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Abstract

In this paper, we propose a novel uncalibrated photomet-
ric method for refining depth maps of multi-albedo objects
obtained from consumer depth cameras like Kinect. Exist-
ing uncalibrated photometric methods either assume that
the object has constant albedo or rely on segmenting images
into constant albedo regions. The method of this paper does
not require the constant albedo assumption and we believe
it is the first work of its kind to handle objects with arbitrary
albedo under uncalibrated illumination. We first robustly
estimate a rank 3 approximation of the observed bright-
ness matrix using an iterative reweighting method. Sub-
sequently, we factorize this rank reduced brightness matrix
into the corresponding lighting, albedo and surface normal
components. The proposed factorization is shown to be con-
vergent. We experimentally demonstrate the value of our
approach by presenting highly accurate three-dimensional
reconstructions of a wide variety of objects. Additionally,
since any photometric method requires a radiometric cali-
bration of the camera used, we also present a direct radio-
metric calibration technique for the infra-red camera of the
structured-light stereo depth scanner. Unlike existing meth-
ods, this calibration technique does not depend on a known
calibration object or on the properties of the scene illumi-
nation used.

1. Introduction
Depth maps from structured-light stereo depth cameras

like Kinect suffer from very high noise and poor resolution.
As a result, fine-scale (high frequency) structural details
of an object are not captured by such depth cameras. The
requisite high frequency details can be obtained through
methods that make radiometric measurements such as
shape-from-shading [14, 25, 7] or photometric stereo [21],
which can then be fused with the low quality depth maps to
obtain high quality shape estimates. Since the literature on
shape-from-shading and photometric stereo is enormous,
in the following we restrict our discussion of the relevant

literature to our specific context of fusing depth and
radiometric estimates of normals [23, 9, 18, 10, 5]. These
methods can broadly be classified into two categories:
shape-from-shading approaches that use only one intensity
image [23, 9, 5] and photometric stereo methods that rely
on observations under varying lighting conditions [18, 10].
While acquiring a single image is simpler and faster, shape-
from-shading suffers from intrinsic ambiguities including
multiple solutions even for known lighting [3, 8] and is
generally restricted to objects of constant albedo. Often it
is difficult to distinguish between changes in albedo from
changes in the surface normal using only a single image.
While the methods in [23, 5] segment observed images
into regions of constant albedo, this is very restrictive
since many objects have continuously varying albedo or
have small regions with a different albedo that makes the
segmentation task difficult or impossible.

By using multiple images acquired under different light-
ing conditions, photometric stereo can overcome the ambi-
guities suffered by shape-from-shading. In this paper, we
propose a novel photometric method for recovering the sur-
face normals of multi-albedo objects that are then fused
with the depth estimates from Kinect to result in a depth
refinement method that accurately recovers the 3D object
shape. In our work, we use the infra-red (henceforth IR)
camera of Kinect for radiometric measurements as was
done in [5, 10]. While [18, 10] also use the principles
of photometric stereo for normal estimation, their methods
make the restrictive assumption that the objects have a sin-
gle albedo. While the normal estimation step of [10] is in-
dependent of albedo, their lighting estimation step assumes
constant albedo. Thus, for multi-albedo objects the normal
estimates and final refined depth estimates are poor. [18]
uses the uncalibrated photometric stereo method proposed
in [11]. While solving the linear ambiguity in the factoriza-
tion of observed radiometric brightness, [18] uses a constant
albedo assumption. In contrast, in our approach detailed in
Section 3.2 we make no such restrictive assumption. While
solving for the linear ambiguity of factorization of bright-
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(a) Schematic inverse response (b) Calibrated irradiance function (c) Deviation from linear model

Figure 1. Radiometric calibration of IR camera. See the text for more details.

ness matrix, instead of assuming constant albedo, we min-
imize a novel cost which is a function of the normals esti-
mated from the raw Kinect depth map and those obtained
using photometric stereo. This minimization is carried out
iteratively. We analytically prove in Section 3.5 that our
iterative method is convergent in the noise free case and
demonstrate that it is convergent for real data under a wide
range of conditions. Finally, as mentioned in Section 4, we
use a fusion technique that combines depth and normal es-
timates to create high quality 3d shape representations of
objects.

2. Radiometric Calibration of Kinect’s IR
Camera

Radiometric calibration of the IR camera is an important
prerequisite for any photometric estimation that relies on
radiometric measurements. In [5], radiometric calibration
is done by comparing predicted and observed brightness of
a Lambertian sphere under controlled illumination. This
approach demands that a perfectly Lambertian surface
with known geometry be used in combination with a well
calibrated illumination source. To overcome the limitations
of such an approach, we propose a radiometric calibration
method which does not depend on knowledge of either
the reflectance of the observed surface or the illumination
source. In the schematic function shown in Figure 1(a),
the horizontal axis represents the measured brightness (i.e.
pixel intensity measured in the IR camera) and the vertical
axis represents the actual amount of light received by the
IR camera, i.e. g(·) is the inverse response function of
the camera, see entry ‘Radiometric Calibration’ in [15].
Thus, recovering g(·) implies that for any measured pixel
intensity x we can directly recover the true irradiance g(x).

In our calibration exercise, we seek to recover g(·)
as a non-parametric function. Let the measured bright-
ness or pixel intensities lie in the range [x1, · · · , xn],
typically [0, · · · , 255] in steps of 1. Thus by radiomet-

ric calibration we seek to recover the unknown values
{g(x1), · · · , g(xn)}. We illuminate an arbitrary scene with
two light sources. Consider a pixel with observed intensity
equal to xi and xj for the first and the second light sources
respectively and equal to xk for both the sources of light
turned on simultaneously. Therefore, since the irradiance
when both lights are on is the sum of the irradiances of each
individual light sources, we have

g(xk) = g(xi) + g(xj) (1)

Thus, Equation 1 represents a linear relationship between
the three unknowns among the n unknowns of the non-
parametric function g(x). We generate enough such con-
straints by imaging scenes with substantial variations of re-
flectance and solve the resulting homogeneous set of equa-
tions in a least squares sense. While there are other radio-
metric calibration methods such as [6] based on varying ex-
posure times, we chose to use the method described above
as it is difficult to control the exposure time for Kinect’s
IR camera. In our experiments, to reduce the effect of sen-
sor noise, images are averaged over 10 consecutive obser-
vations under the same illumination and intensities near the
saturation ranges are discarded. In Figure 1(b) we see that
the radiometric calibration of Kinect’s IR camera is linear,
implying that like Equation 1, xk = xi + xj should also
hold. In Figure 1(c) we depict the fraction of observations
vs. error xi+xj−xk and note that most of the observations
have a deviation within the value of±4 for a dynamic range
of 256 values.

3. Lighting, Normal and Albedo Estimation

In our method, we assume that the objects are Lamber-
tian.1 We also assume that the IR light sources are direc-
tional in nature, which is ensured by placing the sources far

1Although, real-world Lambertian surfaces are rare, we show in our
experiments that our method works well with many non-metallic materials
which also have a substantial amount of specular reflectance.
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enough from the objects being scanned. Let the lighting in-
tensity and direction corresponding to the i-th image be de-
noted by λi and the 3 × 1 unit norm vector li respectively.
Let the albedo and the surface normal of the point observed
at pixel p be denoted by αp and the 3 × 1 unit norm vector
np respectively. For a Lambertian surface, the brightness
(Bip) at the pixel p in the i-th image is given by

Bip = λili
Tnpαp = Li

TNp (2)

where Li = λili is the intensity scaled lighting direction
corresponding to the image i and Np = αpnp is the albedo
scaled normal vector of the point viewed at pixel p [21, 14].
[1] finds this linear model of brightness inadequate due to
reflection of light from various directions in an indoor scene
and proposes a brightness model based on second order
spherical harmonics which is used in [23]. Nevertheless,
the linear model of brightness is found accurate enough for
depth-guided photometry in [18, 10, 5].

If we have k lighting conditions and m observed pixels,
then define L(3×k) =

[
L1 · · · Lk

]
. and N(3×m) =[

N1 · · · Nm

]
. We also define a k × m brightness

matrix B such that B(i, p) is the brightness of pixel p in
image i. Thus the brightness constraints for all the pixels in
all images can be summarized as

B = LTN (3)

Our problem is to factorize an observed brightness matrix
B into L and N. The rank of B should not be more than 3
since both L and N are of atmost rank 3. But noise in im-
ages, outliers like shadows, specularities, inter-reflections
etc. cause B to have rank more than 3. In [11], B is
approximated with its closest rank 3 matrix in a least square
sense using SVD. But since the least square approximation
is not robust to outliers we propose a robust rank reduction
method.

3.1. Rank 3 approximation of Brightness Matrix

The observed brightness matrix B can be modeled as a
combination of a rank 3 matrix B∗, a noise matrix e and a
sparse outlier matrix E, i.e.

B = B∗ + e+E (4)

[22] ignores the noise term e and minimizes a weighted
sum of the nuclear norm of B∗ and the `1 norm of E using
the Augmented Lagrangian method (ALM) [16]. Alter-
natively, this problem can be solved using GoDEC [26],
which is able to take the noise component into account.
In our experiments, we have found that the approximation
matrix generated by ALM or GoDEC often has a rank

less than 3. This occurs since in many practical scenarios,
N does not span all directions in R3 equally. It is often
the case that most of the points on the observed part of a
surface have their normals pointing towards the camera.
Similarly, L also fails to span R3 well since light sources
are typically placed close to the Z axis to avoid shadows
due to self-occlusion. Therefore, while eliminating outliers
from B, despite their expensive computations involved,
ALM or GoDEC often remove useful information and out-
put a matrix with rank less than 3, which cannot be used for
further processing. We now describe our method that miti-
gates this problem and provides a robust rank 3 estimate B∗.

Given an observation matrix B (k × m and m � k),
our task is to find 3 dimensional orthonormal basis V ∈
Rk×3 such that the columns of B mostly lie in the subspace
spanned by V. Let Bp be the p-th column of B. We define
the error ep as the magnitude of the component of Bp that is
orthogonal to the subspace spanned by V i.e.

ep = ‖Bp −VVTBp‖ (5)

Then we minimize
m∑
p=1

ρ (ep) to find the optimal V. If we

choose ρ(e) = e2 in our cost function, the solution is equiv-
alent to the least squares method which is not robust to out-
liers. If instead we use the absolute norm ρ(e) = |e|, then
ρ(e) is not differentiable at e = 0. Therefore, we use the
Huber cost function defined as:

ρ(e) =

{
e2 ∀|e| ≤ α
2α|e| − α2 ∀ |e| > α

(6)

which ensures that ρ(e) is C 1 continuous as well as robust
and convex. To optimize this function, we use the iteratively
reweighted least squares (IRLS) method [12, 19] which re-
sults in a simple method that is efficient and more impor-
tantly robust to outliers. The gradient of this robust function
is given by

∇ (ρ(e)) =

{
∇
(
e2
)

∀|e| ≤ α
∇
(
2α
√
e2 − α2

)
∀|e| > α

=

{
∇
(
e2
)

∀|e| ≤ α
α√
e2
∇
(
e2
)
∀|e| > α

= w2∇
(
e2
){ w = 1 ∀|e| ≤ α

w =
√

α
|e| ∀|e| > α

(7)

We can equate the gradient of our cost function to zero
for the optimal solution as

∇

(
m∑
p=1

ρ (ep)

)
=

m∑
p=1

w2
p∇
(
ep

2
)
= 0 (8)
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(a) Sweater (b) Terracotta Tagore

Figure 2. Our estimated 3d depth reconstructions of some constant
albedo objects.

For a given w, solving Equation 8 is equivalent to minimiz-

ing
m∑
p=1

(wpep)
2 which is a weighted least squares problem.

We iteratively compute – until convergence – weightswp
based on the errors ep ∀p and then keeping wp fixed, we
solve the weighted least squares problem – which in this
case is the problem of principal component analysis – as
illustrated in Algorithm 1.

Algorithm 1 Rank 3 Approximation of B using Robust
Principal Component Analysis.
Input: B: Observed Brightness Matrix (k ×m)
Outputs: B∗ (k × m), V (k × 3), X (3 × m), where
B∗ = VX is the rank 3 approximation of B.
Initialize: wp = 1 ∀p = 1, 2, · · · ,m

1. V = Leading 3 principal components of BW, where
W is a diagonal weighting matrix such that W(p, p) =
wp
2. X = VTB and B∗ = VX
4. ep=p-th column of (B− B∗) ∀p = 1, 2, · · · ,m
5. Compute wp using Equation 7 ∀p = 1, 2, · · · ,m
6. If not converged, Goto State 1

We note here that all the columns of brightness matrix
B are first normalized before being used as input in Algo-
rithm 1. This ensures that the value of ep is bounded below
2 which both ensures robustness and also prevents pixels
with higher albedo from contributing more to the error and
thereby dominating the solution.

3.2. Factorization of Brightness Matrix

From Algorithm 1 we have

B ≈ B∗ = VX (9)

but this factorization is not unique. A general factorization
of B∗ can be written as

B∗ = LTN = VAA−1X (10)

where A can be any non-singular 3 × 3 matrix. Therefore,
there exists an A such that

L = ATVT (11)
N = A−1X (12)

Hence our problem is one of estimating the requisite
matrix A which allows us to recover N. In [11], A is
solved by using Equation 12 by asking the user to pick 6
pixels with the same albedo or 6 images with the same
lighting intensity. In contrast, we solve for A using the raw
depth map from Kinect as a guide. We generate a rough
estimate of the surface normals n̂p at every pixel from the
raw depth map and collect them in a 3 × m matrix, as
N̂ =

[
n̂1 · · · n̂m

]
.

While the surface normals (N) are linear transformation
of X, (see Equation 12), all linear transformations of X
are not valid surface normals. This is because of the
requirement that any valid set of surface normals should be
integrable or curl free [13]. However, even the imposition
of this constraint does not yield a unique linear transfor-
mation A. Rather, for every A that gives an integrable
solution, there is a three parameter family of transforma-
tions of A that also satisfies the integrability constraint.
This is the well-known bas-relief ambiguity [2, 4].

In this paper, we ignore the integrability constraint while
solving for A. We note that since A−1X should be aligned
with the normals estimated from Kinect’s depth map, we
have a sufficient number of constraints to solve for A,
although such an A does not necessarily satisfy the integra-
bility constraint. However, since in our approach we solve
for a surface that carries out a fusion of both Kinect’s depth
estimate as well as the normal map, we need not impose the
integrability constraint during the estimation of the normals.

Before we develop our solution for multi-albedo fac-
torization, we illustrate the use of N̂ to solve the simpler
problem of constant albedo that was addressed in [18, 10].

3.3. Factorization for Constant Albedo Surfaces

For a surface with constant albedo, we can assign the
relative albedo αp = 1, ∀p. This allows us to replace N
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(a) Color image (b) Raw scan (c) Smoothed scan (d) Our reconstruction

Figure 3. Refined depth map estimates of a painted terracotta plaque of Kali using our approach.

in Equation 12 with Kinect’s estimated normal matrix N̂.
Thus, we need to solve for A using Equation 12. In [18] A
was solved in a least squares sense as

A =

((
N̂T
)†

X̂T
)T

(13)

where † denotes the pseudo inverse operation. But the
estimates of n̂p near high curvature regions including
depth edges of an object are not reliable since Kinect
depth maps are highly noisy. Thus, a least squares solu-
tion is affected by the poor or incorrect estimates of n̂p
near depth edges. To solve for A robustly, we define

ep = ‖p-th column of(AN̂−X)‖ and minimize
m∑
p=1

ρ (ep),

where ρ(·) is defined in Equation 6. This minimization
is performed using the iteratively reweighted least square
method detailed in Algorithm 2.

Algorithm 2 Robust cost minimization using IRLS
Initialize: wp = 1 ∀p

1. A =

((
WN̂T

)† (
WXT

))T
, where W is a diag-

onal weighting matrix such that W(p, p) = wp
2. Compute errors ep and weights wp for all pixels p
3. If not converged, Goto State 1

In Figure 2 we show our estimated 3d reconstructions of
(a) a wollen sweater and (b) a terracotta plaque depicting
the Indian poet Rabindranath Tagore. As can be seen, our
method very accurately recovers high frequency shape
details .

3.4. Factorization for Multi-Albedo Surfaces

We can now proceed to solve the more general problem
of recovering A for objects with multiple or arbitrarily vary-
ing albedos. Let xp denote the normalized p-th column of
X, i.e. corresponding to the p-th pixel. Then we have

Aαpn̂p ‖ xp ⇒ An̂p ‖ xp ∀p (14)

where αp is the albedo for the p-th pixel and the symbol ‖
denotes that the vectors Aαn̂p and xp are parallel for all
pixels p. We define the error ep to be a measure of the angle
between the vectors An̂p and xp as

ep =

∣∣∣∣∣∣∣∣xp − An̂p
‖An̂p‖

∣∣∣∣∣∣∣∣ (15)

The optimal value of A can now be robustly estimated as

A∗ = argmin
A

m∑
p=1

ρ (ep) (16)

The optimization problem of Equation 16 is solved
using gradient descent. Once we find the optimal value of
A, the surface normals can be recovered for every pixel.

In Figure 3 and 4 we show the depth estimates obtained
using this approach for two multi-albedo objects: a painted
terracotta plaque of the Hindu goddess Kali (Figure 3)
and a plastic figure of the Hindu deity Ganesh (Figure 4).
Both these models are quite specular in nature. As shown
in Figure 3(b) and 4(a) , the raw Kinect depth maps
are highly noisy and the resultant refinements obtained
using our method (Figure 3(d) and 4(b)) is quite substantial.
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(a) Raw scan (b) Our reconstruction

Figure 4. Refined depth map estimates of Ganesh using our ap-
proach.
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Figure 5. Convergence properties of our multi-albedo factorization
method. Please see text for details.

3.5. Convergence of Multi-Albedo Factorization

In this subsection we present a proof for the convergence
of the gradient descent method of Section 3.4 that we use
to solve for A in the multi-albedo scenario. Specifically,
we prove that the cost function in Equation 16 is monoton-
ically non-decreasing away from the global minima in the
noise free scenario. Therefore, as long as the corruption of
the observed brightness matrix is not too large, our gradi-
ent descent method is guaranteed to converge to the optimal
solution.

Lemma 3.1 Let Aλ be a convex combination of two pos-
sible values of A denoted by A1 and A2 respectively, i.e.
Aλ = (1− λ)A1 + λA2 with 0 ≤ λ ≤ 1. Then,

ρ (ep (Aλ)) ≤ max (ρ (ep (A1)) , ρ (ep (A2))) (17)

In Figure 5 the vectors xp, A1n̂p, A2n̂p and Aλn̂p are
drawn from the center of the unit sphere S2. In addition,

we also show the cones of revolution of A1n̂p and A2n̂p
around xp. Suppose, A1n̂p, A2n̂p and Aλn̂p are at angles
θ1, θ2 and θλ respectively from xp. Without loss of gener-
ality, let θ2 > θ1.

Proof As λ increases from 0 to 1, the point Aλn̂p moves
in a straight line in R3 from A1n̂p to A2n̂p. Correspond-
ingly, the projection of Aλn̂p onto S2 i.e Aλn̂p

‖Aλn̂p‖ moves
along a geodesic arc on S2 shown as a dashed blue line.
Since A1n̂p and A2n̂p both lie inside the convex cone of
revolution generated by A2n̂p around xp, any convex com-
bination of A1n̂p and A2n̂p i.e. (1 − λ)A1n̂p + λA2n̂p
must also lie inside the cone of revolution of A2n̂ around
xp ∀λ ∈ [0, 1]. Thus, θλ ≤ θ2 = max(θ1, θ2). Now
since ρ(ep(Aλ)) is a monotonically increasing function
of θλ, we can see that ρ (ep(Aλ)) ≤ ρ (ep(A2)) =
max (ρ (ep(A1)) , ρ (ep(A2))). In turn this implies that
Equation 17 always holds true.

Theorem 3.2
m∑
p=1

ρ (ep) is monotonically non-decreasing

away from the global minima in the noise free case.

Proof Summing Equation 17 over all pixels we get,∑
p

ρ (ep (Aλxp)) ≤
∑
p

max (ρ (ep (A1)) , ρ (ep (A2)))

(18)
If we consider the noise free case and if A1 is the true solu-
tion, i.e. ρ (ep (A1)) = 0 ∀p, then∑

p

ρ (ep (Aλ)) ≤
∑
p

ρ (ep (A2)) (19)

Therefore, our cost is monotonically non-decreasing from
the true solution A1.

We note that [20] uses a similar approach to solve for
global translation estimation in the context of structure-
from-motion.

4. Fusion of Depth and Normal Estimates

Given the depth map of Kinect and estimated surface
normals, we need a principled method to fuse them to
obtain a high quality reconstruction of the imaged surface.
In our work, we use a depth-normal fusion method that
was originally proposed in [17] and extended to Kinect’s
context in [24]. This approach was also used in [9, 18, 10]
and the reader may refer to [17, 24, 10] for details as we
cannot provide them here due to space constraints.
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(a) Woolen Jacket

(b) Cotton Shorts

(c) Shoe

Figure 6. Reconstruction of some complex multi-albedo objects. Left: IR image, Middle: our 3d reconstruction and Right: our estimated
relative albedo.
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(a) Wooden Plate

Figure 7. Reconstruct of some objects. Left: an infrared image, Middle: our 3d reconstruction and Right: our estimate of relative albedo.

5. Results

In addition to the results for constant and multi-albedo
objects shown in Figures 2, 3 and 4 respectively, in this sec-
tion we present additional results for complex multi-albedo
objects. In Figures 6 we show our results for a woolen
jacket, a pair of cotton shorts and a pair of shoes. From the
IR image of the jacket it is seen that the albedo variations
are highly correlated with depth edges, e.g. the vertical
depth stripes of the jacket. Nevertheless, we are able
accurately recover both the 3d structure and the relative
albedo. In the example of the striped shorts (middle row),
we can observe that the striped albedo variation is perfectly
recovered and the presence of this varying albedo pattern is
not misinterpreted as shape variation. In addition, the high
frequency details for the elastic waistband of the shorts
are also correctly recovered. As can be seen in the bottom
row of Figure 6, despite the large amount of variation in
albedo for the pair of shoes, we are able to accurately
recover their 3d shape, including the fine-scale details of
the stitches. In Figure 7, we depict the results for a very
challenging object, i.e. a carved wodden plate that exhibits
a continuous variation of albedo owing to the textured grain
of the wood used. In such a case, any approach that relies
on segmenting albedo into constant albedo regions will fail.
In our case, we are able to accurately recover the highly
varying albedo pattern and we can see that our 3d shape
reconstruction is not affected at all by this albedo variation.
We also note that our reconstruction works despite the fact
that this wodden plate is moderately specular. Finally, in
Table 5, we summarise the properties of all the objects that
we have accurately reconstructed and presented as results
in this paper. We believe that the wide variation of the
properties of these objects is evidence for the efficacy of
our 3d reconstruction approach.

Object Fig. Material Multi- Reflectance
Num. Albedo

Sweater 2(a) Wool 7 Lambertian
Tagore 2(b) Terracotta 7 Lambertian

Kali 3 Painted- 3 Specular
Terracotta

Ganesh 4(b) Plastic 3 Highly Specular
Jacket 6(a) Wool 3 Lambertian
Shorts 6(b) Cotton 3 Lambertian
Shoe 6(c) Mixed 3 Mildly Specular
Plate 7 Wood 3 Moderate Specular

Table 1. Applicability of our method on a wide range of objects
with varying albedo and other material properties. Our method
works accurately in all these cases.

6. Conclusions

In this paper, we present a novel approach of refining the
depth estimates of multi-albedo objects. Our method is able
to factorize the observed brightness matrix into appropriate
illumination, albedo and surface normal components. Our
approach works without requiring any pre-calibrated illu-
mination configuration or segmentation of albedo and we
have presented an extensive set of results to demonstrate its
accuracy for a wide variety of objects.
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