoint ∪kSk = V, Sk ∩
Sm = ∅ ∀ k 6= m) which is optimal according to the



normalized cut (NCut) objective:

NCut(S1, . . . , SN ) =

N∑
k=1

cut(Sk,V\Sk)

vol(Sk)
, (1)

where cut(Sk,V\Sk) =
∑
i∈Sk,j∈V\Sk wij and vol(Sk) =∑

i∈Sk,j∈V wij .
Following established literature [45, 36, 54, 11, 7, 3, 48,

47, 14, 18, 17, 35, 19], we consider the spectral relaxation
of the NCut problem (otherwise NP-Hard):

min
T

Tr(T ′LsymT ) subject to TT ′ = I, T = D
1
2H, (2)

where H is the matrix containing indicator vectors hi,
Lsym = I − D−

1
2WD−

1
2 is the normalized graph Lapla-

cian, W is the matrix containing the pairwise affinities wij
and D is the diagonal degree matrix with dii =

∑
j∈V wij .

The solution of (2) is provided by matrix T which contains
the first k eigenvectors Lsym as columns.

As theoretically and empirically relevant to good perfor-
mance, we reweight the affinities wij , as [19] suggests, by
the number of fine superpixels to wQIJ (cf. [19] for more
details):

wQIJ =


∑
i∈I

∑
j∈J

wij if I 6= J,

1

|I|
∑
i∈I

∑
j∈J

wij −
(|I| − 1)

|I|
∑
i∈I

∑
j∈V\I

wij if I = J.
(3)

2.3. VSB100: Learning, Validating and Testing

[20] has recently introduced VSB100: a challenging
video segmentation benchmark based on the HD quality
videos from [48], the boundary precision-recall (BPR) met-
ric from [3] and a volume precision-recall metric (VPR)
that reflects the properties of a good video segmentation,
such as temporal consistency. Besides the PR curves, we
report aggregate performance for BPR and VPR: optimal
dataset scale [ODS], optimal segmentation scale [OSS], av-
erage precision [AP]. (We additionally report the length and
number of clusters (NCL) statistics.)

The 100 videos are arranged into train (40) and test (60)
set. We further split the training set into a training and vali-
dation sets, where 24 video sequences are used for learning
the classifier and 16 videos are used for validation of the
parameters. We compare with state-of-the-art on the whole
test set.

3. Graph construction
Here we discuss the proposed graph construction L(G).

First we consider learning for estimating the edge weights
and the importance of topology in the setup of different
classifiers. Then we consider calibration of classifier scores
based on their reliability. Finally, we discuss edge selection,
for a sparse efficient graph. We conduct these experiments
on the training and validation sets.

3.1. Learning superpixel affinities

Let us consider the graph G = (V, E), as introduced in
Section 2, composed of superpixel nodes, connected over
their spatio-temporal neighborhoods.

We propose the use of a classifier to learn the edge
weights. To this end, we harvest from the training set pairs
of superpixels connected by an affinity and provide them to
a classifier along with their ground truth labelling (the in-
dication whether two superpixels belong to the same video
segment or not). Random Forest is used for learning.

There are four superpixel edge types: within, across 1,
across 2 and across > 2 frames. While a single classifier
should suffice for all, in our first experiments it turned out
that its performance is extremely poor. By contrast, the use
of multiple classifiers is beneficial. We attribute this to data
unbalance (the edges within frames are the vast majority)
and to scarcity of training samples (esp. compared to the
large image and video variability).

We set therefore to consider four classifiers for the four
edge types. The corresponding available features are:
within: sta, staχ2 , stm, stmχ2 , aba, abm, sd, text,
textχ2 , size;
across 1: sta, staχ2 , stm, stmχ2 , stt, sd, text, textχ2 ,
size;
across 2: ltt, cit, stt, sd, text, textχ2 , size;
across > 2: ltt, cit, sd, td, size.

In our experience the Random Forest classifier profits
from removing redundant or irrelevant features. Therefore
for each affinity type we validate the subset of features
to improve the model. The maximum set which we con-
sider consists of 10 features (within frame), therefore we
can test each possible combination finding the one which
maximizes the average precision of the classifier. This is
an exhaustive search of the feature space, however in this
particular setting it is computationally tractable as the fea-
ture set is quite small. We train a new classifier for each
subset of features and validate the performance on a subset
of the validation set. The best performing feature sets for
each affinity type are reported in Table 1. Our findings on
the importance of each feature for each affinity type are in
agreement with [18] (the most contributive are highlighted
in bold in the table).

Affinity type Set of features
i. within frame {sta, staχ2 , stm, stmχ2 , aba,

abm, sd, text, textχ2 , size}
ii. across 1 frame {sta, staχ2 , stm, stt, sd, text,

textχ2 , size}
iii. across 2 frames {ltt, cit, stt, sd, size}
iv. across > 2 frames {ltt, cit, sd, td}

Table 1: Set of features for learning.

Our experiments confirm that only considering pairs of



a. Within b. Across 1

c. Across 2 d. Across > 2

Figure 2: Affinity scores designed by [18] vs learned affinities.

superpixels in the training set which have at least 60% over-
lap with ground truth objects improves results, as also noted
in [37, 41]. Further stricter thresholds do not benefit the per-
formance and also reduce the number of training samples.

In Figure 2, we plot precision-recall curves comparing
our learnt affinities against the original ones of [18], for
which weighted-product combinations of motion, appear-
ance and shape features were hand-tuned. Note that the im-
provement of our curve (red) is particularly prominent at the
high-precision regimes. High precision scores are important
as they correspond to decisions taken with most confidence,
thus most detrimental to the graph partitioning when wrong.

Implementation details. We use the Random Forest im-
plementation of [15]. The number of features to sample for
each node split is set to

√
F, where F is the dimensionality

of the feature space. As weak learners we use binary split
functions, and the maximum tree depth is set to 50. Split
thresholds are chosen to optimize the Gini impurity. The
minimum number of data points required to split a node in
the tree is set to 15. Ensemble averaging is used to fuse
the predictions of trees. Other parameters, such as num-
ber of trees [250, 350, 150, 300] and minimum number of
data points allowed at leaves [10, 15, 5, 15] are validated on
the subset of the validation data and differs for each affinity
type, depending on the dimensionality of training sets.

3.2. Topology of the graph

Note from Figure 2 the arguable overall performance
(red curves) of the affinities learnt for the across 1
(Fig. 2(b)) and the across 2 type (Fig. 2(c)). The across
1 type have 55% precision (we take the overall precision at
100% recall). These have therefore 55% chance of correct-

Figure 3: Performance of affini-
ties, defined by the original
graph topology [19].

Figure 4: Calibration of classi-
fier scores.

ness compared to 82% of the across 2 type learnt affinities.
The across 1 affinities should ideally be more accurate, as
they connect superpixels closer in time.

Let us take a closer look into the graph topology of [19],
i.e. the edge connectivity E . In the case of connectivity
between superpixels within or across 1 frame, the graph
is densified by using edges among neighboring superpix-
els (we call these layer-1 neighbors) and among more dis-
tant superpixels which share the same neighbor (we name
these layer-2 neighbors). While the across 1 type affinities
consider both direct temporal neighbors (best temporally-
matching superpixel edges, according to optical flow prop-
agation) and layer-2 neighbors, the across 2 type affinities
only consider layer-1 neighbors.

We propose to treat the topologically different neighbors
separately, which we illustrate in Figure 3, whereby we plot
precision-recall curves for all types of our learnt affinities.
We separate the two topologies both for the within and the
across 1 type and re-learn separate classifiers. The results
in Figure 3 show that now the layer-1 across 1 affinities
reaches the overall performance (85%) of the across 2 affin-
ity, and the corresponding performance of the within type
also raises to 80%. As for the across 2 type, also the across
> 2 type only has layer-1 neighbors and is therefore not
affected by the topological procedure.

Taking into account the topology of the graph increases
performance and improves the edge-selection procedure
(cf. Sec. 3.4). Treating separately the two neighbor layers,
video segmentation performance increases (on the valida-
tion set) by 2% on the BPR and 3% on the VPR measures
of VSB100 [20] (cf. Fig. 5). (These experiments are con-
ducted by changing the topology of the graph and selecting
edges with precision higher than 97% for all affinity types.)

3.3. Calibration of classifier outputs

An ideal subsequent processing of the graph would be
the selection of the most likely edges (assuming that these
be correct) and the deletion of wrong ones. This is desir-
able because it sparsifies the graph and reduces the chance
of segmentation errors. For this purpose the classifier scores
should correspond to the confidence measure of two super-



BPR VPR Length NCL
BPR VPR Length NCL

Algorithm ODS OSS AP ODS OSS AP µ(δ) µ

Galasso et al. CVPR’14 [19] 0.46 0.49 0.37 0.54 0.61 0.56 75.94(46.39) 60
Galasso et al. CVPR’14 [19] + edge selection 0.47 0.51 0.37 0.57 0.62 0.57 74.14(46.26) 70
Proposed [L(G)] + calibration 0.49 0.53 0.36 0.59 0.65 0.59 96.83(34.42) 50
Proposed [L(G)] + calibration + topology 0.51 0.54 0.38 0.62 0.67 0.62 97.85(33.55) 60
Proposed [L(G)] + calibration + edge selection 0.52 0.57 0.44 0.65 0.70 0.64 94.23(37.59) 20
Proposed [L(G)] + calibration + topology + edge selection 0.52 0.58 0.44 0.66 0.70 0.65 96.34(37.24) 20

Figure 5: Comparison of the proposed graph learning method with the baseline algorithm of [19], on the validation set of VSB100 [20].
The plots and table show BPR and VPR measures, aggregate performances ODS, OSS and AP, and length statistics (mean µ, std. δ, no.
clusters NCL) (cf. Sec. 3.4 for details).

pixels being merged together. However, the classifier out-
puts for different affinity types have different ranges and
provide different confidence levels.

We propose a probabilistic interpretation of the learnt
scores and to calibrate the classifier outputs based on their
performance on the validation set. We define a linear map-
ping Π : S 7→ P , such that the classifier score s is approxi-
mated by its precision value p. We mean by precision p the
ratio of true positive edges among all weights higher than
or equal s. Precision is taken as a proxy to the true posterior
probability (affinity between two nodes).

For each affinity type we estimate its own calibration
function, which is illustrated in Figure 4. This calibration is
an easier interpretation of the classifier outputs and serves
to align the scores to their quality. This is important when
combining multiple classifiers, as also noted in [22].

The calibration of classifier outputs is not dependent on
the choice of the learning algorithm. The proposed proce-
dure provides a way to encode edge weights and in our ex-
perience can help to improve the clustering performance.
The calibrated classifier output scores are used as edge
weights in the graph.

3.4. Edge selection

Following the argument of the previous section, we now
modify the graph structure by reducing the number of edges
and selecting the ones with high confidence. Each affinity
type is thresholded with some confidence level, reducing the
number of temporal and spatial edges in the graph. The goal

is to have a connected graph with a minimal set of the most
certain edges, as for maximal sparsity and the least chance
of segmentation error.

For finding the optimal thresholds for each affinity type
grid search is applied. We find the confidence levels for
four affinity types which provide the best performance on
the validation set. We measure the performance as the sum
of F-measures (ODS, OSS) and AP for BPR and VPR me-
tric. We restrict the candidate space of the thresholds for
each affinity type to [0.5;1], as the goal is to leave the most
confident edges which have at least 50% precision. Edge
selection turns out to be essential for best performance, cf.
the next discussion.

We also explored other procedures for edge selection,
such as kNN, but they all underperform by large mar-
gins. Our edge selection produces a potentially unbalanced
(nodes have different number of neighbors) but better graph.

3.5. Discussion

In Figure 5, we analyze how the learnt graph [L(G)] and
the proposed steps improve on the (validation) performance,
with respect to the baseline algorithm of [19].

Given a learnt and calibrated graph (3rd row), topol-
ogy improves 2.2% (4th row, average improvement over
all six measures) while edge selection improves 5.2% (5th
row). Edge selection is thus more important than topol-
ogy. Adding topology on top of edge selection further con-
tributes 0.5%. The importance of edge selection contrasts
previous literature [43, 51, 30], all concerned with edge



BPR VPR Length NCL
BPR VPR Length NCL

Algorithm ODS OSS AP ODS OSS AP µ(δ) µ

Human 0.81 0.81 0.67 0.83 0.83 0.70 83.24(40.04) 11.90
Grundmann et al. [21] 0.47 0.54 0.41 0.52 0.55 0.52 87.69(34.02) 18.83
Galasso et al.’12 [18] 0.51 0.56 0.45 0.45 0.51 0.42 80.17(37.56) 8.00
Segm. propagation [20] 0.61 0.65 0.59 0.59 0.62 0.56 25.50(36.48) 258.05
Galasso et al.’14 [19] 0.62 0.66 0.54 0.55 0.59 0.55 61.25(40.87) 80.00
Khoreva et al.’14 [29] 0.61 0.66 0.52 0.58 0.61 0.58 51.72(39.90) 176.65
Proposed [L(G)] 0.64 0.70 0.61 0.63 0.66 0.63 83.41(35.27) 50.00

Figure 6: Comparison of state-of-the-art video segmentation algorithms with our proposed method on the test set of VSB100 [20] (cf.
Sec. 4 for details).

BPR VPR Length NCL
Algorithm ODS OSS AP ODS OSS AP µ(δ) µ

Galasso et al.’14 [19] - 1–SC [8, 23] 0.61 0.64 0.52 0.55 0.60 0.54 69.80(42.26) 19.00
Proposed [L(G)] - 1–SC [8, 23] 0.63 0.69 0.63 0.60 0.65 0.59 78.75(38.49) 25.00
Galasso et al.’14 [19] - GRACLUS [13] 0.59 0.64 0.51 0.34 0.46 0.31 52.35(38.20) 15.00
Proposed [L(G)] - GRACLUS [13] 0.62 0.67 0.52 0.54 0.60 0.53 94.85(28.43) 18.00
Galasso et al.’14 [19] - MCL [52] 0.59 0.64 0.45 0.40 0.46 0.37 34.80(38.30) 37.32
Proposed [L(G)] - MCL [52] 0.64 0.68 0.39 0.58 0.59 0.59 31.44(46.83) 68.78

Table 2: General applicability of the proposed graph construction. We have tested different clustering methods with the graph of [19] and
our learnt graph. In all cases the learnt graph yields better performance and thus generalizes beyond the employed spectral clustering.

weights.
To further test the importance of edge selection, we have

applied this to the baseline algorithm of [19] (1st and 2nd
rows). The improvement is only marginal (1.3%). We con-
clude therefore that a pre-requisite for successful edge se-
lection is weight calibration plus the good performance of
the classifier in the high precision regime (see Fig. 2).

4. Comparison with state-of-the-art video seg-
mentation methods

In Figure 6 we compare the proposed method to the
baseline [19] and state-of-the-art video segmentation algo-
rithms [21, 18, 20, 29] on the test set of VSB100 [20]. We
consider the graph [L(G)] with the learnt topology and edge
weights proposed in Section 3.

The proposed method improves the performance of [19]
on both BPR and VPR by a large margin, as it appears both
in the plots and the tables (average improvement of 4% in
BPR and 8% in VPR, 6% on all measures). We outperform

all recent video segmentation algorithms and the challeng-
ing segmentation propagation baseline [20].

The proposed graph construction however is directly ap-
plicable to other graph-based techniques. We have tested
different graph partitioning methods [8, 23, 13, 52] with
the graph of [19] and our learnt graph, the results are pre-
sented in Table 2. For all three tested methods our learnt
graph improves significantly the performance both on BPR
and VPR (up to 6–10% on average). This shows that our
graph construction generalizes beyond the employed spec-
tral clustering technique. Note that the 1-spectral clustering
approach [8, 23] outperforms spectral clustering in terms of
AP with respect to BPR while being worse on VPR.

Regarding runtime, the efficiency of the algorithm de-
pends on the number of superpixels n (nodes in the graph).
The (test-time) Random Forests classification runtime is
negligible with respect to feature computation and graph
partition. In spectral clustering, the bottleneck is the eigen-
decomposition: the Lanczos method has complexityO(kE)



Video GT [21] [18] [20] [19] [L(G)]

Figure 7: Comparison of video segmentation results of algorithms [21, 18, 20, 19] and our proposed method [L(G)] to one of ground
truths [20]. We report for each algorithm the coarse-to-fine segmentation level with best performance in VPR. Our approach qualitatively
improves on the algorithm [19], better discriminating visual objects with less number of clusters (cf. Sec. 4 for details).

Video GT [21] [18] [20] [19] [L(G)]

Figure 8: Failure cases for the algorithms [21, 18, 20, 19] and the proposed graph learning method [L(G)]. All methods fail to correctly
discern objects, oversegmenting the foreground and background due to the misleading appearance differences and textured background.

and the iteration number scales with ∼ logE (k the num-
ber of eigenvectors and E the number of edges in the graph,
which scales linearly with n, approx. ∼ 366n). In our graph
due to the edge selection procedure the average number of
edges is reduced to 15% and the constructed graph is much
sparser, hence the reduction in runtime of 55% with respect
to [19]. E.g. runtime of “soccer” reduces from 4.8 min to
2.9 min, “hippo fight” from 9.3 min to 4.4 min.

We illustrate qualitative results, comparing in Figure 7
our proposed algorithm to state-of-the-art video segmenta-
tion methods [21, 18, 20, 19]. Figure 7 supports the posi-
tive quantitative results. The proposed approach allows to
better distinguish visual objects with well-localized bound-
aries and limited label leakage. Segmentations provided
by our method capture better motion and appearance self-
contained within the objects, distinguishing the homoge-

neous areas of foreground and background with less number
of clusters. However, a failure cases show further potential
for improvement (see Figure 8).

5. Conclusions

In this paper we addressed the classifier based graph con-
struction procedure for video segmentation. We proposed
an empirical approach to learn both the edge topology and
weights of the graph. While combining well-established
features by means of a classifier and calibrating the clas-
sifier scores by its accuracy we alter the graph structure se-
lecting the most confident edges. Our method of learning
the graph helps to improve both performance on the chal-
lenging VSB100 benchmark as well as efficiency without
changing the graph partitioning model.
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