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We deal with the problem of finding dense intrinsic correspondence between
manifolds in the functional formulation ([4], Fig. 1). We propose treating
functional correspondence as geometric matrix completion. We show that
our method compares favorably to state-of-the-art methods for non-rigid
shape correspondence on the challenging Princeton benchmark [2]. The
advantage of our method is especially pronounced in the scarce data set-
tings. The proposed method is completely generic and can be applied to any
manifolds and high-dimensional geometric data.

Functional maps Let X and Y denote two manifolds sampled at n and m
points, respectively. Ovsjanikov et al. [4] propose to model the functional
correspondence between the spaces L2(X) and L2(Y ) as the m× n matrix
T0, which maps a function f ∈ L2(X) into T0f = g ∈ L2(Y ). Traditional
point-wise correspondence is a particular case of this model wherein T0
maps delta functions into delta functions.
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Figure 1: Illustration of functional correspondence as matrix completion.
Column ti = Tδ i of matrix T is the functional map of a delta at xi. Geo-
metric structure is imposed on the columns to ensure smoothness, i.e. ti, ti′

corresponding to spatially close points xi, xi′ on X are similar.

Functional maps as matrix completion Kalofolias et al. [1] studied the
problem of matrix completion on graphs, where the rows and columns of the
matrix representing the correspondence have underlying geometric struc-
ture. They show that adding geometric structure to the standard matrix com-
pletion problem improves recovery results.

We use the same philosophy to formulate the problem of finding a func-
tional map as matrix completion, whose rows and columns are interpreted
as functions on the respective manifolds X and Y . For this purpose, we
consider the matrix T as a collection of columns T = (t1, . . . , tn) or rows
T = (t1>, . . . , tm>)>, where ti and t j denote the ith column and jth row of
T, respectively. The column ti = Tδ i is the function on Y corresponding to
a delta located at point xi on X . Similarly, the row t j = δ

>
j T is the function

on X corresponding to a delta located at point y j on Y .
As in the classical matrix completion problem, we aim at recovering the

unknown correspondence matrix T0 from a few observations of the form
T0F = G, where F = (f1, . . . , fq) and G = (g1, . . . ,gq) are q corresponding
functions on X , Y , respectively. Furthermore, matrix T≈ T0 should explain
the data in a “simple” way, in the sense discussed in the following. Our
problem comprises the following terms:

Data term The correspondence should respect the data, which is achieved
by minimizing ‖TF−G‖F.

Smoothness The correspondence must be smooth, in the sense that if xi,xi′

are two close points on X , then the respective corresponding functions are
similar, i.e., ti ≈ ti′ (see Figure 1). Similarly, for close points y j,y j′ on Y , the
rows t j ≈ t j′ . Smoothness is achieved by minimizing the row and column
Dirichlet energy tr(T>LYT)+ tr(TLXT>).

Localization The correspondence is localized using the L1-penalty ‖T‖1,
which, in combination with smoothness, results in a few non-zero elements
that are close in space.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

“Simplicity” By simplicity, we mean here that the correspondence matrix
is ‘explained’ using a small number of degrees of freedom. The follow-
ing models are commonly used in matrix completion and recommendation
systems literature.

Low rank. A popular model is to find the matrix with smallest rank(T).
However, this minimization is known to be NP-hard, and the nuclear norm
‖T‖∗ is typically used as a convex proxy, leading to

min
T
‖TF−G‖2

F +µ1tr(TLX T>)+µ2tr(T>LY T)+µ3‖T‖1 +µ4‖T‖∗. (1)

where µ1,µ2,µ3 > 0 are parameters determining the tradeoff between smooth-
ness and localization.

Low norm. Srebro et al. [6] rewrite problem (1) using the decom-
position T = UV> with U and V of size m× k and n× k, respectively.
Note that k can be arbitrarily large. The nuclear norm is written as ‖T‖∗ =
1
2 (‖U‖

2
F +‖V‖2

F). Unlike (1), this problem is non-convex w.r.t. both U and
V, however behaves well for large k [6].

Subspace parametrization Let LX and LY be the Laplacians of X and Y ,
and let Φk = (φ 1, . . .φ k) and Ψk = (ψ1, . . .ψk) be the respective truncated
Laplacian eigenbases. The number of variables in the problem (1) depends
on the number of samples m,n, which may result in scalability issues for
large (m,n ∼ 106) manifolds. To overcome this issue, we approximate the
n× k and m× k factors U,V in the truncated Laplacian eigenbases of X
and Y using k′ ≥ k first expansion terms, U ≈ Ψk′A and V ≈ Φk′B, where
matrices A,B of the expansion coefficients are of size k′×k. This leads to a
subspace version of our problem,

min
A,B

‖AB>Φ
>
k′F−Ψ

>
k′G‖

2
F +µ1tr(AB>ΛX ,k′BA>)+ (2)

µ2tr(BA>ΛY,k′AB>)+µ3‖Ψk′AB>Φ
>
k′‖1 +

µ4

2
(‖Ψk′A‖2

F +‖Φk′B‖2
F)

where we used the invariance of the Frobenius norm to orthogonal transfor-
mations and the fact that Φ>k′LX Φk′ = ΛX ,k′ , Ψ>k′LY Ψk′ = ΛY,k′ to simplify
the expressions (Λ·,k denotes a diagonal matrix of k respective eigenvalues).

Note that now the number of variables 2kk′ is independent of the number
of samples. We emphasize that k′,k can be arbitrarily large and are dictated
only by complexity considerations and not by the amount of data. This is
one of the major advantages of our approach compared to [3, 4, 5].

Figure 2: Examples of correspondence between non-isometric shapes.
Leftmost shape is used as reference. Similar colors encode corresponding
points.

[1] Vassilis Kalofolias, Xavier Bresson, Michael Bronstein, and Pierre Van-
dergheynst. Matrix completion on graphs. arXiv:1408.1717, 2014.

[2] Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. Blended intrinsic
maps. TOG, 30(4):79, 2011.

[3] Artiom Kovnatsky, Michael M Bronstein, Alexander M Bronstein, Klaus
Glashoff, and Ron Kimmel. Coupled quasi-harmonic bases. Computer Graphics
Forum, 32:439–448, 2013.

[4] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas. Func-
tional maps: A flexible representation of maps between shapes. TOG, 31(4),
2012.

[5] Jonathan Pokrass et al. Sparse modeling of intrinsic correspondences. Computer
Graphics Forum, 32:459–468, 2013.

[6] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix
factorization. In Proc. NIPS, 2004.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

