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Abstract

Learning a low-dimensional structure plays an impor-
tant role in computer vision. Recently, a new family of
methods, such as l1 minimization and robust principal com-
ponent analysis, has been proposed for low-rank matrix ap-
proximation problems and shown to be robust against out-
liers and missing data. But these methods often require
heavy computational load and can fail to find a solution
when highly corrupted data are presented. In this paper,
an elastic-net regularization based low-rank matrix factor-
ization method for subspace learning is proposed. The pro-
posed method finds a robust solution efficiently by enforcing
a strong convex constraint to improve the algorithm’s sta-
bility while maintaining the low-rank property of the solu-
tion. It is shown that any stationary point of the proposed
algorithm satisfies the Karush-Kuhn-Tucker optimality con-
ditions. The proposed method is applied to a number of low-
rank matrix approximation problems to demonstrate its effi-
ciency in the presence of heavy corruptions and to show its
effectiveness and robustness compared to the existing meth-
ods.

1. Introduction
Low-rank matrix approximation has attracted much at-

tention in the areas of data reconstruction [10, 12, 32],
image denoising [7, 13, 23], collaborative filtering [25],
background modeling [8, 24, 35], structure from motion
[3, 13, 31, 34], and photometric stereo [4, 20, 33], to name
a few. It is sometimes assumed that the rank of a matrix is
fixed or known beforehand and it is also known as a sub-
space learning problem.

Although real-world data are usually high dimensional,
they can be well-represented with fewer parameters in many
cases. Hence, reducing the data dimension to a dominating
principal structure is desirable to reduce the computation
time and also to remove unwanted noisy components. A
popular method for addressing this issue is principal com-
ponent analysis (PCA) [11]. PCA transforms data to a low-

dimensional subspace which maximizes the variance of the
data based on the l2-norm. To handle missing data, [25]
solved a weighted low-rank matrix approximation problem
using the expectation-maximization algorithm. Lin [16]
proposed projected gradient methods to solve nonnegative
matrix factorization problems for image and text data. Mi-
tra et al. [20] presented a matrix factorization technique
which adds regularization terms to prevent data overfitting
and solves the problem using semi-definite programming.
These conventional l2-norm based approximation methods
have been utilized in many problems but it is known that
they are sensitive to outliers and corruptions because the l2-
norm amplifies the negative effects of corrupted data.

As an alternative, low-rank matrix approximation meth-
ods using the l1-norm have been proposed for robustness
against outliers and missing data [7,12–14,21]. In addition,
there have been several probabilistic extensions of low-rank
matrix factorization for robust approximation [6,19,32]. Ke
and Kanade [12] presented a low-rank matrix approxima-
tion method by alternatively minimizing an l1-norm based
cost function using convex programming. Eriksson and
Hengel [7] proposed the l1-Wiberg method for weighted
low-rank matrix approximation in the presence of missing
data. Kwak [14] proposed an l1 maximization approach
to find successive principal components using a greedy ap-
proach in the feature space. Kim et al. [13] proposed two
gradient-based approaches for an l1 minimization problem
using a rectified representation.

Recently, many efficient approaches using augmented
Lagrangian method have been proposed to solve the l1 min-
imization problem [4, 23, 34]. Shen et al. [23] proposed a
low-rank matrix approximation method using the l1-norm
based on the augmented Lagrangian alternating direction
method (ALADM). Zheng et al. [34] proposed a practical
weighted low-rank approximation method using nuclear-
norm regularized l1 cost function and orthogonality con-
straint (Regl1-ALM). Cabral et al. [4] proposed a unify-
ing approach, which combines nuclear-norm minimization
and bilinear factorization using an alternative definition of
the nuclear-norm [22]. Their approach leads to an efficient



algorithm without high computational complexity. These
methods have been successfully applied to low-rank fac-
torization problems in the presence of missing data and
outliers, outperforming other rank minimization methods
[17, 33]. But, it is difficult for factorization methods to find
the global optimal solution since the problem is non-convex.

There is another family of approaches based on the
recent advances in nuclear-norm minimization, which is
called robust principal component analysis (RPCA), and
it has been successfully applied to a number of problems
[5, 17, 29]. RPCA tries to find a solution for a non-fixed
rank matrix approximation problem using the l1-norm regu-
larized nuclear-norm cost function and solves using various
approaches such as augmented Lagrangian method (ALM)
[5, 17] and accelerated proximal gradient (APG) [29]. It
has been shown that RPCA is suitable for problems, such
as shadow removing and background modeling [5]. How-
ever, algorithms proposed for RPCA have high computa-
tional complexity, especially for large-scale problems, be-
cause they perform singular value decomposition (SVD) at
each iteration. Recently, Shu et al. [24] proposed efficient
low-rank recovery methods using a new rank measure. But,
the above methods sometimes find a suboptimal solution
under heavy corruptions, which remains a difficult problem
in practice.

In this paper, we present an efficient low-rank ma-
trix factorization method based on elastic-net regularization
for robust subspace learning problems in the presence of
heavy corruptions, including both outliers and missing en-
tries. Our method is a holistic approach which utilizes both
nuclear-norm minimization and bilinear factorization. To
prevent the instability of the algorithm, which may arise
from highly corrupted data, we introduce elastic-net regu-
larization for singular values to introduce strong convexity
to a lasso-type nuclear-norm minimization problem. The
strong convexity of the proposed method alleviates the in-
stability problem by shrinking and correcting inaccurate
singular values in the presence of unwanted noises. We
also show that any limit point of the proposed algorithm
satisfies necessary conditions to be a local optimal solu-
tion. We demonstrate the performance of the proposed
method in terms of the reconstruction error and computa-
tional speed using well-known benchmark datasets includ-
ing non-rigid motion estimation, photometric stereo, and
background modeling.

2. The Proposed Method

2.1. Problem formulation

In this paper, we consider the low-rank matrix and sparse
matrix separation problem [4, 34] based on convex en-
velopes of rank and sparsity functions as follows:

min
P,X

f1(P,X) + λ‖PX‖∗, (1)

where f1(P,X) = ‖W �(Y −PX)‖1, Y is an observation
matrix, and λ is a pre-defined weighting parameter. ‖ · ‖1
and ‖ · ‖∗ denote the entry-wise l1-norm and the nuclear-
norm, which are convex relaxation of the l0-norm and the
rank function, respectively. Here, � is the component-wise
multiplication or the Hadamard product and W is a weight-
ing matrix, whose element wij is 1 if yij is known, and 0 if
yij is unknown. The problem is similar to RPCA [5,17] if a
low-rank matrix D and a sparse error matrix E replace PX
and Y − PX , respectively. Generally, (1) is a non-convex
and non-smooth problem, making it difficult to find a solu-
tion efficiently and exactly. To solve the problem efficiently,
a common strategy is to use an alternating minimization ap-
proach which solves for one variable while other variables
are fixed [10, 12, 35].

Notice that the regularization term in (1), ‖PX‖∗, can
be interpreted as a sum of singular values,

∑r
i |σi|, where

σi is the ith singular value of a low-rank matrix PX and
r is the rank of PX . It leads to a lasso problem [15, 28],
which has a thresholding effect over singular values. But,
lasso-based approaches lack a shrinkage effect due to their
weak convexity, which makes the algorithm unstable when
highly corrupted data are presented. To improve the stabil-
ity of the algorithm, we introduce a strong convex regular-
izer over singular values with the l2-norm penalty of singu-
lar values, λ1

∑r
i |σi|+

λ2

2

∑r
i |σi|2. Based on the fact that

‖D‖2F = tr(V ΣUTUΣV T ) = tr(Σ2) =
∑
i |σi|2, where

D = UΣV T is SVD of D, we introduce a new penalized
optimization problem as follows:

min
P,X

f1(P,X) + λ1‖PX‖∗ +
λ2
2
‖PX‖2F . (2)

In (2), we have elastic-net regularization of singular values,
which has shown its superiority compared to lasso [15, 28]
in many applications [9, 15, 36]. It is capable of stabilizing
a lasso-type method due to its strong convexity, owing to
the Frobenius norm [9, 26, 36]. In addition, we have both a
thresholding effect over singular values from the l1 regular-
izer and a shrinkage effect from the l2 regularizer to make a
parsimonious and stable model.

Note that, without these regularization terms, the prob-
lem (2) can be solved using the augmented Lagrangian al-
ternating direction method (ALADM) [23]. There is an-
other approach using a nuclear-norm regularized l1-norm
cost function [34]. It is extended using an alternative defi-
nition of the nuclear-norm (Unifying1 ) [4], which does not
contain the smoothness term given in (2). However, these
methods can find a suboptimal solution since these alternat-
ing minimization based approaches without a proper cor-

1We call the method in [4] as Unifying for simplicity.



Figure 1. Evaluation of the proposed method (factEN) and a lasso-
based method (Unifying [4]) for a toy example.

rection term may lead to a poor solution in the presence of
highly corrupted data (see Section 3.1).

Figure 1 shows results of the proposed method compared
to Unifying [4], a lasso-based method, and ground-truth on
a simple example (100 × 100) with 20% outliers. The rank
of the ground-truth is five. From the figure, the proposed
method gives a stable result against outliers and eliminates
noises by suppressing the singular values, whereas Unify-
ing finds relatively inaccurate and higher singular values
and shows a poor reconstruction result compared to the pro-
posed method and ground-truth.

Unfortunately, (2) can suffer from heavy computational
complexity for large-scale problems because the problem is
solved by performing SVD at each iteration which is used
for solving a nuclear-norm based cost function. To solve (2)
in practice, the following property of the nuclear-norm can
be utilized [18].

Lemma 1 ( [18]). For any matrixD ∈ Rm×n, the following
holds:

‖D‖∗ = min
P,X

1

2

(
‖P‖2F + ‖X‖2F

)
s.t. D = PX. (3)

If the rank of D is r ≤ min(m,n), then the minimum so-
lution above is attained at a factor decomposition D =
Pm×rXr×n.

Using Lemma 1, we make an equivalent form of (2) as
follows:

min
P,X,D

f2(D) +
λ1
2

(
‖P‖2F + ‖X‖2F

)
+
λ2
2
‖D‖2F , (4)

such thatD = PX , where f2(D) = ‖W�(Y −D)‖1. Due
to the difficulty of solving the problem (4) in practice, we
introduce an auxiliary variable D̂ and solve the following
problem instead.

min
P,X,D,D̂

f2(D̂)+
λ1
2

(
‖P‖2F + ‖X‖2F

)
+
λ2
2
‖D‖2F

s.t. D = PX, D̂ = D.

(5)

To solve (5), we utilize the augmented Lagrangian
framework which converts (5) into the following uncon-
strained problem:

L(P,X,D, D̂,Λ1,Λ2) = f2(D̂) +
λ1
2

(
‖P‖2F + ‖X‖2F

)
+
λ2
2
‖D‖2F + tr

(
ΛT1 (D − PX)

)
+ tr

(
ΛT2 (D̂ −D)

)
+
β

2

(
‖D − PX‖2F + ‖D̂ −D‖2F

)
,

(6)

where Λ1,Λ2 ∈ Rm×n are Lagrange multipliers and β > 0
is a small penalty parameter.

2.2. Algorithm

Based on the previous formulation, we develop a method
based on the augmented Lagrangian framework and solve it
using an alternating minimization technique [10,23,35]. To
solve for P , we fix the other variables and solve the follow-
ing optimization problem:

P+ = arg min
P

λ1
2
‖P‖2F + tr

(
ΛT1 (D − PX)

)
+
β

2
‖D − PX‖2F .

(7)

This optimization problem is a least square problem and the
solution is

P+ = (Λ1 + βD)XT (λ1I + βXXT )−1, (8)

where I denotes an identity matrix. For X , we solve the
following optimization problem:

X+ = arg min
X

λ1
2
‖X‖2F + tr

(
ΛT1 (D − PX)

)
+
β

2
‖D − PX‖2F ,

(9)

which can be solved similar to (7) and its solution is

X+ = (λ1I + βPTP )−1PT (Λ1 + βD). (10)

For finding D, we consider the following optimization
problem:

D+ = arg min
D

λ2
2
||D||2F

+ tr
(
ΛT1 (D − PX)

)
+ tr

(
ΛT2 (D̂ −D)

)
+
β

2

(
‖D − PX‖2F + ‖D̂ −D‖2F

)
,

(11)

and its solution is

D+ =
βPX + βD̂ + Λ2 − Λ1

λ2 + 2β
. (12)



Algorithm 1 factEN by ALM for optimizing (5)
1: Input: Y ∈ Rm×n, r, β, ρ, and λ1, λ2 = 10−3

2: Output: P ∈ Rm×r, X ∈ Rr×n, and D ∈ Rm×n
3: while not converged do
4: while not converged do
5: Update P using (8)
6: Update X using (10)
7: Update D using (12)
8: Update D̂ using (14)
9: end while

10: Update the Lagrange multipliers Λ1,Λ2 using (15)
11: β = min(ρβ, 1020)
12: end while

We obtain the following equation to solve for D̂,

D̂ = arg min
D̂

f2(D̂) + tr
(

ΛT2 (D̂ −D)
)

+
β

2
‖D̂ −D‖2F

(13)
and the solution can be computed using the absolute value
thresholding operator [5, 17, 34]:

W � D̂+ ←W �
(
Y − S

(
Y −D +

Λ2

β
,

1

β

))
,

W � D̂+ ←W �
(
D − Λ2

β

)
,

(14)
where S(x, τ) = sign(x) max(|x| − τ, 0) for a variable x
and W ∈ Rm×n is a complementary matrix of W whose
element wij is 0 if yij is known, and is 1 if yij is unknown.

Finally, we update the Lagrange multipliers as

Λ1 = Λ1 + β(D − PX),

Λ2 = Λ2 + β(D̂ −D).
(15)

Based on the previous analysis, we derive a robust
elastic-net regularized low-rank matrix factorization algo-
rithm and it is summarized in Algorithm 1. Since the algo-
rithm is constructed based on elastic-net regularization and
solved using a matrix factorization approach, the proposed
method is named as factEN. In the algorithm, we have as-
sumed a normalized observation matrix. Hence, the output
matrices P and X can be obtained by re-scaling them using
the scaling factor. We initialize the optimization variables
with the Gaussian distribution N (0, 10−3).2

The computational complexity of the inner loop (line
4–9 in Algorithm 1) is O(mnr) for the proposed method,
which is the same as Unifying [4] and ALADM [23]. Since
IALM [17] and Regl1-ALM [34] perform an SVD opera-
tion at each iteration, their computational complexities are

2Note that we have empirically found that our algorithm is not sensitive
to initial values and finds similar solutions with different initial values.

O(min(m,n) max(m,n)2) and O(rmax(m,n)2), respec-
tively, requiring more computational efforts than factEN.
Note that the proposed method can be easily extended to
speed up the algorithm with linear complexity at each itera-
tion by sampling sub-matrices from a measurement matrix
as described in [24, 27].

2.3. Convergence analysis

In this section, we analyze the convergence property of
the proposed method. Although it is difficult to guarantee
its convergence to a local minimum, an empirical evidence
suggests that the proposed algorithm has a strong conver-
gence behavior (see Figure 2). Nevertheless, we provide a
proof of weak convergence of factEN by showing that un-
der mild conditions any limit point of the iteration sequence
generated by the algorithm is a stationary point that satisfies
the Karush-Kuhn-Tucker (KKT) conditions [2]. It is worth
proving that any converging point must be a point that sat-
isfies the KKT conditions because they are necessary con-
ditions to be a local optimal solution. This result provides
an assurance about the behavior of the proposed algorithm.

We rewrite the cost function of factEN by assuming the
fully-observed data model of (5), i.e., Wij = 1 for all i, j,
as follows:

min
P,X,D,D̂

f3(D̂) +
λ1
2

(
‖P‖2F + ‖X‖2F

)
+ λ2‖D‖2F

s.t. D = PX, D̂ = D.

(16)

where f3(D̂) = ‖Y − D̂‖1. However, a similar result can
be derived for the partially-observed data model.

Let us assume that the proposed algorithm reaches a sta-
tionary point. The KKT conditions for (16) are derived as
follows:

D − PX = 0, D̂ −D = 0,
∂L
∂P

= λ1P − Λ1X
T = 0,

∂L
∂X

= λ1X − PTΛ1 = 0,
∂L
∂D

= λ2D + Λ1 − Λ2 = 0,

Λ2 ∈ −∂D̂(||Y − D̂||1).

(17)

Here, we can obtain the following equation from the the last
relationship in (17):

Y−D +
Λ2

β
∈ Y −D − 1

β
∂D̂(||Y − D̂||1)

= Y − D̂ − 1

β
∂D̂(||Y − D̂||1) , Qβ(Y − D̂),

(18)

where scalar functionQβ(t) , t− 1
β∂|t| is applied element-

wise to Y − D̂. From [23], we can obtain the following



relation:

Y −D̂ = Q−1β

(
Y −D +

Λ2

β

)
≡ S

(
Y −D +

Λ2

β
,

1

β

)
,

(19)
where S(x, τ) = sign(x) max(|x| − τ, 0). Therefore, the
KKT conditions can be rewritten as follows:

D − PX = 0, D̂ −D = 0, λ1P − Λ1X
T = 0,

λ1X − PTΛ1 = 0, λ2D + Λ1 − Λ2 = 0,

Y − D̂ = S
(
Y −D +

Λ2

β
,

1

β

)
.

(20)

Based on these conditions, we prove the convergence to a
point which satisfies the KKT conditions.

Theorem 1. Let G , (P,X,D, D̂,Λ1,Λ2) and {Gj}∞j=1

be generated by factEN. Assume that {Gj}∞j=1 is bounded
and limj→∞{Gj+1 − Gj} = 0. Then, any accumulation
point of {Gj}∞j=1 satisfies the KKT conditions. In partic-
ular, whenever {Gj}∞j=1 converges, it converges to a KKT
point.

Proof. First, we get the Lagrange multipliers Λ1,Λ2 from
the algorithm as

Λ1+ = Λ1 + β(D − PX)

Λ2+ = Λ2 + β(D̂ −D),
(21)

where Λi+ is a next point of Λi in a sequence {Λji}∞j=1. If
sequences of variables {Λj1}∞j=1 and {Λj2}∞j=1 converge to a
stationary point, i.e., (Λ1+−Λ1)→ 0 and (Λ2+−Λ2)→ 0,
then (D− PX)→ 0 and (D̂−D)→ 0, respectively. This
satisfies the first two conditions of the KKT conditions.

Second, from P+ derived in the algorithm, we get

P+ − P = (Λ1 + βD)XT (λ1I + βXXT )−1 − P, (22)

where I denotes an identity matrix and it can be rewritten
by multiplying (λ1I + βXXT ) to both sides in (22) as

(P+ − P )(λ1I + βXXT )

= Λ1X
T − λ1P + β(D − PX)XT .

(23)

From the first condition, we can derive Λ1X
T − λ1P → 0

when (P+ − P )→ 0.
Third, using X+ = (λ1I + βPTP )−1PT (Λ1 + βD)

derived from the algorithm, we can obtain the following:

(λ1I+βPTP )(X+ −X)

= PTΛ1 − λ1X + βPT (D − PX).
(24)

If (X+ −X)→ 0, then (PTΛ1 − λ1X)→ 0 as well.
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Figure 2. Scaled cost values of the proposed algorithm at each
iteration for four synthetic examples.

Likewise, we can get the following equation using D+

from the proposed algorithm,

(λ2 + 2β)(D+ −D)

= β(PX −D + D̂ −D)− Λ1 + Λ2 − λ2D.
(25)

Since PX −D and D̂ −D converge to zero from the pre-
vious analysis, we obtain Λ1 − Λ2 + λ2D = 0 whenever
D+ −D → 0.

Lastly, from (19), we obtain the following equation:

D̂+ − D̂ = Y − S
(
Y −D +

Λ2

β
, β

)
−D. (26)

Since {Gj}∞j=1 is bounded by our assumption,
{X+X

T
+}∞j=1 and {PT+P+}∞j=1 in (23) and (25) are

bounded. Hence, limj→∞(Gj+1 − Gj) = 0 implies that
both side of the above equations (21), (23), (24), (25),
and (26) tend to zero as j → ∞. Therefore, the sequence
{Gj}∞j=1 asymptotically satisfies the KKT condition for
(16). This completes the proof.

In our algorithm, we set the stopping criterion as

||D(t) − P (t)X(t)||1
||Y ||1

< θ, (27)

where t is the number of iterations and θ is a small positive
number. Here, we compute the whole elements ofD includ-
ing elements corresponding to the unknown entries. Since
it is enough for the algorithm to achieve a nearly stationary
point when the difference between the terminating cost of
adjacent iterations becomes small, we set the stopping con-
dition as θ = 10−5 in our experiments in Section 3. Fig-
ure 2 shows scaled cost values3 of the proposed method at
each iteration for four examples from 500× 500 to 3,000×
3,000 with outliers as described in Section 3.1. Each point

3We have scaled cost values as (f2(D̂) + λ1
2
(‖P‖2F + ‖X‖2F ) +

λ2
2
‖D‖2F )/‖W�Y ‖1 in order to display four cases under the same scale.



denotes a cost value at each iteration. As shown in the fig-
ure, the cost value of factEN decreases fast and converges
to a stationary point in a small number of iterations.

3. Experimental Results
We evaluated the performance of the proposed method,

factEN, by experimenting with various synthetic and real-
world problems, such as non-rigid motion estimation [30,
34], photometric stereo [4, 33], and background model-
ing [24, 32]. We compared factEN to the state-of-the-art
low-rank approximation methods, ALADM4 [23], Regl1-
ALM5 [34], and Unifying [4], and rank estimation meth-
ods, IALM6 [17] and ROSL7 [24]. We set the parameters of
factEN as follows: ρ = 1.2 for all cases, except for Giraffe
and Static Face data sets, in which ρ = 1.05; and β0 = 0.5
for all cases, except for non-rigid motion estimation prob-
lems, in which β0 = 10−2. Note that β = β0/‖Y ‖∞.

3.1. Synthetic data

First, we applied the proposed method to synthetic ex-
amples. We generated six test sets from 500 × 500 to
10, 000 × 10, 000 with Gaussian noises which were sam-
pled from N (0, 10−2). In the experiment, the average re-
construction error ESyn is calculated as ESyn = 1

n ||M
gt−

M̂ ||1, whereMgt is the ground truth and M̂ is the low-rank
matrix approximated by the applied algorithm.

Figure 3 shows average performances on a synthetic ex-
ample (500×500) with various data ranks8 and various out-
liers ratios to verify the robustness under various conditions.
Overall, the proposed method and Unifying give the best av-
erage performance with respect to the reconstruction error
for both cases. From Figure 3(b), most methods are robust
when the outlier ratio is small, but ROSL and IALM give
poor performance when the number of outliers increases,
restricting their applications in practice.

To verify the ability of the proposed method compared
to Unifying with respect to the rank and sparsity, we con-
ducted an experiment for a 1,000×1,000 synthetic example.
Figure 4 plots the fraction of correct recoveries at different
rank and sparsity ratios. The region which is correctly re-
covered by the proposed method appears to be broader than
that of Unifying. From the figure, the proposed method is
more capable of handling corruptions than Unifying.

Figure 5(a) and 5(b) show average reconstruction er-
rors and execution times of different algorithms, respec-
tively, for various matrix sizes with 8% fixed data rank and

4http://lmafit.blogs.rice.edu/
5https://sites.google.com/site/yinqiangzheng/
6http://perception.csl.illinois.edu/

matrix-rank/sample_code.html/
7https://sites.google.com/site/xianbiaoshu/
8Note that the data rank means the percentage of the true rank over the

maximum possible rank of the data matrix.

2 4 6 8 10
0.5

1

1.5

2

2.5

3

Data rank (%)

E
sy

n

 

 

factEN
Unifying
IALM
RegL1−ALM
ROSL

(a)

0 5 10 15 20 25 30 35
100

101

102

Outlier ratio (%)

E
sy

n (l
og

)

 

 
factEN
Unifying
IALM
RegL1−ALM
ROSL

(b)

Figure 3. Average performances on a synthetic example (500 ×
500) with various conditions. (a) Average reconstruction errors for
different observation data rank ratios (5% outliers). (b) Average
reconstruction errors for different outlier ratios (5% data rank).

Figure 4. Phase transition in rank and sparsity for a synthetic
example (1,000×1,000) using the proposed method and Unifying.
Correct recovery (white region) is achieved when a recovered low-
rank matrix M̂ satisfies ‖Mgt − M̂‖1/‖Mgt‖1 ≤ 5× 10−4.

4% outliers which were uniformly distributed in the range
of [−20, 20]. We could not evaluate IALM and Regl1-
ALM for a large-scale problem (10, 000× 10, 000) because
of their heavy computational complexity. The proposed
method outperforms the other methods with respect to the
reconstruction error in all cases. Although Regl1-ALM
shows the similar performance compared with the proposed
method for small-scale data sets, it takes a longer computa-
tion time to get a good solution and shows poor performance
for large-scale problems. The computing time of ALADM
is faster than factEN, but it performs poorer than factEN.

To compare the proposed algorithm in realistic condi-
tions, we changed the outliers to block corruptions with
missing entries in a synthetic example. For a similarly con-
structed 300× 300 example, we added occlusions with var-
ious sizes with 20% missing data. Figure 5(c) shows recon-
struction errors of different methods. As shown in the fig-
ure, the proposed method robustly reconstructs corruptions
while other methods except ALADM give poor reconstruc-
tion results when there are large-sized block corruptions.

3.2. Real-world problems

We evaluated the proposed method for real-world prob-
lems, which are summarized in Table 1. For these problems,

http://lmafit.blogs.rice.edu/
https://sites.google.com/site/yinqiangzheng/
http://perception.csl.illinois.edu/matrix-rank/sample_code.html/
http://perception.csl.illinois.edu/matrix-rank/sample_code.html/
https://sites.google.com/site/xianbiaoshu/
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Figure 5. Average performances for synthetic problems in the presence of corruptions. (a) Average reconstruction errors with random
outliers for various data sizes. (b) Average execution times for various data sizes. (c) Average reconstruction errors with various block
corruption sizes and 20% missing for an example of 300× 300 in size.
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Figure 6. Average performances on real-world problems (non-rigid motion estimation, photometric stereo) in the presence of outliers and
missing data. (a) Giraffe sequence. (b) Shark sequence. (c) Static face.

we computed the mean absolute error (MAE) over the ob-
served entries as EReal = ||W�(Mgt−M̂)||1

‖W‖1 .

First, we conducted a non-rigid motion estimation ex-
periment using Giraffe sequence [3]. To demonstrate the
robustness of the proposed method, we replaced 5% of
the randomly selected points in a frame by outliers in the
range of [0, 100] whereas the data points are in the range
of [127, 523]. In this setting, we performed several experi-
ments by changing outlier ratio in the data. The result for
the Giraffe sequence in the presence of various outlier lev-
els is shown in Figure 6(a). The figure also includes the
case when no outliers are added. As shown in the figure,
factEN gives the best performance regardless of the outlier
ratio. Although Unifying gives similar reconstruction per-
formance when the outlier ratio is small, the performance
gets worse as the outlier ratio increases. Regl1-ALM and
ALADM show worse performance compared to other state-
of-the-art methods. Figure 7 shows how the average recon-
struction error is affected by the choice of λ1 for factEN and
Unifying [4]. The proposed method shows more stable re-
sults under different values of λ1 and λ2, whereas Unifying
is sensitive to the choice of λ1.

Table 1. Summary of real-world problems with known rank r.
Datasets Size Rank r Missing

Giraffe [3] 91 × 240 6 30 %
Shark [31] 240 × 167 6 10 %

Static Face [3] 4,096 × 20 4 42 %
PETS 2009 [1] 110,592 × 221 2 0 %

We also performed the motion estimation problem using
the Shark sequence [31]. In this data, we randomly dropped
10% of points in each frame as missing data. We set from
0% to 15% of tracked points as outliers in each frame in
the range of [−1000, 1000], whereas the data points were
located in the range of [−105, 105]. Average reconstruc-
tion errors at various outlier ratios by different methods
are shown in Figure 6(b). As shown in the figure, factEN
and Unifying both give outstanding reconstruction results.
However, the proposed method gives the better reconstruc-
tion results than Unifying on average. The reconstruction
results of the three selected algorithms are shown in Figure
8. From the figure, we can observe excellent reconstruction
results by the proposed method against missing data and
outliers compared to the other approaches.



Figure 9. Background modeling results of the methods for two selected frames in the PETS2009 dataset. Each algorithm decomposes the
original image into background and foreground images.
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Figure 7. Comparison between the proposed method and Unifying
[4] at different values of λ1 for the Giraffe sequence. (·) denotes a
value of λ2.
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Figure 8. Reconstruction results from the shark sequence by three
methods: factEN, Unifying [4], and RegL1-ALM [34].

For the photometric stereo problem, we used the Static
Face sequence [4]. We examine how robust the proposed
method is for various outlier ratios in the presence of miss-
ing data. We set from 0% to 15% of tracked points as out-

liers in each frame in the range of [0, 100]. The overall re-
sults are represented in Figure 6(c). From the figure, the
proposed method gives the obvious distinction compared to
other methods regardless of the outlier ratio.

For background modeling task, we used PETS2009 [1]
and resized each frame to 288 × 384. We performed the
proposed method compared with state-of-the-art methods:
Unifying [4] and ROSL [24]. We added 30% random noises
in randomly selected frames. Figure 9 shows the back-
ground modeling results on two selected frames. As shown
in the figure, factEN and Unifying correctly separated fore-
ground from background. The rank estimation method,
ROSL, fails to find a good solution in the presence of heavy
corruptions. The computation times are 186.37 sec for the
proposed method, 497.46 sec for Unifying, and 145.93 sec
for ROSL. Although ROSL gives the slightly faster compu-
tation time than factEN, it did not provide satisfying results.

4. Conclusions

In this paper, we have proposed a novel method, factEN,
for practical subspace learning based on elastic-net regular-
ization of singular values. The proposed method can han-
dle missing or unknown entries as well as outliers. With
the introduction of the proposed elastic-net regularization
scheme, the proposed method can find a robust solution
more efficiently and is stable against missing data, outliers,
and different parameter values. The proposed method has
been applied to various problems including non-rigid mo-
tion estimation, photometric stereo, and background mod-
eling problems. The experimental results show that the pro-
posed method outperforms other existing methods in terms
of the approximation error and execution time. It will be in-
teresting to investigate the competitiveness of the proposed
method for large-scale and more challenging problems, in-
cluding automatic rank estimation.
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