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Figure 1: Illustration of hierarchical fusion.
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Figure 2: Our label tree structure.

Energies with Potts pairwise term are frequently used in various vision
and graphics applications [1]. Potts model is popular because it is, arguably,
the simplest useful model that imposes smoothness on the solution. Al-
though optimizing Potts energy is NP-hard [1], there are efficient approxi-
mate optimization algorithms [1, 3].

‘We propose a graph-cut approach to Potts energy minimization that is
easy to parallelize, see 1. Our approach is based on extending the hierarchi-
cal fusion (h-fusion) algorithm of [2], which is based on the fusion algorithm
of [5]. The h-fusion algorithm of [2] is almost identical to the hierarchical
algorithm of [4] in the absence of the label cost terms.

In [5] they also propose a graph-cut based parallel optimization algo-
rithm. However, their approach, in general, has no optimality guarantees.
Our approach has optimality factor O(log, k) even after just one iteration
over all labels, i.e. after solving kK — 1 max flow problems, where k is the
number of labels. Intuitively, it seems plausible that one has to solve at least
that number of max-flow problems to have any optimality guarantees.

Our approximation factor this is not as good as the factor of 2 of the
expansion algorithm. However in practice we achieve very good results. In
particular, the results of our algorithm after one iteration are always better
than the results after one iteration of expansion, see Fig. 3. In fact, we
show that expansion algorithm has an approximation factor of O(k) after
one iteration. This factor is much worse than that of our algorithm, which
helps to explain why we get better results after one iteration. For some
applications, one iteration may be sufficient, see Fig. 4. Also, if one has a
time-critical application, one iteration may be all that one can afford.

When Potts model is used for pairwise terms, the energy is:

f(x):pr(xp)—l— Z qu'[xp#xq]v

peP {p.q}cE

(¢

where P is the set of image pixels, E is the set of neighboring pixel pairs, []
is the Iverson bracket, and wp, is a non-negative coefficient.

Theorem 1. Let f,; be Potts pairwise term. Then the solution found with
Alg. 1 is within a factor of O(logk) from the global optimum.

Our Alg. 1, based on the original hierarchical fusion algorithm in [2,
4] is not iterative. It is not immediately obvious how to make it iterative,
since it does not even make use of any initial solution, unlike most iterative
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Algorithm 1: OUR HIERARCHICAL FUSION

1 foreachi=1,....k do
2 foreach p € P do
3 x;, =i

4 foreachi=1,....k do

5 ready(i) := true

6 foreachi=k+1,...,2k do

7 ready(i) := false

8 // perform fusions

9 foreach j=k+1,k+2,...,r in parallel do

10 a:=C(j)

11 b:=C())

12 if ready(a) = true and ready(b) = true
13 ¥ = argminxeFuxe(.x",xb) f(x)

14 ready(j)= true

15 return x”

Image k | expansion expansion h-fusion h-fusion
’ ‘ energy time ‘ energy ‘ time ‘
tsukuba | 16 1074813 0.552 1068527 0.294
venus 20 2329733 1.227 2319501 0.593
teddy 60 3961242 3.247 3906396 1.32
cones 60 4624147 3.207 4586747 1.216
sawtooth | 20 2740786 0.987 2730520 0.499
bull 20 2028894 0.969 2018992 0.505
barnl 20 2590260 0.898 2582261 0.482

Figure 3: Result comparison after one iteration of the expansion algorithm
vs. one iteration of our approach (h-fusion). Running times are in seconds.

algorithms. To make it iterative, we make the following observation. Let X
be the solution obtained by Alg. 1. Let

E'= {p,q} €E ‘)Afp #xq}

We can execute Alg. 1 for a new energy function g, which is defined
as follows. The unary terms are left unchanged: g,(x,) = fp(x,), and the
pairwise terms are changed as:

for {p,q} € E\E’
for {p.q} € E'

qu(xp»xq)

gpq(xpvxq) = { 0 (2)

Proposition 1. Let x/ = % the the labeling Alg. 1 returns when optimizing
f(x). Let g(x) be as defined in Eq. 2, and let x8, be the labelling Alg. 1
returns when optimizing g(x). Then f(x8) < f(x).

Thus Alg. 1 can be iterated until convergence by constructing new set
E' after each iteration.
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Figure 4: Disparity maps for tsukuba scene.
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