
Efficient Parallel Optimization for Potts Energy with Hierarchical Fusion

Olga Veksler
University of Western Ontario

London, Canada
olga@csd.uwo.ca

Abstract

Potts energy frequently occurs in computer vision appli-
cations. We present an efficient parallel method for opti-
mizing Potts energy based on the extension of hierarchi-
cal fusion algorithm. Unlike previous parallel graph-cut
based optimization algorithms, our approach has optimality
bounds even after a single iteration over all labels, i.e. after
solving only k-1 max-flow problems, where k is the number
of labels. This is perhaps the minimum number of max-flow
problems one has to solve to obtain a solution with opti-
mality guarantees. Our approximation factor is O(log2 k).
Although this is not as good as the factor of 2 approxima-
tion of the well known expansion algorithm, we achieve very
good results in practice. In particular, we found that the re-
sults of our algorithm after one iteration are always better
than the results after one iteration of the expansion algo-
rithm. We demonstrate experimentally the computational
advantages of our parallel implementation on the problem
of stereo correspondence, achieving a factor of 1.5 to 2.6
speedup compared to the serial implementation. These re-
sults were obtained with a small number of processors. The
expected speedups with a larger number of processors are
greater.

1. Introduction

Energies with Potts pairwise term are frequently used in
various vision and graphics applications [7, 1, 23, 12, 3].
Potts model is popular because it is, arguably, the simplest
useful model that imposes smoothness on the solution. Al-
though optimizing Potts energy is NP-hard [7] , there are
efficient approximate optimization algorithms [7, 14].

According to the energy evaluations in [29, 13],
TRWS [14] and expansion and swap algorithms [7] opti-
mize Potts energy particularly well. The expansion algo-
rithm [7] has the best trade-off in terms of the speed and the
accuracy of optimization. An additional advantage of ex-
pansion is that it has a factor of 2 approximation for Potts
energy, and this factor is tight [8]. The focus of this paper

is improving the computational efficiency of graph-cut op-
timization of Potts energy through parallel implementation.

There are many approaches to improve the running time
of the expansion algorithm. One direction is to re-use in-
formation between different instances of max-flow compu-
tations, or by taking advantage of the structure of the op-
timization problem in some clever way. FastPD method
of [17] exploits information not only from the original opti-
mization problem but also from the dual one, intuitively re-
using information from one max-flow computation to the
next. In [2, 4], they obtain improvements that are similar
to that in [17] by reusing the flow between min-cut com-
putations, and by using good initializations. Another ap-
proach to speed-up is in [5], where they adaptively find the
sequence of expansion moves that is likely to lead to the
biggest energy decrease. This results in faster overall con-
vergence of the expansion algorithm.

A different line of research is concerned with extracting
part of the optimal solution [18, 27, 11]. Pixels for which
the optimal label is extracted are removed from the opti-
mization problem. The smaller problem is solved by a stan-
dard method, such as expansion [7] or FastPD [17]. For
example, [18] solves k max-flow problems, where k is the
number of labels, to obtain a partially optimal solution. In
[11], they improve the efficiency of [18] by developing a
method that only needs 1 + log2k max-flow computations.
The approach in [11] is based on generalizing the algorithm
of [10], which is an exact fast algorithm for optimizing the
special case of energies with tree-metric label space. It is
worth noting that partial optimality methods exist for mod-
els more general than Potts [28, 26], and they are useful
beyond just computational speed-ups.

Partial optimality algorithms can significantly speed up
computation. For example [11] reports 50 − 93% of vari-
ables labeled by their approach. However, there are no a
priori guarantees on the percentage of the solution that will
be obtained. Partial optimality works best when unary terms
are less ambiguous, namely when many pixels show strong
preference to a specific label. For example, to get a better
percentage of optimally labeled pixels, [11] uses 9× 9 win-

1

dow aggregated SSD score for unary terms. Aggregating
over windows may worsen results close to label discontinu-
ities. Furthermore for some problems, strong unary terms
may not be easy to design. In the extreme case, unary terms
are based on hard-constraints, i.e. either zero or infinity,
for example in image inpainting [29] or superpixel tessella-
tion [30, 31], making partial optimality inapplicable.

We propose a graph-cut approach to Potts energy mini-
mization that is easy to parallelize. Our approach is based
on extending the hierarchical fusion (h-fusion) algorithm
of [9], which is based on the fusion algorithm of [21]. The
h-fusion algorithm of [9] is almost identical to the hierarchi-
cal algorithm of [19] in the absence of the label cost terms.

In [21] they also propose a graph-cut based parallel opti-
mization that uses a mixture of expansion and fusion moves.
However, their approach, in general, has no optimality guar-
antees. Our approach has optimality guarantees even after
just one iteration over all labels, i.e. after solving k−1 max
flow problems, where k is the number of labels. Intuitively,
it seems plausible that one has to solve at least that number
of max-flow problems to have any optimality guarantees.

Our approximation factor is O(log2 k). Although this is
not as good as the factor of 2 approximation of the expan-
sion algorithm, we show that in practice we achieve very
good results. In particular, the results of our algorithm af-
ter one iteration are always better than the results after one
iteration of the expansion algorithm. In fact, we show that
the expansion algorithm does have an approximation factor
after just one iteration, if initialized properly. However, this
factor is O(k), much worse than that of our algorithm. This
helps to explain why we get better results after one iteration.

The observation above is particularly useful given that
the expansion algorithm gives excellent results for Potts
model even after just one iteration. That is for some ap-
plications, one iteration may be sufficient. Also, if one has
a time-critical application, one iteration over all labels may
be all that one can afford to execute.

We demonstrate computational advantages of our par-
allel implementation on the problem of stereo correspon-
dence, achieving a factor of 1.5 to 2.6 speedup compared
to serial implementation. These results are obtained with a
small number of processors. The expected speedup with a
larger number of processors is greater.

2. Related Work
2.1. Potts Energy

Many problems in computer vision can be formulated as
labeling problems, where the task is to assign each pixel
p ∈ P a label xp from some set L. Let x = (xp | p ∈ P) be
a vector of all variables. One formulates an energy function
f(x) that typically consists of unary fp(xp) and pairwise
fpq(xp, xq) terms. Labeling x that minimizes (exactly or
approximately) the energy function is taken as the solution.

With Potts model for pairwise terms, the energy is:

f(x) =
∑
p∈P

fp(xp) +
∑
{p,q}∈E

wpq · [xp 6= xq] , (1)

where P is the set of image pixels, E is the set of neighbor-
ing pixel pairs, [·] is the Iverson bracket, and wpq ≥ 0.

2.2. Expansion Algorithm
Given an initial labeling x and some label α ∈ L, an

α-expansion move lets each variable to either keep its cur-
rent label xp, or switch to α. LetMα(x) denote the set of
all α-expansion moves (labelings)

Mα(x) =
{
x′ : x′p 6= xp ⇒ x′p = α

}
. (2)

The problem of finding an optimal move inMα(x) is for-
mulated as minimization of binary energy [7]. For Potts
model this binary energy is submodular [16], and, therefore,
can be optimized with a single graph-cut [6]. The expansion
algorithm then iterates over all labels in L, performing ex-
pansion moves, until no move improves the energy.

Algorithm 1: α-EXPANSION

1 x′ := arbitrary labeling
2 repeat
3 for each α ∈ L
4 x′ := argminx∈Mα(x′) f(x)

5 until converged
6 return x′

Lines (3−4) in Algorithm 1 cause Lmax-flow problems
to be executed, and these must be executed in a serial fash-
ion. Note that the factor of two approximation is guaranteed
to hold only after the algorithm has converged fully, i.e. af-
ter the repeat loop has terminated. There is, in general, no
theoretical bound1 on the number of repeat loops needed
for the expansion algorithm to converge.

Note that we can use the analysis in Sec. 3.3 to show that
the expansion algorithm has a factor ofO(k) approximation
after one iteration over all labels. This factor is much worse
compared to our factor of O(log2 k) approximation.
2.3. Fusion Algorithm

We now describe fusion moves, introduced in [20, 21].
The idea behind fusion moves is to ‘stitch’ solutions from
multiple algorithms to obtain the best combined result.

Given two candidate labellings x1 and x2, we say that a
labeling x̂ is a fusion of x1,x2 if ∀p, x̂p ∈ {x1p, x2p}. We
use Fuse(x1,x2) to denote the set of all fusions of x1,x2.

Suppose we have n candidate labellings x1, ...,xn. Fu-
sion algorithm, summarized below, starts with some initial
labeling x′ and then repeatedly fuses x′ with xi for all i.

1Besides the obvious one that depends on the energy value.

Algorithm 2: FUSION

1 x′ := arbitrary labeling
2 repeat
3 for each i ∈ {1, 2, ..., n}
4 x′ := argminx∈Fuse(x′,xi) f(x)

5 until converged
6 return x′

Like an expansion move, a fusion move can be formu-
lated as binary energy minimization. Let us be specific
about this formulation. Let x1 and x2 be two labellings
we wish to ‘fuse’. For each pixel p, we introduce a binary
variable yp and store these binary variables in a binary vec-
tor y. If yp = 0, pixel p is assigned label x1p by the fusion
move. If yp = 1, pixel p is assigned label x2p. We formulate
the following binary energy h(y):

hpq(0, 0) = fpq(x
1
p, x

1
q)

hp(0) = fp(x
1
p) hpq(0, 1) = fpq(x

1
p, x

2
q)

hp(1) = fp(x
2
p) hpq(1, 0) = fpq(x

2
p, x

1
q)

hpq(1, 1) = fpq(x
2
p, x

2
q)

A fusion move is submodular [16], and, therefore, can be
optimized with a graph cut if

fpq(x
0
p, x

0
q)+fpq(x

1
p, x

1
q) ≤ fpq(x0p, x1q)+fpq(x1p, x0q) (3)

Eq. (3) is not guaranteed to be satisfied for arbitrary x1 and
x2 even in the case of Potts energy. In [21], they use QPBO
[15, 22] for non-submodular energy minimization.

Most related for our work, in [21] they propose a par-
allel implementation of the expansion algorithm using a
mixture of expansion and fusion moves. For example, to
implement expansion on two processors, the label set L
is evenly split into L1 and L2. Two initial labellings x1

and x2 are chosen and one iteration of expansion is per-
formed in parallel on subset L1 starting with x1 and subset
L2 starting with x2. Suppose the results of these parallel
expansions are stored in the same variables, namely x1 and
x2. Two results are then combined using a fusion move:
x1 = argminx∈Fuse(x1,x2) f(x). Then two parallel ex-
pansions are repeated again, now starting with ‘fused’ x1

for both cases. This process is repeated until convergence.
The algorithm is summarized below, where the for loop on
lines (4−6) is performed in parallel. This algorithm can be
generalized from two processors to m processors by split-
ting the label set into m subsets and combining the results
of m expansion sub-problems with the fusion moves.

It is easy to see that the fusion step on line 7 is not guar-
anteed to be submodular even for the Potts model. No mat-
ter how the initial x1 and x2 are chosen, at the second exe-
cution of the fusion step on line 7, current x1 and x2 can be

Algorithm 3: PARALLEL FUSION

1 x1,x2 := arbitrary labelings
2 L = L1 ∪ L2 // even split of the label set
3 repeat
4 for each i = 1, 2 in parallel do
5 for each α ∈ Li

6 xi := argminx∈Mα(xi) f(x)

7 x1 := argminx∈Fuse(x1,x2) f(x)

8 x2 := x1

9 until converged
10 return x1

Figure 1. Label tree illustration. Here the label set L =
{1, 2, ..., 8}. Each label corresponds to a leaf of the tree. The
tree is organized in 4 levels. C(i) is the set of indexes of children
for a non-leaf node i. For example, C(11) = {6, 7, 8}. Cl(i) is
the first (leftmost) child of node i. For example, Cl(14) = 12.

arbitrary, i.e. can contain any label from L. Therefore, for
a pair of neighbors p, q, it can happen that

x1p = α, x1q = β, x2p = β, x2q = α,

and so submodularity condition in Eq. 3 does not hold.
Therefore, no optimality guarantees hold for the parallel fu-
sion algorithm proposed in [21].

2.4. Hierarchical Fusion Algorithm

The hierarchical fusion (h-fusion) algorithm of [9] was
developed for a special class of energies with h-metric pair-
wise terms. This algorithm is essentially the same2 as the
hierarchical graph cut algorithm of [19], although the goals
are different. In [19], they develop graph-cut approximation
algorithms with better optimality bounds3 for energies with
the metric and semi-metric pairwise terms. In [9], the goal
is better optimization of energies with h-metric terms.

We will not describe what h-metric pairwise terms are,
since our goal is optimization of Potts energy. Instead, we
will describe how h-fusion algorithm works. First, we need
to organize the label set into a ‘label tree’ (a hierarchy), see

2This statement is true in the absence of label costs in the energy.
3They achieve the same optimality bounds for metric and semi-metric

energies as LP relaxation base solvers, but using more efficient graph-cut
based optimization.

Fig. 1. Without loss of generality, let us assume the label
set is L = {1, 2, .., k}. The labels correspond to the leaves
of the tree. A ‘label tree’ is then a collection of nodes with
parent-child relationships. Each non-leaf node of the tree
can have from 1 to k children. Each node, except the root,
has one parent. We index nodes with integers 1, ..., r, where
r is the number of nodes in the tree. We assume the root has
the largest index. For each non-leaf node i, let C(i) be the
set of the indexes of its children, and Cl(i) be the index of
the first (leftmost) child. Let Leveld be the set of all nodes
at level d. Let the largest level of the tree be D, for the total
number of levels D + 1. It is convenient to assume that all
leaves are at the same (maximum) level.

Hierarchical fusion starts at tree level D − 1 and pro-
ceeds upward to level 0, see Fig. 2. For each node j at
level D − 1, its children correspond to the labels of our op-
timization problem. Therefore for each j ∈ LevelD−1, we
perform α-expansion moves for all α ∈ C(j). For shorter
pseudo-code, it is convenient to express these expansions as
fusion moves. Therefore we associate a ‘constant’ labeling
xi = (xp = i|p ∈ P) with each leaf node i. We perform fu-
sion moves with xi, i ∈ C(j). The result of this expansion
(fusion) is stored in labeling xj , which is associated with
node j. Now the processing for nodes j at levels smaller
than D − 1 proceeds identically. For each node, a fusion
among its children nodes is performed and the results are
stored in xj . The root node r stores the final result in xr.
The pseudo-code for hierarchical fusion is given below.

Algorithm 4: HIERARCHICAL FUSION

1 // initialize k constant labellings
2 for each i = 1, ..., k do
3 for each p ∈ P do
4 xip = i
5 // perform fusions from the bottom up
6 for each d = D − 1, ..., 1, 0 do
7 for each j ∈ Leveld in parallel do
8 c := Cl(j)

9 xj = xc

10 repeat
11 for each c ∈ C(j) do
12 xj := argminx∈Fuse(xj ,xc) f(x)

13 until converged
14 return xr

3. Efficient Parallel Implementation
We now develop our efficient parallel algorithm based on

hierarchical fusion discussed in Sec. 2.4. We explain how
we choose the label tree structure, prove optimality bounds,
and extend the hiearchical fusion algorithm to be iterative,
since the original algorithm in [9, 19] is not iterative.

Figure 2. Illustration of hierarchical fusion. See text for details.

3.1. Our Tree Label Structure

We would like to achieve results with a guaranteed factor
from the optimal with the smallest possible number of max-
flow operations. We propose to use the tree structure where
each node has at most two children, that is a binary tree.
An example of such tree structure for the case |L| = 7 is
illustrated in Fig. 3. We also construct a binary tree that is of
smallest height possible, that is log2 k, since our optimality
properties depend on the height of the tree.

The advantage of this structure is that for each internal
node, fusion needs to be performed just one time, that is no
iterations are needed. Thus there are exactly |L| − 1 max-
flow computations that need to be performed. This is per-
haps the smallest number of iterations one needs to perform
for an answer with optimality guarantees.

Our optimality guarantees depend on the height of the
tree. If we allow more than two children per node, the tree
will be of smaller height. However with more than two chil-
dren per node, computations at each node have to be iter-
ated until convergence. And there is no “useful” (i.e. small)
known bound on the number of iterations needed to be per-
formed until convergence is achieved.

Unlike that in Fig. 3, the order of the leaves does not have
to be consecutive. In practice, we found consecutive order
to work best, on average. We will get some insights on why
this is the case when we prove the optimality bounds.

It is easy to see that with the structure above, for Potts
model, the fusion move is performed optimally at each
node. That is the corresponding binary problem is submod-
ular. This is because by construction, any two labelings that
are to be fused do not share any common label. Therefore

fpq(x
0
p, x

1
q) = fpq(x

1
p, x

0
q) = wpq,

so the right side of Eq. 3 is never smaller than the left side.

3.2. Our Algorithm

Algorithm 4 can be parallelized in the obvious manner.
Starting at the deepest level, all fusions at a fixed level l are
solved in parallel. However, this does not reach the best

Figure 3. Our label tree structure.

level of parallelization. For example, consider Fig. 3. Sup-
pose a processor fusing labellings at nodes 8 and 9 is done,
and, therefore, fusion at node 12 is ready to be executed.
However, if all fusions at level 2 are not done yet, the fu-
sion at node 12 will not be invoked.

To achieve maximum parallel performance, we repeat-
edly iterate over all non-leaf nodes in the label tree, check
if the fusion at the children nodes has already completed,
and, if yes, signal that fusion at this node is ready to pro-
ceed. Although the root node can be excluded from this
loop, we leave it in for a more compact pseudo-code, which
is in Alg. 5. In the pseudo-code, Cl(j) and Cr(j) denote
the left and right children of node j, respectively. The in-
nermost repeat loop of Alg. 4 is not needed in our version.

Algorithm 5: OUR HIERARCHICAL FUSION

1 for each i = 1, ..., k do
2 for each p ∈ P do
3 xip = i
4 for each i = 1, ..., k do
5 ready(i) := true
6 for each i = k + 1, ..., 2k do
7 ready(i) := false
8 // perform fusions
9 for each j = k + 1, k + 2, ..., r in parallel do

10 a := Cl(j)
11 b := Cr(j)
12 if ready(a) = true and ready(b) = true
13 xj := argminx∈Fuse(xa,xb) f(x)

14 ready(j)= true
15 return xr

3.3. Optimality Bounds

We now prove that our algorithm is within a factor of
O(log k) from the optimal solution. The proof also gives
insights on choosing a good order of labels for the label
tree, and for developing an iterative hierarchical fusion. Our
proof is derived using a strategy similar to that in [7, 9].

Theorem 1. Let fpq be Potts pairwise term. Then the so-
lution found with Alg. 5 is within a factor of O(log k) from

the global optimum.

Proof. Let x∗ be the global minimum of Potts energy, and
x̂ be the solution returned by Alg. 5 . As above, we assume
the leaf nodes are numbered 1, 2, ..., k and non-leaf nodes
have larger indexes, with the root being the largest. For
each non-leaf node j in our label tree, we solve a fusion
problem that involves a subset of labels from L. Let us call
the subset at node j as Lj . For a leaf node i, Li = {i}.

For a given Lj , Let P j be the set of all pixels have labels
in Lj in the optimal solution. That is

P j = {p ∈ P | x∗p ∈ Lj}.

Consider the top three levels of the hierarchy, illustrated
in Fig. 4. Let a, b be the left right children of the root node
r. Further down, c, d and e, f are the children of nodes a
and b, respectively. Recall that for node j, we defined xj as
the result of fusing two children labelings of j. We illustrate
xr = x̂,xa,xb,xc,xd,xe,xf with distinct colors.

In the final step of our algorithm, we find the optimal
fusion of xa and xb and set it to be the final labeling xr =
x̂. LetLa,Lb, P a and P b be as defined above. P a∩P b = ∅
are illustrated in Fig. 4. Define a new labeling xab:

xabp =

{
xap if p ∈ P a
xbp if p ∈ P b

Labeling xab is illustrated in Fig. 4, using colors to specify
which parts come from xa and which from xb. Since xab ∈
Fuse(xa,xb), but not necessarily an optimal one, we get:

f(x̂) ≤ f(xab) (4)

For a subset of image pixelsA, define f(x|A) as the energy
terms that depend only on pixels in set A:

f(x |A) =
∑
p∈A

fp(xp) +
∑

{p,q}∈E:p∈A,q∈A

fpq(xp, xq)

Let A ∩ B = ∅ be pixel subsets. Define f(x | A,B) as the
energy terms that depend on both pixels in A and in B:

f(x |A,B) =
∑

{p,q}∈E:p∈A,q∈B
or q∈A,p∈B

fpq(xp, xq)

Since for any pair {p, q} ∈ E s.t. p ∈ P a and q ∈ P b we
have that x∗p 6= x∗q and xabp 6= xabq , we have f(x∗|P a, P b) =
f(xab|P a, P b). Using this fact and splitting f(xab) into
three parts (terms that depend only on P a, only on P b, and
on both P a and P b) we get:

f(xab) = f(xab|P a) + f(xab|P b) + f(x∗|P a, P b). (5)

Now we need to bound terms f(xab|P a) and f(xab|P b).
Let c, d be the left and right children of node a. At node a,

Figure 4. Illustration for theorem 1. Best viewed in color.

we find the optimal fusion xa of labellings xc and xd. Note
that by definition, P = P c ∪ P d ∪ P b and P c, P d, P b do
not overlap, see Fig. 4. Define labeling xcd, illustrated in
Fig. 4, as:

xcdp =


xcp if p ∈ P c
xdp if p ∈ P d
xap if p ∈ P b

Labeling xcd ∈ Fuse(xc,xd), but not necessarily an opti-
mal one. Therefore,

f(xa) ≤ f(xcd). (6)

Splitting f(xcd) over sets P c, P d , and P b we get:

f(xcd) = f(xcd|P c) + f(xcd|P d) + f(xcd|P c, P d)
+ f(xcd|P a, P b) + f(xcd|P b). (7)

Using Eqs. 6, 7, and the fact that f(xcd|P b) = f(xa|P b):

f(xa | P a) + f(xa | P a, P b) ≤ (8)
f(xcd | P a) + f(xcd | P a, P b) = f(xcd|P c) + (9)
f(xcd|P d) + f(xcd|P c, P d) + f(xcd|P a, P b) (10)

Using Eq. 8 and the following facts,

f(xab|P a) = f(xa|P a)

f(xcd|P c) = f(xc|P c), f(xcd|P d) = f(xd|P d)
f(xcd|P a, P b) = f(x∗|P a, P b)
f(xcd|P c, P d) = f(x∗|P c, P d)

we get:

f(xab | P a) = f(xa | P a) (11)
≤ f(xc|P c) + f(xd|P d)
+ f(x∗|P a, P b) + f(x∗|P c, P d)

Defining xef analogously to xcd, and arguing similarly
to Eq. 6 through 11 we get:

f(xab | P b) = f(xb | P b) (12)
≤ f(xe|P e) + f(xf |P f)
+ f(x∗|P a, P b) + f(x∗|P e, P f)

Combining Eq. 4, 5, 11, and 12 we get

f(x̂) ≤ f(xc|P c) + f(xd|P d) + f(xe|P e) (13)
+ f(xf |P f) + f(x∗|P c, P d)
+ f(x∗|P e, P f) + 3f(x∗|P a, P b)

We can apply Eq. 13 recursively until we reach the bot-
tom of the hierarchy. For nodes v at the deepest hierarchy
level we have f(xv|P v) = f(x∗|P v), since ∀p, xvp = v.

The boundary between each pair of neighboring regions
P v and Pw will first appear at some level of the hierarchy
where it will be counted once. Then this boundary will ap-
pear at most twice at each of the deeper levels of hierarchy.
For example, the boundary between P a and P b appears at
the highest level where it is counted once. It appears at the
next lower level and is counted twice there. A boundary
may be counted less than twice at the lower levels of the
hierarchy if the hierarchy tree is not complete.

Using the facts above, and also the fact that the depth of
hierarchy is log2 k, we apply Eq. 13 recursively, to get:

f(x̂) ≤
∑

i∈{1,2,...,k}

f(x∗|P i)

+ 2 log2(k)
∑

i,j∈{1,2,...,k}

f(x∗|P i, P j)

≤ 2 log2(k) · f(x∗). (14)

From the proof we observe that the number of times a
boundary is added to the final bound is inversely propor-
tional to its depth. In particular, the heaviest counted bound-
ary is that between pixels of the optimal solution that are as-
signed labels in the left and right subtrees of the root node
r, illustrated in blue in Fig. 4, top right. Conversely, the
boundary between pixels that have labels involved in the fu-
sion at the deepest level are counted only once. Therefore,
ideally, at the deepest level we should put nearby labels that
have the longest boundary in the optimal solution.

Of course, we do not know the optimal solution before
hand. We can use statistics from an inexpensive approxima-
tion, such as based on unary terms only. In many problems,
such as stereo, it is reasonable to assume that labels with
smaller difference are more likely to have a longer bound-
ary. Therefore, arranging labels as in Fig. 3 is meaningful.

Note that we can view one iteration over all labels of the
standard expansion algorithm as an h-fusion over a degen-
erate label tree, see Fig. 5. Here, the initial labeling for the
expansion is assumed to be a constant labeling with all pix-
els assigned to label 1. Thus the expansion algorithm has a
factor of O(k) approximation after one iteration, which is
much worse than our factor O(log2 k) approximation. This
helps to explain why we get better results after one iteration
of our h-fusion algorithm, compared to that of expansion.

Figure 5. Expansion tree for a problem with 5 labels. The height
of the tree is linear in the number of labels, leading to a much
worse approximation bound of O(k) after one iteration.

3.4. Iterative Hierarchical Fusion

Our Alg. 5, based on the original hierarchical fusion al-
gorithm in [9, 19] is not iterative. It is not immediately ob-
vious how to make it iterative, since it does not even make
use of any initial solution, unlike most iterative algorithms.

To make it iterative, we make the following observation.
Let x̂ be the solution obtained by Alg. 5. Let

E′ = {{p, q} ∈ E | x̂p 6= x̂q}

We can execute Alg. 5 for a new energy function g, which
is defined as follows. The unary terms are left unchanged:

gp(xp) = fp(xp),

and the pairwise terms are changed as:

gpq(xp, xq) =

{
fpq(xp, xq) for {p, q} ∈ E \ E′
0 for {p, q} ∈ E′

(15)
We now prove the following proposition:

Proposition 1. Let xf = x̂ the the labeling Alg. 5 returns
when optimizing f(x). Let g(x) be as defined in Eq. 15,
and let xg , be the labelling Alg. 5 returns when optimizing
g(x). Then f(xg) ≤ f(xf).

Proof. First we show that g(xg) ≤ g(xf). This fact is not
immediately obvious because Alg. 5 is not guaranteed to
find a global optimum of g(x). However, we can re-do the
proof of Theorem 1, with f replaced by g, x̂ replaced by
xg , and x∗ replaced by xf . In all the equations, all the
boundary terms, i.e terms of type g(x|P a, P b) are equal to
zero now, because g is defined to be zero on the boundary
of xf . The equivalent of Eq. 14 in our case becomes:

g(xg) ≤
∑

a∈{1,2,...,k}

g(xf |P a) = g(xf) (16)

The rest of the proof is easy. Let A ⊂ E and define

f(x |A) =
∑

{p,q}∈A∩E

fpq(xp, xq).

Image k expansion
energy

expansion
time

h-fusion
energy

h-fusion
time

tsukuba 16 1074813 0.552 1068527 0.294
venus 20 2329733 1.227 2319501 0.593
teddy 60 3961242 3.247 3906396 1.32
cones 60 4624147 3.207 4586747 1.216

sawtooth 20 2740786 0.987 2730520 0.499
bull 20 2028894 0.969 2018992 0.505

barn1 20 2590260 0.898 2582261 0.482

Figure 6. Result comparison after one iteration of the expansion
algorithm vs. one iteration of our approach (h-fusion). Running
times are in seconds.

Then g(x) = f(x) − f(x | E′). From Eq. 16 and the fact
that f(xf |E′) ≥ f(xg|E′) we get:

f(xg) ≤ f(xf)− f(xf |E′) + f(xg|E′) ≤ f(xf).

Thus Alg. 5 can be iterated until convergence by con-
structing new set E′ after each iteration.

4. Experimental Results
We evaluate our h-fusion approach to Potts energy min-

imization on the problem of stereo correspondence. We use
the images from Middlebury evaluation dataset [24, 25].

We used energy settings commonly reported for this
dataset. Unless stated otherwise, for each experiment we
used wpq = λ = 20 for Potts energy in Eq. 1. We used the
absolute difference matching cost for the unary terms. That
is fp(xp) = |L(p)−R(p−xp)|, where L(p) is the intensity
of pixel p in the left image, R(p − xp) is the intensity of
pixel p shifted by disparity xp in the right image.

All experiments were run on a desktop machine with
16GB of RAM and a quad-core processor clocked at
3.60GHz. OpenMP was used for parallel implementation.
Our algorithm does not require initialization. Expansion al-
gorithm was initialized by setting all pixels to label 1.

Table 6 compares the results of our h-fusion optimiza-
tion after one iteration vs. the performance of the expansion
algorithm after one iteration. Our energy is always a little
better and our running time is from 1.9 to 2.6 times faster.

Table 7 shows the same comparison but after four iter-
ations of each algorithm. While our energies do improve
through iterations, now the expansion algorithm achieves
better energies. Our speedup factors are from 1.5 to 2.2,
a little less because the the first iteration of the expansion
algorithm is more expensive compared to other iterations.

Instead of performing h-fusion iteratively, we also ex-
perimented with performing the swap move algorithm [7],
in parallel, after the first iteration of h-fusion. Swap moves
are simple to implement in parallel fashion. We take the
output of h-fusion, repeatedly group labels in pairs if they

Image k expansion
energy

expansion
time

h-fusion
energy

h-fusion
time

tsukuba 16 1051546 2.06 1064765 0.904
venus 20 2302235 3.83 2314932 2.09
teddy 60 3856692 9.49 3895149 4.42
cones 60 4534576 8.85 4572954 4.01

sawtooth 20 2708293 2.85 2724275 1.67
bull 20 2008368 3.03 2017643 1.822

barn1 20 2563738 2.68 2578775 1.73

Figure 7. Result comparison after four iterations of the expansion
algorithm vs. four iterations of our approach (h-fusion). Running
times are in seconds.

Image k expansion
energy

expansion
time

h-fusion
energy

h-fusion
time

tsukuba 16 1051546 2.06 1052694 1.04
venus 20 2302235 3.83 2302392 1.64
teddy 60 3856692 9.49 3863141 3.63
cones 60 4534576 8.85 4539305 3.44

sawtooth 20 2708293 2.85 2709406 1.34
bull 20 2008368 3.03 2009213 1.61

barn1 20 2563738 2.68 2564296 1.56

Figure 8. Result comparison after four iterations of the expansion
algorithm vs. one iteration of h-fusion followed by three iterations
of the swap moves. Running times are in seconds.

share a common boundary (i.e. if the regions assigned to
these labels have neighboring pixels), and run swap moves
on these pairs of pixels in parallel. This process is repeated
until all neighboring label pairs have been offered a chance
to ‘swap’. The results of finishing h-fusion with parallel
swap move are in Table 8. Three iterations of swap moves
were performed, for a total of 4 iterations (one with h-fusion
and 3 with swap moves). Notice that the energies are now
almost as good as that of the expansion algorithm. The
speedup factors are also improved compared to the iterative
h-fusion. They are now in the range from 1.8 to 2.6.

We also tested using swap moves in parallel from a ran-
dom initialization, instead of starting with the results from
h-fusion, even though such approach does not have any op-
timality guarantees. Perhaps not surprisingly, using just
swap moves is not competitive with expansion and h-fusion
both in terms of running time or accuracy. It took much
longer to converge, even in parallel, to an inferior solution.

Given that the energies after one iteration of either ex-
pansion or our algorithm are already low for Potts model,
there may be little additional benefit of performing further
iterations, at least for the stereo application, see Fig. 9.

The running time of methods based on partial optimality
can be sensitive to the the value of parameter λ. The larger
the value, the longer is the running time since a smaller per-

Figure 9. Disparity maps for tsukuba scene. Top row: results
of h-fusion after one iteration and four iterations. Bottom row:
results of expansion after one iteration and four iterations. There
is no significant differences in the error percentages between these
results. Thus one iteration may be sufficient for some applications.

centage of optimal pixels is found. We tested the running
time of our approach vs. parameter λ on the tsukuba stereo
pair. There is some, but not a large amount of sensitivity.
Testing the interval of λ = 10, 20, ..., 100, we found that
the running time increases from 0.26 to 0.36. Some sensi-
tivity is expected because the running time of the graph-cut
algorithm [6] depends on the value of max-flow, and the
larger the λ, the larger is the value of max-flow.

We also tested the label tree where the leaf nodes are ran-
domly, not consecutively, placed. This resulted in a small,
but consistent worsening of the energy values.

5. Conclusions
We presented a parallel approach for optimizing Potts

energies that has a factor of O(log k) approximation after
one iteration over all labels. Even though the approach is
parallel, the drawback is that it is more memory-intensive.

One interesting question to explore is its applicability
to energies more general than Potts, such as with metric
or semi-metric pairwise potentials. While the method de-
scribed here is directly applicable to these more general en-
ergy functions, any optimality properties are lost because
fusion steps are not guaranteed to be submodular.

References
[1] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker,

A. Colburn, B. Curless, D. Salesin, and M. Cohen. Iterac-
tive digital photomontage. pages 294 – 302, 2004. 1

[2] K. Alahari, P. Kohli, and P. H. Torr. Reduce, reuse & recycle:
Efficiently solving multi-label mrfs. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1–8. IEEE, 2008. 1

[3] K. Alahari, P. Kohli, and P. H. Torr. Dynamic hybrid
algorithms for map inference in discrete mrfs. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
32(10):1846–1857, 2010. 1

[4] K. Alahari, P. Kohli, and P. H. Torr. Dynamic Hybrid Algo-
rithms for MAP Inference in Discrete MRFs. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI),
32:1846–1857, 2010. 1

[5] D. Batra and P. Kohli. Making the right moves: Guiding
alpha-expansion using local primal-dual gaps. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 1865–1872. IEEE, 2011. 1

[6] Y. Boykov and V. Kolmogorov. An Experimental Compari-
son of Min-Cut/Max-Flow Algorithms for Energy Minimiza-
tion in Vision. IEEE Transactions on Pattern Recognition
and Machine Intelligence (TPAMI), 29(9):1124–1137, 2004.
2, 8

[7] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate
Energy Minimization via Graph Cuts. IEEE Transactions
on Pattern Recognition and Machine Intelligence (TPAMI),
23(11):1222–1239, 2001. 1, 2, 5, 7

[8] Y. Boykov, O. Veksler, and R. Zabih. Optimizing multi-label
mrfs by move making algorithms. In Advances in Markov
Random Fields for Vision and Image Processing, edited by
A. Blake, P. Kohli and C. Rother, pages 51–65. 2011. 1

[9] A. Delong, L. Gorelick, O. Veksler, and Y. Boykov. Minimiz-
ing energies with hierarchical costs. International Journal of
Computer Vision, 100(1):38–58, 2012. 2, 3, 4, 5, 7

[10] P. F. Felzenszwalb, G. Pap, E. Tardos, and R. Zabih. Globally
optimal pixel labeling algorithms for tree metrics. In Com-
puter Vision and Pattern Recognition, 2010. CVPR 2010.
IEEE Conference on, pages 3153–3160. IEEE, 2010. 1

[11] I. Gridchyn and V. Kolmogorov. Potts model, parametric
maxflow and k-submodular functions. In IEEE International
Conference on Computer Vision, ICCV 2013, Sydney, Aus-
tralia, December 1-8, 2013, pages 2320–2327, 2013. 1

[12] J. Hays and A. A. Efros. Scene completion using millions of
photographs. 26(3), 2007. 1

[13] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,
S. Nowozin, D. Batra, S. Kim, B. X. Kausler, J. Lellmann,
N. Komodakis, and C. Rother. A comparative study of mod-
ern inference techniques for discrete energy minimization
problems. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1328–1335, 2013. 1

[14] V. Kolmogorov. Convergent Tree-Reweighted Message
Passing for Energy Minimization. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI),
28(10):1568–1583, October 2006. 1

[15] V. Kolmogorov and C. Rother. Minimizing non-submodular
functions with graph cuts—a review. IEEE Transactions
on Pattern Recognition and Machine Intelligence (TPAMI),
29(7), 2007. 3

[16] V. Kolmogorov and R. Zabih. What Energy Functions Can
Be Optimized via Graph Cuts. IEEE Transactions on Pattern
Recognition and Machine Intelligence (TPAMI), 26(2):147–
159, 2004. 2, 3

[17] N. Komodakis, G. Tziritas, and N. Paragios. Performance vs
computational efficiency for optimizing single and dynamic

mrfs: Setting the state of the art with primal-dual strategies.
Computer Vision and Image Understanding, 112(1):14–29,
2008. 1

[18] I. Kovtun. Image segmentation based on sufficient condi-
tions of optimality in np-complete classes of structural la-
belling problem. Ukrainian. PhD thesis. IRTC ITS National
Academy of Sciences, Ukraine, 2004. 1

[19] M. P. Kumar and D. Koller. MAP estimation of semi-metric
MRFs via hierarchical graph cuts. In Conference on Uncer-
tainty in Artificial Intelligence, pages 313–320, June 2009.
2, 3, 4, 7

[20] V. Lempitsky, C. Rother, and A. Blake. Logcut-efficient
graph cut optimization for markov random fields. In Com-
puter Vision, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8. IEEE, 2007. 2

[21] V. Lempitsky, C. Rother, S. Roth, and A. Blake. Fusion
moves for markov random field optimization. IEEE Trans-
actions on Pattern Analysis and Machine Inference (TPAMI),
32:1392–1405, August 2010. 2, 3

[22] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer.
Optimizing Binary MRFs via Extended Roof Duality. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2007. 3

[23] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake. Digital
tapestry. pages I: 589–596, 2005. 1

[24] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In-
ternational journal of computer vision, 47(1-3):7–42, 2002.
7

[25] D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. In Computer Vision and Pat-
tern Recognition, 2003. Proceedings. 2003 IEEE Computer
Society Conference on, volume 1, pages I–195. IEEE, 2003.
7

[26] A. Shekhovtsov. Maximum persistency in energy minimiza-
tion. In Conference on Computer Vision and Pattern Recog-
nition,, pages 1162–1169, 2014. 1

[27] P. Swoboda, B. Savchynskyy, J. Kappes, and C. Schnörr. Par-
tial optimality via iterative pruning for the potts model. In
Scale Space and Variational Methods in Computer Vision,
pages 477–488. Springer Berlin Heidelberg, 2013. 1

[28] P. Swoboda, B. Savchynskyy, J. H. Kappes, and C. Schnörr.
Partial optimality by pruning for map-inference with general
graphical models. CVPR, 2014. 1

[29] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother. A Com-
parative Study of Energy Minimization Methods for Markov
Random Fields. In European Conference on Computer Vi-
sion (ECCV), pages 16–29, 2006. 1, 2

[30] O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and su-
pervoxels in an energy optimization framework. In Com-
puter Vision–ECCV 2010, pages 211–224. Springer Berlin
Heidelberg, 2010. 2

[31] Y. Zhang, R. Hartley, J. Mashford, and S. Burn. Super-
pixels via pseudo-boolean optimization. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on, pages
1387–1394. IEEE, 2011. 2

