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Abstract

In recent years, several feature encoding schemes for
the bags-of-visual-words model have been proposed. While
most of these schemes produce impressive results, they all
share an important limitation: their high computational
complexity makes it challenging to use them for large-
scale problems. In this work, we propose an approxi-
mate locality-constrained encoding scheme that offers sig-
nificantly better computational efficiency (∼ 40×) than its
exact counterpart, with comparable classification accuracy.
Using the perturbation analysis of least-squares problems,
we present a formal approximation error analysis of our ap-
proach, which helps distill the intuition behind the robust-
ness of our method. We present a thorough set of empirical
analyses on multiple standard data-sets, to assess the ca-
pability of our encoding scheme for its representational as
well as discriminative accuracy.

1. Introduction

Image classification frameworks generally consist of (a) ex-
tracting local features (e.g., SIFT [19]), (b) transforming
them into more informative codes, and (c) using these codes
for classification (e.g., by using linear SVM [5]). Over
the years, several different image encoding techniques have
been proposed [3] [16] [8] [28] [22] [31] [29] [30]. As
reported in [2], given all things equal, most of these en-
coding schemes tend to produce impressive yet comparable
classification accuracies. At the same time however, they
can be computationally expensive [2]. Particularly during
the testing phase, their complexity can be a significant pro-
portion of image classification pipeline (see Table 1). This

Extract Assign Encode Pool Test
% Times 6.77% 37.76% 42.50% 7.01% 5.93%

Table 1: %-times taken by different steps during testing for
LLC [28]. Here D = 128, M = 1024, and K = 10 (§ 3.1).
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Figure 1: (Left) Locality-constrained encoding [28] finds
different sets of bases nearest to each feature to exactly con-
struct its locally-constrained codes. (Right) In contrast, we
approximately encode clusters of points simultaneously by
using shared sets of bases nearest to the cluster-centroid.

limitation often makes it challenging to use these encoding
schemes for large-scale learning problems.

In this work, we propose an approximate locality-
constrained [28] encoding scheme which offers signifi-
cantly better efficiency than its exact counterpart, with com-
parable classification accuracy.

Our key insight is that for locality-constrained encod-
ings, the set of bases used to encode a point x, can be used
equally effectively to encode a group of points similar to x.
This observation enables us to approximately encode simi-
lar groups of points simultaneously by using shared sets of
bases, as opposed to exactly encoding points individually
each using their own bases (see Figure 1). This difference
improves our encoding efficiency in two important ways:

• It significantly reduces the number of locality related
matrices from number of points (O(millions)) to num-
ber of point-clusters (O(thousands)).

• It lets us view the encoding problem of each point-
group as a linear system with a shared left hand side.
Solving such a system can be posed as matrix-matrix
multiplication that can fully exploit the cache-efficient
modern hardware architecture.



These efficiency advantages enable our approximate
scheme to achieve a significant speed-up (∼ 40×) over its
exact counterpart, while maintaining comparable accuracy.

The main factor effecting the robustness of our approxi-
mation scheme is the cohesiveness of point-clusters sharing
sets of bases among their respective members, i.e., more
cohesive point-clusters incur less approximation error, and
vice versa. We empirically show that for a wide range of
cluster granularity, the reconstruction error of our approxi-
mation scheme is almost identical to its exact counterpart.
Therefore, the efficiency gains of our method come at no
extra cost of requiring a more granular feature clustering.

Moreover, we present theocratical bounds on the approx-
imation error of our scheme using perturbation analysis of
least-squares problems. This analysis further helps distill
the intuition behind the robustness of our technique with re-
spect to the granularity of feature-clusters.

To summarize, the main contributions of our work are:

• A simple yet effective approximate encoding scheme
with significant performance gains and similar classi-
fication accuracy compared to its exact counterpart.

• A formal approximation analysis of our approach us-
ing perturbation analysis of least-square problems.

• A thorough set of empirical analyses to assess the ca-
pability of our encoding scheme both from a represen-
tational as well as a discriminative perspective.

In the following, we begin by going over relevant previous
work, followed by presenting the details of our scheme in
§ 3, and its approximation error analysis in § 4. We show its
empirical performance in § 5, and conclude our work in § 6.

2. Related Work

Image-feature codes have so far been mainly looked at from
three different perspectives. The basic encoding method in-
troduced by [3] [16] [10] [25] uses vector-quantization to
assign each local feature to the most similar of the pre-
computed feature-clusters (or visual words). The hard-
quantization adopted by these techniques however suffers
from high reconstruction error, resulting in modest classifi-
cation accuracy when used with linear classifiers.

The second class of encoding methods express features
as combinations of multiple visual words in order to re-
duce the reconstruction error and therefore potentially boost
the classification accuracy. Examples of this class of meth-
ods include soft quantization [8], and locally linear encod-
ings [28] [30]. These techniques tend to produce non-linear
spaces, and can therefore produce impressive classification
accuracies even when used with linear classifiers.

The third class of encoding schemes uses the differences
between features and the visual words, as opposed to rep-
resenting features in terms of the visual words themselves.

Example methods in this class include Fisher [24] [22], and
super-vector encoding [31], among other approaches.

An important challenge faced by the recent encoding
schemes is that they can be computationally expensive [2],
which often makes it challenging to use them for large-scale
learning problems. Although there has been substantial
amount of work to minimize the memory-footprint of fea-
ture codes [14] [1] [21] [13], not enough attention has been
given towards improving the efficiency of code extraction
by a large factor. Our work is geared towards addressing
this limitation.

3. Approximate Image Encoding
3.1. Preliminaries

Let X be a set of D-dimensional local image descriptors,
i.e., X = [x1,x2, · · ·,xN] ∈ RD×N. Also, let B define
a codebook with M entries, i.e., B = [b1,b2, · · ·,bM] ∈
RD×M. Generally, B is found by clustering a subset of im-
age descriptors. The main idea behind image-encoding is to
use B as a set of basis vectors to find a more informative
representation of X. Let us denote this new representation
of the descriptor-set as C = [c1, c2, · · ·, cN].

3.2. The Efficiency-Accuracy Tradeoff

The way in which an ecoding scheme uses B determines its
tradeoff between the efficiency with which it can be com-
puted and the representational accuracy it offers. For in-
stance, vector quantization (VQ), traditionally used in Spa-
tial Pyramid Matching (SPM) [16], optimizes the following
cost function to represent X in terms of B:

argmin
C

N∑
i=1

||xi −Bci||2 (1)

such that, ||ci||l0 = 1, ||ci||l1 = 1, and, ci � 0,∀i

This constrained least-squares problem results in each ci
with only one non-zero element, which in practice is found
by searching for the nearest neighbor of xi in B.

While efficient to compute, VQ offers high reconstruc-
tion error due to its unit cardinality constraint (||ci||l0 = 1).
One way to address this limitation is by using locally linear
coding (LLC) [28] that uses a locality constraint instead:

argmin
C

N∑
i=1

||xi −Bici||2 (2)

where Bi ∈ RD×K are the K nearest bases to xi.
While LLC generates codes with quite high reconstruc-

tion accuracy and has emerged as one of the leading image
encoding schemes, its accuracy benefits come at the cost
of relatively low computational efficiency [2]. We further
expand on this point below.



Level Memory Flops Flop:Byte
I/O ratio

Matrix-vector BLAS-2 4n2
2n2 1/2multiplication (Bytes)

Matrix-matrix BLAS-3 12n2
2n3 n/6multiplication (Bytes)

Table 2: BLAS-2 versus BLAS-3 operations for matrices of
size n× n, single-precision.

3.3. Efficiency Challenges for LLC Encoding

To better understand the efficiency of LLC encoding, let us
re-write Equation 2 as the solution of the normal equation:

ci = (BT
iBi)

−1BT
i xi, (3)

which is computed numerically by solving a linear system
with BT

iBi on the left and BT
i xi on the right-hand side.

Note that Equation 3 poses two main efficiency challenges:

1- Algorithmic Bottleneck: Equation 3 requires computing
BT

iBi and its corresponding Cholesky factorization for each
ci. This adds a cost of O(NDK2 + NK3), which can be
significant for larger values of N and especially for larger
numbers of nearest neighbors K1.

2- Hardware Bottleneck: Equation 3 requires solving a
different linear system for each ci. From a hardware per-
spective, it means bringing in a different matrix BT

iBi and a
different vector BT

i xi to the CPU cache for each ci. Once in
cache, a matrix-vector multiplication is performed to com-
pute BT

i xi and then finally a linear solver is invoked to com-
pute the vector ci. These matrix-vector operations are gen-
erally not cache efficient, and therefore cannot fully exploit
the modern hardware architecture.

3.4. Significance of Cache Efficiency

Note that the gap between processor and main-memory
(DRAM) speeds has been consistently increasing [20]. This
memory wall prevents algorithms with a low flop-byte ratio
to fully exploit the compute-power of the modern CPUs.

Matrix-vector operations (called Level-2 BLAS – Basic
Linear Algebra Subprograms) have a low flop-byte ratio.
However, matrix-matrix operations (called Level-3 BLAS)
have their flop-byte ratio increase proportional to the matrix
size [9] (Table 2). Matrix-matrix multiplication therefore
offers much higher compute intensity by pre-loading matrix
blocks into the CPU cache, keeping the compute-units max-
imally busy. Leveraging BLAS-3 for LLC encoding could
therefore greatly improve its efficiency.

1Consider e.g., D = 128, K = 10, and N = 1 Billion. The number
of flops required to find BT

iBi ∀ i and their Cholesky factors are ∼ 14
Tera-flops. On an 8 core 2.4 GHz machine, this would take ∼ 10 hours.

Exact LLC Proposed scheme
Forming BT

iBi,∀i Forming BmTBm ∀m
O(NDK2) O(MDK2)

Cholesky on BT
iBi,∀i Cholesky on BmTBm ∀m

O(NK3) O(MK3)
Forming BT

i xi,∀i Forming BmTXm ∀m
O(NDK) BLAS-2 O(NDK) BLAS-3

Solving ci in Equation 3 Solving ci in Equation 5
O(NK2) BLAS-2 O(NK2) BLAS-3

Table 3: Comparison between the original LLC and our pro-
posed scheme. Note that N >> M ≥ K.

3.5. An Approximate Coding Scheme

To address the algorithmic complexity and hardware chal-
lenges in LLC encoding, we present an approximate coding
scheme that is not only algorithmically more efficient, but
also more compliant to modern hardware architecture.

Recall that both the aforementioned efficiency chal-
lenges with Equation 3 stem from the fact that it uses a
different Bi for each xi. If instead we used the same set
of bases for a cluster of similar xi, we could significantly
increase our encoding efficiency. This intuition can be con-
cretized in terms of the following objective function:

argmin
C̃

Nm∑
i=1

||xm
i −Bmc̃i||2 (4)

Herem ∈ M represents the cluster index, Nm the size of the
m-th cluster, and c̃i the i-th approximate code. Equation 4
can be written in the normal equation form as:

c̃i = (BmTBm)−1BmTXm (5)

where Xm is a D×Nm matrix of descriptors ofmth cluster.
Unlike Equation 3, Equation 5 requires comput-

ing (BmTBm)−1BmT only once for all descriptors in
Xm, reducing the total sub-space computation cost from
O(NDK2 + NK3 + NDK + NK2) for LLC (Table 3), to
O(MDK2+MK3+NDK+NK2) for our proposed scheme.
This eliminates the potentially very large number N from
the first two terms. Furthermore, forming the right-hand
side BmTXm and solving ci in Equation 5 (corresponding
to the last two terms) can be treated as matrix-matrix opera-
tions rather than matrix-vector operations, and can therefore
fully exploit the modern hardware architecture and achieve
peak CPU flops using BLAS-3 [9] (Table 3).

Our proposed scheme is summarized in Algorithm 1.
Note that we find the descriptors belonging to each clus-
ter before going through all the clusters for encoding (line
3), in order to visit the cluster assignment array of length N
for just O(1) times rather than M times. We found that this
strategy significantly increased the empirical efficiency of



Algorithm 1 Hardware Compliant Approximate Encoding

1: Input: Image descriptors X ∈ RD×N, codebook B ∈
RD×M, cluster assignment for all the descriptors

2: Output: Approximate image codes C̃ ∈ RM×N

3: Form X1,X2, · · · ,XM by gathering the descriptors be-
longing to each individual cluster

4: for m = 1 to M do
5: Determine Bm ∈ RD×K

6: Compute left-hand side BmTBm ≡W
7: Perform Cholesky factorization: W = LLT

8: Compute right-hand side BmTXm ≡ Y
9: Solve LZ = Y for Z, and LTC̃m = Z for C̃m

10: end for
11: Normalize each column of C̃ to unit L2 norm

our algorithm besides its lower algorithmic complexity and
better compliance to the hardware architecture. In addition,
because the learned image codes are typically sparse, i.e.
only K out of M entries in the code are nonzero, we use a
sparse matrix to represent the codes in our implementation
to save memory space, as opposed to a dense matrix in pre-
vious LLC implementations [28, 2]. Note that we adopted
the same implementation optimizations for both our scheme
and its exact counterpart while reporting any results.

4. Approximation Error Analysis
We now present a formal treatment of our approximation er-
ror bound, and use this analysis to distill the intuition behind
the robustness of our method. We then present empirical ev-
idence to validate these intuitions.

4.1. Approximation Error Bounds

Consider the solution c?i to the problem

argminc ‖xi −Bic‖2 (6)

and c̃?i , the solution to the problem

argminc ‖xi −Bmc‖2. (7)

Intuitively, the difference between c?i and c̃?i will be small
when the following two conditions are satisfied:

1. Small perturbations to Bi result in small perturbation
to c?i —this is a property of the dictionary.

2. Bm is a small perturbation of Bi—this depends on the
interaction of a specific xi with the dictionary.

The first condition depends on the degree of linear indepen-
dence amongst the columns of Bi, i.e., the more linearly
independent the columns of Bi are, the more stable the co-
ordinates of xi will become to a given perturbation.

The second condition is quantified by the approximation
error ‖Bm − Bi‖2. Moreover, we expect that the distance
between c?i and c̃?i should increase as the norm of xi does.
These conditions lead us to anticipate that c?i and c̃?i satisfy
a relationship of the form:

‖c̃?i − c?i ‖2 . f
(
‖B†i‖2, ‖B

m −Bi‖2, ‖xi‖2
)
,

where f is an increasing function of its arguments, and B†i
denotes the pseudo-inverse of Bi.

The following theorem establishes an upper bound on the
approximation error that verifies this intuition and is sharper
in our application than the classic perturbation bounds [9,
Theorem 5.3.1]. We note in particular that although the
bound is stated in an asymptotic form for clarity, the proof
can be trivially modified to yield an exact inequality.

Theorem 1. Let E = Bm −Bi. When

‖E‖2 ≤
‖B†i‖

−2
2

4‖Bi‖2
,

the coding error satisfies

‖c?i − c̃?i ‖2 ≤
1 +
√
5

2
‖B†i‖

2
2‖E‖2‖xi‖2+O(‖E‖22‖xi‖2).

Proof. First we note that the solutions to the two least-
squares problems are

c?i = B†ixi and c̃?i = (Bm)
†
xi,

It follows that

‖c?i − c̃?i ‖2 ≤
∥∥Bi

† − (Bm)
† ∥∥

2
‖xi‖2.

To continue, we use the fact [26, Theorem 3.3], that for
conformal matrices A and M,

‖A†−M†‖2 ≤
1 +
√
5

2
max{‖A†‖22, ‖M†‖22}‖A−M‖2.

From this, it follows that

‖c?i−c̃?i ‖2 ≤
1 +
√
5

2
max

{
‖B†i‖

2
2,
∥∥(Bm

)†∥∥2
2

}
‖E‖2‖xi‖2.

(8)
As Bm is sufficiently close to Bi, we can replace∥∥(Bm

)†∥∥
2

in this estimate with ‖B†i‖2.
To do so, we use the facts that:

‖A†‖22 = λmin(A
TA)−1

and
λmin(A

TA+ S) ≥ λmin(A
TA)− ‖S‖2



when S is a symmetric matrix [12, Theorem 4.3.1]. Indeed,
applying these facts, we find that∥∥(Bm

)†∥∥2
2
= λmin((Bi +E)T(Bi +E))−1

≤
(
λmin(B

T
iBi)− ‖ETBi +BT

iE+ETE‖2
)−1

≤
(
‖B†i‖

−2
2 − 2‖E‖2‖Bi‖2 + ‖E‖22

)−1
= ‖B†i‖

2
2 +O(‖E‖2).

The final equality follows from Taylor series expansion of
1/u about u = ‖B†i‖

−2
2 and the readily verified fact that the

denominator is strictly positive when, as we assumed:

‖E‖2 ≤
‖B†i‖

−2
2

4‖Bi‖2
.

Using the fact that
∥∥(Bm

)†∥∥2
2
≤ ‖B†i‖22 +O(‖E‖2) in the

estimate (8), we conclude that

‖c?i − c̃?i ‖2 ≤
1 +
√
5

2
‖B†i‖

2
2‖E‖2‖xi‖2+O(‖E‖22‖xi‖2).

The two main quantities involved in Theorem 1, ‖B†i‖2
and ‖E‖2, depend respectively on the geometry of the code-
words and the interaction of the given point xi with the
codewords. In the best case, the points in B are in general
position, i.e. no subsets of K < D codewords from the dic-
tionary are linearly dependent; in this situation the columns
of Bi can be modeled by independent D-dimensional Gaus-
sian vectors rescaled by 1/

√
D to lie around the unit sphere.

It then follows from standard results [27, Corollary 5.35],

that ‖B†i‖2 ≤
(
1−

√
2K
D

)−1
with high probability.

To understand the behavior of the remaining term ‖E‖2,
note that the norms of all columns of E are bounded by
the maximum distance (dmax) between any two codewords
in the dictionary. Moreover, if there is a sufficiently large
increase in the distance from xi to the corresponding code-
word as we move from its j-th neighbor to its (j + 1)-th
neighbor: then at least j columns of E are identically zero.

Lemma 1. Given xi order the codewords in B so that
cj(xi) denotes the jth nearest codeword to xi. If

‖xi−cj(xi)‖2 ≤ ‖xi−cj+1(xi)‖2−2‖xi−c1(xi)‖2 (9)

then at least j columns of E are zero.

Proof. Recall that E = Bm −Bi, where Bm contains the
k nearest codewords to c1(xi). It therefore suffices to estab-
lish that (9) implies that the jth nearest codewords to xi are
also the jth nearest codewords to c1(xi).
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Figure 2: (Top) Average norm of the pseudo-inverse for the near-
est codeword-neighbor matrices of individual points (blue) and for
cluster centroids (red). (Bottom) Average L2 distance between
point’s nearest codewords (α) and the codewords nearest to the
point’s cluster centroid (β). Here these distances were normalized
by ||β||2.

To establish this, observe that for ` = 1, . . . , j,

‖c1(xi)− c`(xi)‖2 ≤ ‖xi − c`(xi)‖2 + ‖xi − c1(xi)‖2
≤ ‖xi − cj(xi)‖2 + ‖xi − c1(xi)‖2
≤ ‖xi − cj+1(xi)‖2 − ‖xi − c1(xi)‖2,

where the last inequality holds because of (9).
At the same time, for any codeword c in B that is not in

the set of j nearest codewords to xi,

‖c1(xi)− c‖2 ≥ ‖xi − c‖2 − ‖xi − c1(xi)‖2
≥ ‖xi − cj+1(xi)‖2 − ‖xi − c1(xi)‖2.

It follows that the j nearest codewords to c1(xi) are exactly
the j nearest codewords to xi.

This lemma implies that if the gap between ‖xi − cj(xi)‖2
and ‖xi − cj+1(xi)‖2 is sufficiently small, then

‖E‖2 ≤ ‖E‖F ≤ dmax
√
k − j.



4.2. Empirical Trends in Approximation Error

We now show how the factors identified by our theoretical
analysis (§ 4.1) effecting our approximation error vary in
practice on real data as a function of dictionary-size. These
results are presented on Caltech-101 [6], and similar trends
hold for other data-sets as well.

4.2.1 Codeword Matrix Stability

In Figure 2-a, we plot the average pseudo-inverse of [Bi]
N
i=1

(blue) and [Bm]Mm=1 (red) as a function of the dictionary
size. There are two important things to note here.

First, both the pseudo-inverses decrease monotonically
with the dictionary size, implying a monotonic increase in
the stability of the nearest codeword matrix.

Second, the average pseudo inverse of [Bm]Mm=1 is
strictly greater than that of [Bi]

N
i=1. Recall that our theo-

retical analysis predicted this trend. This plot empirically
validates that our approximation does not decrease the sta-
bility of the nearest codewords matrices.

4.2.2 Perturbation Behavior

In Figure 2-b, we plot the average normalized Euclidean
distance between the nearest codewords to a point, and the
codewords nearest to its cluster centroid. Recall that this
quantity encodes the amount of perturbation in the nearest
codewords matrices brought about by our approximation.
The plot monotonically decreases as a function of the dic-
tionary size, indicating that our scheme becomes more ro-
bust to perturbations with increase in the dictionary size.

5. Experiments and Results

5.1. Representational Accuracy

5.1.1 Normalized Relative Reconstruction Error

First, to get an absolute sense of how much reconstruc-
tion error spatially-constrained exact image codes incur, we
present in Figure 3-a the histogram of reconstruction errors
using LLC [28] codes for Caltech-101 [6] . Here the values
of M and K were set equal to 1024 and 10 respectively.

Figure 3-b, shows the histogram of normalized recon-
struction error (e) of our proposed approximate codes rela-
tive to the error (e0) incurred by their exact LLC counter-
part. More precisely, it plots the histogram of abs(||e||2 −
||e0||2)/||e0||2. As before, here M = 1024 and K = 10.

Note that the majority of the probability-mass in Fig-
ure 3-b is close to zero, which empirically demonstrates that
our approximation scheme increases the reconstruction er-
ror of its exact counterpart only by a marginal amount.

Test
Accuracy LLC Proposed

Caltech-101 72.16± 0.7 71.35± 0.8
Caltech-256 37.04± 0.3 35.69± 0.2

Pascal VOC’07 51.95 52.90
MIT Scenes 38.30 39.91

Table 4: Percent classification results for different data-sets
using the exact LLC [28] and the proposed approximate en-
coding. The classification accuracy and standard deviation
over 10 runs are shown for Caltech-101 and Caltech-256.
The mean average precision (MAP) is shown for Pascal
VOC 2007 and MIT Scenes data-sets without standard de-
viation since we used the fixed standard train-test splits.

5.1.2 Reconstruction Error versus Codebook Size

Figure 3-c shows the average reconstruction error incurred
by both our proposed approximate encoding scheme and its
exact LLC [28] counterpart. As before, for both of these
cases M = 1024 and K = 10.

It can be seen from Figure 3-c that our approximate en-
coding scheme traces the reconstruction error of its exact
counterpart quite closely over a wide range of dictionary
sizes. Note that the maximum average reconstruction er-
ror incurred by our approximate scheme for any value of
the considered dictionary size is only ∼ 5% more than that
incurred by its exact counterpart.

5.2. Discriminative Accuracy

5.2.1 Average Classification Results

The average classification accuracy over multiple data-sets
for our approximate approach and its exact LLC counterpart
is given in Table 4. Here we consider 4 data-sets, namely
Caltech-101 [6], Caltech-256 [11], Pascal VOC 2007 [4],
and MIT Scenes [23]. For Caltech-101 and Caltech-256
we provide test classification accuracy with 30 images per-
class for training and the rest for testing. For Pascal VOC
2007 and MIT Scenes we provide mean average precision
(MAP). The train-test split used for Pascal was the same
as the standard defined by the challenge. For MIT Scenes
data-set, we used the same train-test split as in [23], with
80 images for training and 20 for testing per-class. For all
experiments, we only used SIFT [19] with linear-SVM [5].

Our codebook sizes (M) were equal to 1024, 2048, 4000
and 4096 for each of the four data-set respectively. Note
that we did not incorporate any coodbook optimizations.
Moreover, other than Pascal VOC 2007, we did not incor-
porate cross-validation to fine-tune SVM parameters. Fur-
thermore, we set K = 10 in all these experiments.

As can be observed from Table 4, the classification accu-
racy of our approximate scheme is quite close to that of the
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Figure 3: (a) Histogram of reconstruction errors for the exact LLC [28] codes on Caltech-101 [6]. (b) Average normalized
reconstruction error for the proposed approximate codes e, relative to the exact reconstruction error e0, i.e. abs(||e||2 −
||e0||2)/||e0||2. (c) Average reconstruction error on Caltech-101 [6] for exact LLC [28] and the proposed scheme.
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Figure 4: Average classification accuracy for exact LLC [28] and our scheme on Caltech-101 [6] for (a) different dictionary
sizes, and (b) different training images per-class. (c) Run-time on Caltech-101 [6] for exact LLC [28] and the proposed
approximate encoding scheme with different numbers of nearest neighbors.

exact LLC codes, with the average loss in accuracy of 1%
for Caltech-101 and Caltech-256. For Pascal VOC 2007 and
MIT Scene data-sets, our accuracy is in fact slightly higher
than that of exact LLC.

5.2.2 Effect of Codebook and Training Size

Figure 4-a plots the average accuracy our proposed approx-
imate codes and their exact LLC counterpart for different
codebook sizes. Note that the rate of increase for both tech-
niques is quite similar over a wide range of dictionary sizes.
The plot in Figure 4-a was computed for Caltech-101 data-
set, and similar trends for classification accuracy increase
hold for other data-sets as well.

Figure 4-b presents a similar analysis for the effect of
training data size on our proposed approximate scheme in
comparison to its exact LLC counterpart. Again, both these
plots are quite similar to each other, demonstrating that our

Encoding
Time LLC Proposed Speed-Up

Caltech-101 512.8 sec 12.9 sec 39.8×
Caltech-256 1779 sec 47.3 sec 37.6×

Pascal VOC’07 208.0 min 4.86 min 42.8×
MIT Scenes 473.3 sec 12.8 sec 37.0×

Table 5: Encoding times on four different data-sets using
the exact LLC [28] and the proposed approximate encoding.

scheme is robust across a wide training size spectrum.

5.3. Run-Time Efficiency

The run-time results for our approximate approach and its
exact LLC counterpart is given in Table 5. We used the
same data-sets and settings as in Section 5.2. For each ex-



periment, we used an 8-core 2.66 GHz machine with 32-
bit floats for processing. Our proposed approach achieved
∼ 40× speed-up over the exact LLC on all our data-sets.

We plot the run-time of our proposed encoding scheme
on Caltech-101 as a function of K in Figure 4-c for more
detailed analysis. When K ≤ 50, the increasing trend
of the run-time is sublinear with K, suggesting that using
more nearest neighbors for encoding only adds a fractional
amount of computational burden. For example, the run-time
for K = 30 is less than twice of that for K = 5, and the
run-time for K = 50 is less than three times of that for
K = 5. This efficiency advantage directly results from the
cache blocking scheme of BLAS-3 operations [9]. In con-
trast, the run-time of exact LLC increases linearly with K.

This is particularly important because the accuracy of
our approximate scheme can in fact increase for larger val-
ues of K. This is specially true when using larger codebook
sizes. In Caltech-256 for example, our test accuracy went
from 35.69±0.2 to 36.1±0.2 as we increased K from 10 to
30. We can therefore exploit these accuracy gains with min-
imal extra computational cost. For instance, using K = 30
in our scheme for Caltech-256 is still 30× faster than exact
LLC using K = 10.

5.4. Comparison with State-of-the-Art Methods

We further compare our proposed approach with state-
of-the-art image coding methods. Because not all the image
coding methods are based on nearest neighbor search, we
include both the “Assign” and “Encode” stages (ref. Table
1) to account for the run-time of our approach. For the “As-
sign” stage that generates cluster assignment for all the de-
scriptors, we employed the kd-tree based approximate near-
est neighbor search, rather than using exact search.

The comparisons were performed on the Caltech-101 [6]
data-set with Product Sparse Coding (PSC) [7], Approx-
imate Locality-constrained Soft Assignment (LcSA) [18],
Soft Assignment (SA) [8], and Sparse Coding (SC) [17].
LcSA employs the Fast Hierarchical Nearest Neighbor
Search scheme proposed in [15] for approximate assign-
ment for the descriptors. The same experiment settings as
in [2] were used with the numbers of training images per
category set to 15 or 30.

Table 6 shows the classification accuracy and run-time
for coding per image on Caltech-101 [6] using a codebook
of size 4096. Compared to PSC, our proposed approach is
nearly twice as fast while producing comparable classifica-
tion accuracy. Compared to LcSA and SA, our proposed
approach is at least four times faster and produces higher
classification accuracy; compared to SC, our approach is
more than 400 times faster.

Run-time Accuracy
PSCn=30 0.45 sec 76.71%

Proposedn=30 0.258 sec 76.43%
Proposedn=15 0.258 sec 72.54%

LcSAn=15 1.06 sec 71.90%
SAn=15 66.6 sec 71.60%
SCn=15 106.4 sec 74.60%

Table 6: Classification accuracy and run-time per image for
various state-of-the-art image coding methods on Caltech-
101 [6]. The parameters n in the subscript indicates the
number of training images per category.

6. Conclusions and Future Work

Descriptor encoding is one of the main efficiency bottle-
necks in image classification. Particularly during the test-
ing phase, the complexity of descriptor encoding can be
a significant proportion of classification pipeline. In this
work, we proposed an approximate locality-constrained en-
coding scheme that offers significantly better computational
efficiency compared to its exact counterpart, with similar
classification accuracy. Using the perturbation analysis of
least-squares problems, we presented a formal error analy-
sis of our approach to identify the factors affecting the ap-
proximation error of our scheme. We empirically verified
that in practice these factors indeed behave as predicted by
our theoretical analysis, and introduce only a nominal error
compared to their exact conuterparts. Finally, we presented
a thorough set of comparative experimental results on mul-
tiple data-sets to assess both representational and discrimi-
native capabilities of our scheme.

So far in our comparison, we considered two impor-
tant factors to judge the effectiveness of various encoding
schemes, i.e., (i) encoding speed, and (ii) classification ac-
curacy. An important comparative factor we did not con-
sider in this work is (iii) the memory footprint of an encod-
ing scheme. In our future work, we plan to consider all these
three dimensions to do a more comprehensive comparative
analysis of how our approximate encoding scheme fits in the
overall encoding landscape. In particular, including mem-
ory footprint as one of the comparative factors would allow
us to compare our approach against schemes like Fisher
Vectors [22], which although are quite efficient and accu-
rate, but have a substantially large memory footprint.

We also plan to explore if applying our intuition of rep-
resenting similar feature-groups with shared set of bases
would make sense to approximate other encoding tech-
niques as well. Similarly, we plan on exploring the effec-
tiveness of our approximation for more general-purpose lo-
cally linear subspace learning.
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