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Abstract

We propose a method to recover the structure of a com-
pound scene from multiple silhouettes. Structure is ex-
pressed as a collection of 3D primitives chosen from a pre-
defined library, each with an associated pose. This has
several advantages over a volume or mesh representation
both for estimation and the utility of the recovered model.
The main challenge in recovering such a model is the com-
binatorial number of possible arrangements of parts. We
address this issue by exploiting the intrinsic structure and
sparsity of the problem, and show that our method scales to
scenes constructed from large libraries of parts.

1. Introduction
We propose a method to estimate the structure of com-

pound scenes from a set of images. Such scenes are preva-
lent in our everyday environment, and in many cases our
knowledge of their innate structure is essential to our under-
standing of them. They include man made objects such as
buildings, furniture, and cars, but also natural objects such
as trees and plants. Our goal is to find the simplest construc-
tion which explains the shape of the scene, using a given
library of parts. Unlike most work on the recovery of shape
from images, our method does not generate a point cloud,
or a volume, but a structural explanation of way the scene
depicted is constructed. In this sense it is aligned with the
blocks-world approach [15], recently revisited by [7].

Much like the blocks-world approaches, our goal is to
recover a semantic model of the structure of the scene. In-
stead of creating a simpler volumetric, or point cloud model
of a scene, we wish to create a model which captures in-
terdependencies between parts of a scene, and allows us to
say “These are the wheels of the car so this is how it will
move.” (fig. 1), or “This is how a wall might collapse in an
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accident, or a temple might collapse in an earthquake”.
In this work, we focus on Lego R© block based recon-

structions of both synthetic and natural scenes. We do this
for two reasons: The use of Lego blocks emphasizes the
tactile and interactive nature of our reconstructions, while
the grid structure of Lego also provides a natural discrete
parametrization of our pose space. It should be emphasized,
however, that despite the grid structure of Lego, our method
can be successfully applied to reconstructing natural struc-
tures that are not based on a grid.

Figure 1. An illustration of the deconstruction process, from real
world images, and silhouettes, to an estimate of the building blocks
from which an object is constructed, and how they fit together.

The method we propose reasons in 3D about the struc-
ture of a scene on the basis of its appearance in an image set.
This requires an initial set of building blocks from which an
scene might be composed. As we are interested in structure,
rather than appearance, these building blocks are defined
uniquely by their shape and position. Our recovered struc-
ture estimate is the smallest set of building blocks required
to reconstruct the scene in question.

By estimating structure, rather than shape, the method
provides a semantic interpretation of the elements from
which the scene is constructed. This means that the re-
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sulting structure estimate can be used to animate the scene,
decompose it, or augment it. For example, the estimated
structure of a car identifies the doors and wheels, as is re-
quired to rig it in order to animate each component appro-
priately. This in turn allows the modeled object to be incor-
porated into a video game or video sequence without further
work. Our method thus differs significantly from classical
Structure from Motion methods; we are effectively decon-
structing the scene into semantically meaningful constituent
parts.

Representing a scene or object by 3D primitives also has
advantages in shape estimation. The space of possible prim-
itive arrangements is far smaller than the space of possible
combinations of 3D vertices or voxels, resolving ambigu-
ities and eliminating shapes that are impossible.1 How-
ever, the solution space remains extremely large for com-
plex scenes, and one of our main contributions in this pa-
per is a way of formulating the primitives and optimizing
their arrangement so that a global optimum, corresponding
to the simplest configuration that explains the input silhou-
ettes, can be found within this space.

Our notation follows standard conventions: we label
scalars in non-bold italic typeface, with lower-case indicat-
ing an index and upper case its limit, thus p ∈ {1, . . . , P};
vectors are represented as bold lower case letters (eg. x),
and are column vectors; Matrices appear as bold upper case
letters (eg. X).

Figure 2. A selection of the template types used in recovering the
structure of the Lego R© models. The set of templates consists of
each template type rendered in every plausible location and orien-
tation.

1.1. Related Work

The idea of analyzing the composition of a visible ob-
ject or scene in terms of a set of basis parts has a long
history in computer vision, stretching back to the blocks-
world interpretation of flat shaded polyhedral surfaces in
the 1960s [15]. This was further developed to interpret
collections of simple shapes [4], to reason about structure
from physical constraints [3], and, recently, to inform the
recovery of a qualitative scene reconstruction from a single
image [7]. There are also a variety of methods which in-
terpret images or point clouds using predefined families of

1Fig. 10 shows a clear example of this where a high fidelity reconstruc-
tion is obtained using only a few primitives.

surfaces, or implicit functions (see for example [20], and for
a reverse engineering application [5]). Parametrized sets of
transformations have also been used to identify the building
blocks of building facades [13] and 3D structures [14, 2].

In contrast, our approach poses structure recovery as a
classification problem where evidence is sought within the
image set for the existence of each of the possible building
blocks that could make up the object. This approach is thus
more closely related to work such as [21] which describes
a method for object recognition using linear combinations
of images. They recognize objects by reconstructing the
location of features in a query image as a linear combina-
tion of those in images of database objects. However, the
method aims only to recognize objects for which it has a
pre-existing model.

Shakhnarovich et al. in [18] propose Parameter Sensitive
Hashing (PSH) as a method for estimating human pose from
a single silhouette. The method thus recovers pose from a
projection, as we aim to do. A similar problem is tackled
in [6] using a Bayesian human shape model. These meth-
ods aim to recover the pose of a single predefined structure,
however, rather than constructing a model from a set of ba-
sis shapes or templates.

Our method also has similarities with work in non-rigid
reconstruction including the piecewise methods such as
[16, 17] that fit generic models to parts of a video using
a segmentation approach. These methods typically require
a very specific camera model and a continuous video se-
quence to work well, and aim to recover shape rather than
structure.

Being silhouette-based, our method is also comparable
to much of the work in the shape-from-silhouette area, and
specifically space-carving [10, 2] and the significant work
that followed. In contrast to these approaches we do not aim
to recover a volumetric model consistent with a set of sil-
houettes, but rather are concerned with describing the struc-
ture of the object which explains the silhouettes in terms of
the conjunction of a set of building blocks.

2. Estimating structure

We wish to estimate a simple physically plausible struc-
ture that is consistent with a set of binary images of sil-
houettes (which we denote, in their concatenated and vec-
torized form by y). This physical structure is described in
terms of the presence or absence of a set of templates, and
is parametrized by α (a binary vector in which αi = 1 indi-
cates the presences of template i in the structure).

Given a measurement vector y of length S, and a collec-
tion of T silhouettes of templates, stacked into an S × T
matrix Π, we seek the most parsimonious combination of
templates that is both physically plausible and close to the



observed image data:

arg min
α∈Ω

δ(y,Πα) + λτ(α), (1)

where Ω is the set of physically plausible models, δ(y,Πα)
is an error based on some measure of data fidelity, τ(α)
measures the complexity of the model, and λ controls the
degree to which accuracy or parsimony are preferred.

2.1. The measurement vector

We measure the silhouette of the scene in every image,
each of which has a corresponding projection matrix Pp

(where p ∈ {1, . . . , P}). We assume that these projection
matrices are available a priori, or calculable from the image
set. In the case of the experiments presented in Section 4,
the Pp were estimated from the image sets using standard
camera calibration software [22],

The silhouette of the scene in image p is flattened into a
vector yp. We then form the S dimensional binary vector y
by concatenating the yp for p = 1, . . . , P .

The advantage of silhouettes as a cue is that they only
depend on shape. There is no reliance on texture to generate
identifiable feature points, on an active sensor to generate a
point cloud, or the interaction with a light source to generate
usable shading variations. Thus, although information is
lost in the converting images to silhouettes, this information
does not need to be modeled in our reconstruction. Most
importantly, however, the silhouettes of components of a
model can be composited in order to form the silhouette of
the whole, without requiring complex occlusion models.

2.2. The templates

Each template Tt represents a particular 3D shape (or
template type) placed in a specific location and orientation.
These templates are the elements from which the structure
estimate is constructed. In the case of the Lego example
each template represents a particular type of block with a
specific 3D position and orientation.

Figure 3. Generating a template vector π requires rendering a
shape into each of the input images and calculating its silhouette
in each.

Each template Tt is rendered using each projection ma-
trix Pp to produce a corresponding synthetic image Ipt . The
silhouettes of these images are concatenated into a vector
πt of length S. There are T such binary vectors πt, and
these make up the columns of the matrix Π ∈ ZS×T

2 . The

columns of matrix Π thus represent a basis of template sil-
houettes from which we aim to construct the true image sil-
houette according to Equation (1).

Note that we need only render each component individ-
ually, rather than in every possible combination. As such
the number of templates scales linearly with the number of
components rather than combinatorially with the complex-
ity of the scene being modeled.

3. Structure recovery as linear programming

Due to noise in the images, and the fact that no real set
of templates is likely to perfectly explain the shape of all
suitable scenes, the error term of (1) is always expected
to be non-zero. A number of suitable error functions have
been proposed in the literature, but our concern is whether a
combination of template silhouettes are as close as possible
to the silhouette of the original scene. A natural choice is to
optimise

arg min
α∈Ω

‖y −Πα‖1 + λ‖α‖1, (2)

where λ is a scale factor controlling the degree to which the
method focuses on reconstruction error or parsimony. It is
worth noting here that we expect α to be extremely sparse,
as only a very small subset of templates will be used in any
single structure estimate. Note also that α remains a binary
vector.

3.1. Compositing silhouettes

In practice, the silhouettes of the various template shapes
in a structure estimate inevitably overlap. The fact that these
silhouettes are composited linearly in (2) means that pixels
in overlapping areas of the reconstructed silhouette Πα are
no longer necessarily less than or equal to 1. This means
even in the absence of noise that ‖ỹ − Πα̃‖1 6= 0 where
ỹ and α̃ represent the true measurement and structure de-
scriptor respectively.

This problem does not apply to those pixels falling out-
side the silhouette of the original images, however, as in this
case y = 0 and any deviation from this value would indicate
an erroneous estimate. We thus separate the elements of y
into two vectors, y0 and y1 corresponding to the 0 and 1
elements of y respectively. We similarly define Π0 and Π1

as being composed of the columns of Π corresponding to
the 0 and 1 elements of y respectively. Noting that y0 = 0
we see that ‖Π0α‖0 counts the pixels corresponding to a
model α which fall outside the original image silhouette.

Having concentrated the composition problem on the el-
ements of y1 we introduce a slack variable of the same
length which we label ξ. This allows us to penalize image
silhouette pixels that are not accounted for by α without
penalizing those accounted for more than once. Combining



Figure 4. Lego Escher arches: estimating structure, rather than just shape, provides semantic information such as how scenes are con-
structed. In this example the structure estimate calculated on the basis of 4 silhouettes allows an analysis of the components of the scene
and how they fit together.

this with equation (2) we get

arg min
α∈Ω,ξ

‖Π0α‖1 + ‖ξ‖1 + λ‖α‖1, (3)

s.t. y1 −Π1α ≤ ξ, 0 ≤ ξ ≤ 1,

Adding the variable ξ increases the state space for the op-
timization, but this does not have a significant impact on
complexity as the appropriate value for ξ is easily identifi-
able.

3.2. Preventing self-intersection

To ensure that structure estimates are constrained to the
set of physically plausible structures we want to guarantee
that the templates selected do not intersect. This can be
achieved by adding a constraint that

Γα ≤ 1 (4)

where each row of Γ represents a single mutual exclusion
constraint. That is if Ti intersects Tj we add a row to Γ
with elements i and j set to 1. The matrix Γ is thus in ZΓ×T
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where Γ is the number of mutual exclusion constraints. The
matrix Γ is very sparse as each template intersects with
a very small proportion of other templates. In practice Γ
scales with O(Tr/d) = O(T ), where r is the maximal ra-
dius of a block and d the density of candidate blocks in the
scene; or more informally, adding blocks around the edges
does not increase the number of intersections for a block in
the middle.

3.3. Physical Plausibility

We can ensure that the structure is physically consistent,
and that each block is supported by another block directly
below by adding the constraint:

Υα ≤ 0 (5)

where each row of Υ represents a single support require-
ment. Where template Ti requires υ units of support (or
Lego terms ‘studs of support’) from the set {Tk}k∈K then
we add a row to Υ with element i set to υ and elements
k ∈ K set to −υ(k, i), the amount of support that Tk offers
to Ti. The matrix Υ formed in this manner is sparse, with
each row containing at most O(r/d) elements (by a similar
argument to 3.2). The matrix also contains fewer than T
rows as the bottom templates are assumed to be supported
by the ground

3.3.1 Dimensionality reduction by projection

The remaining vector y is still large and consequently the
problem in (3) is too large to solve efficiently. Given the
sparsity we expect of α, however, we are able to project the
problem to a lower dimensional space and solve it there.

In practice we apply dimension reduction by pre-
multiplying the measurement and reconstruction by a ma-
trix Φ ∈ RD×S where D � S is chosen to ensure that the
relative distances will be preserved by the projection with
high probability. Note that the matrix Φ is constructed once,
and is common to all templates.

The Johnson-Lindenstrauss Lemma asserts [1] that a set
of n points in any Euclidean space can be mapped to a Eu-
clidean space of dimension M = O(ε−2logN) so that all
distances are preserved up to a multiplicative factor between
(1 − ε) and (1 + ε). A variety of such mappings based on
pre-multiplication by a M ×N matrix (where M � N )
have been proposed, including that of Matoušek[12] which
employs a sparse matrix with non-zero entries chosen ran-
domly from {1,−1}.

To enforce the slack variable inequality in (3) we require
that the projection matrix Φ contains only non-negative ele-
ments. This means that the Johnson-Lindenstrauss Lemma
does not strictly apply, and that the corresponding guaran-
tees are not available to us. Testing in Section 4 allows us



to evaluate the impact of the loss of theoretical guarantees,
and to determine which forms of projection matrix are most
suitable.

3.4. Optimization

Limiting the plausibility constraint from Sec. 2 to the
self-intersection and support constraints detailed above al-
lows us to write (3) as a mixed-integer optimization problem

arg min
α∈ZT

2 ,ξ

‖Π0α‖1 + ‖ξ‖1 + λ‖α‖1, (6)

s.t. Φy1 −ΦΠ1α ≤ ξ, Γα ≤ 1, Υα ≤ 0.

In practice we use GUROBI [8] to find the optimum of
the following equivalent problem

arg min
α∈ZT

2 ,ξ

∑
µα +

∑
ξ + λ

∑
α, (7)

s.t. ν −Ψα ≤ ξ, ξ ≥ 0, Γα ≤ 1, Υα ≤ 0.

where µ = ΠT
0 1 represents the column sums of Π0, Ψ =

ΦΠ1, and ν = ΦT1.

Algorithm 1 Algorithm overview
Require: Input images, Matrices Φ,Ψ,Γ,Υ

Calculate target image silhouette, and vectorize
Eliminate columns of Ψ falling outside image silhouette
Solve Equation (7) for α

The time required to find the optimum of (6) depends
largely upon T (the number of templates used) and D (the
number of rows in Φ). Decreasing D decreases the prob-
ability that the optimum of (6) will correspond to that of
the version of the problem where Φ = I. Culling unnec-
essary templates, however, has no impact upon the quality
of the solution. The simplest culling is achieved by remov-
ing from consideration those templates with silhouettes ex-
tending significantly beyond that of the real scene. This
typically achieves an order of magnitude reduction in the
number of columns in Ψ in our testing.

4. Experimental testing
The models used for synthetic testing were randomly

generated Lego constructs that satisfy the self-supporting
constraints of Section 3.3. Unless otherwise specified, syn-
thetic tests used 4 images (of 140 × 105 pixels) per scene,
20 blocks per scene, and each reported result represents an
average over 50 tests. The default parameters to the method
were λ = 10−3, D = 2× 103, and T = 500. Note that the
probability of randomly identifying the correct 20 blocks
from a set of 500 possibilities is less than 10−53! To sim-
ulate the effect of calibration errors we add multiplicative

noise to the synthetic camera position and rotation param-
eters, and report the standard deviation of the zero-mean
Gaussian distribution from which the noise is sampled. Fig-
ure 5 provides an illustration of the magnitude of the noise
added (which is otherwise difficult to grasp). Note that,
when 0.5 magnitude camera noise is present many of the
block silhouettes differ from the truth by approximately half
their width.

Figure 5. A synthetically generated test scene, and two images
showing the magnitude of the noise added to the synthetic image
formation process. The images were generated by adding together
10 silhouettes of the scene, each of which had noise of 0.3 or 0.5
(respectively) added to the camera parameters.

Figure 6 illustrates the impact that varying the number
of input images used has upon the fraction of blocks cor-
rectly recovered. Note that the number of measurements
(D) used is the same for all tests. Figure 7 shows the im-
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Figure 6. Fraction of blocks correctly recovered for different num-
bers of input images at differing noise levels.

pact of varying the weighting parameter λ on the accuracy
of the recovered structure estimates. Performance is close
to optimal for a very wide range of values of λ.
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Figure 7. The fraction of blocks correctly recovered for values of
λ between 5× 10−5 and 5× 103.

Three forms of the matrix Φ which projects from silhou-
ette space to measurement space were evaluated, two de-



Noise(σ) 0.0 0.1 0.2 0.3 0.4 0.5
Diagonal 0.978 0.933 0.683 0.530 0.315 0.228
Stepped 1.000 0.988 0.925 0.765 0.575 0.477
Rand(10−4) 0.998 0.850 0.610 0.475 0.377 0.267
Rand(10−3) 0.998 0.900 0.747 0.567 0.395 0.255
Rand(10−2) 0.980 0.807 0.592 0.490 0.347 0.322

Table 1. The fraction of true blocks estimated for two deterministic
forms of the projection matrix Φ, and 3 randomly sampled projec-
tion matrices. The density of the randomly sampled matrices is
reported in brackets.

terministic and one random. The first deterministic form is
effectively the horizontal concatenation of identity matrices
(note that the matrix Φ is not square) which we label Diag-
onal. This has the effect of allocating subsequent pixels in
the (vectorized) silhouette into subsequent elements of the
vector y. The second deterministic form is effectively the
opposite of this, in that it groups subsequent pixels of the
silhouette into the same element of y. The matrix Φ in this
case is zeros except for a continuous stepped diagonal row
of ones. We label this form Stepped. We also evaluate a
random projection matrix motivated by [12] where the el-
ements of Φ are sampled independently from {0, 1} such
that the density of the 1’s may be specified. Table 1 details
the results of these tests, and shows that the Stepped form
of Φ performs significantly better than its competitors, par-
ticularly at higher noise levels. We also evaluated a modi-
fied form of the matrix proposed by Indyk and Motwani[9]
where the elements of Φ are sampled independently from
N (0, 1), a zero-mean Gaussian distribution with standard
deviation 1, but with inferior results.

Figure 8 shows that, at least for models of 20 pieces vis-
ible in 4 images, increasing the number of measurements
(that is D) beyond 1225 has little impact on performance.
The fact that the method performs well for even relatively
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Figure 8. The fraction of blocks correctly recovered for varying
numbers of measurements D. All tests were performed using the
Stepped form of Φ.

small numbers of measurements D suggests the images
contain significant redundancy, as would be expected. The
fact that performance ceases to increase significantly for D
beyond 2, 401 suggests that there is little to be gained by
larger numbers of measurements. This might be taken to in-

dicate that, although we cannot avail ourselves of the guar-
antees provided by the Johnson-Lindenstrauss Lemma (as
explained in Section 3.3.1), it seems that the solution to the
projected problem is the same as that of the original prob-
lem with high probability. One potential avenue of explo-
ration is whether learning a projection from the data might
(see [19, 11] for example) provide a better approach.

Noise(σ) 0.0 0.1 0.2 0.3 0.4 0.5
W = 10−1 1.000 0.610 0.442 0.407 0.310 0.240
W = 1 1.000 0.880 0.802 0.655 0.587 0.440
W = 101 1.000 0.857 0.572 0.430 0.307 0.272

Table 2. The fraction of true blocks recovered for various values of
the weighting parameter W applied to the component of the cost
function representing the background pixels.

By separating foreground and background elements of
the silhouette in equation (3) each component can be
weighed differently. It was believed that this might be ad-
vantageous in the presence of significant camera noise to
reduce the weighting of background elements in order to al-
low blocks to more easily extend beyond the boundaries of
the silhouette, for example. Table 2, however, shows this
not to be the case, as even for high levels of camera noise
re-weighting always decreases accuracy.
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Figure 9. Fraction of true blocks correctly estimated for varying
numbers of blocks per model, and at varying noise levels. Note
that the zero noise results reflect the fact that the randomly chosen
set of blocks that make up the test scene are often not the most
parsimonious explanation of its silhouette.

Figure 10. Top left: One of 8 input images. Right: Novel view
of generated model. Bottom: A visualization of the reconstruction
projected back into the first 3 input images. The projection of the
reconstruction is shown in red, and the original silhouette in blue.
Green indicates overlap. Nine template types were used in the test.



4.1. Real images tests

Lego objects. We initially report the performance of the
method in recovering the set of blocks used to construct a
real Lego model. This is intended to demonstrate that the
method works well in real scenes when the template types
accurately reflect the components from which the scene is
constructed.

Figures 1 and 4 relate the performance of the method
in estimating structure from real images. In the real image
testing the pictures were taken with a hand-held consumer
SLR camera, and resized to 640 × 480 pixels. Forming
the matrix Ψ required of the order of 4 minutes which in-
cludes rendering time. The Lego template types were gen-
erated using LeoCAD2 which in turn uses the models from
LDraw.org3. The templates represent different blocks at all
possible positions and rotations within the bounds of the
space within which the model may appear. To restrict the
number of templates to a manageable number only those
with silhouettes which overlap the real scene silhouettes are
considered. For all real image tests λ = 4× 10−4.

In Figure 4 4 images were used and 2 template types.
The 1× 1 block could appear in 196 positions horizontally
and was modeled up to 4 layers high, resulting in 784 tem-
plates. The arch had 121 possible positions (horizontally)
at each of 2 orientations, which at 4 levels generated 968
templates. The total problem thus had 1, 752 templates,
which was reduced to just over 500 after culling. A to-
tal of D = 1, 727 measurements were used, and solving
the system required approximately 3 minutes of processing
time. The timing information is approximate as much of
the process was parallelized and calculating equivalent se-
rial timings necessarily involves estimation.

In the case of Figure 1 four 3D templates types were
used, the figure, the windscreen, the wheel pairs, and a
6 × 2 block. The number of templates after culling was
861. Rendering, segmenting and projecting the templates
took approximately 6 minutes, and solving the system ap-
proximately 4 minutes.

General scenes. Figures 15 and 16 demonstrate the per-
formance of the method on a set of general objects to illus-
trate its performance in the case where the template shapes
do not accurately reflect the construction of the real scene.
This is interesting because it illustrates the ability of the
method to decompose a general scene into 3-dimensional
semantic units. All of the tests on general scenes are based
on images taken for other purposes, which is intended to
illustrate its applicability in general circumstances.

In all cases the rendering of the silhouettes took around
half an hour, and solving the optimization problem approxi-

2See http://www.leocad.org/trac
3See http://www.ldraw.org/

Figure 11. One of 12 input images for the second car test
(cropped), one of the calculated silhouettes, the reprojection of
the ground truth back into one of the images, and rendering of the
estimated structure. Three times as many templates types as re-
quired were used in the test (shown in Figure 2), leading to over
3, 500 templates. The result is stable for λ ∈ [0, 2× 10−3].

Figure 12. Overlayed ground-truth and reconstruction silhouettes
from the ‘Temple of the Dioskouroi’ sequence from Middlebury.
Red indicates common silhouette, while blue indicates missing
parts of the ground-truth silhouette, and yellow parts of the ren-
dered silhouette that do not match ground-truth. See reconstruc-
tion in Figure 13.

Figure 13. Left, center:Two views of the Lego ‘Temple of the
Dioskouroi’ reconstruction corresponding to the silhouettes in Fig-
ure 12. Right: A reconstruction using coarser blocks

mately the same amount of time. It is possible to solve much
more complex models by eliminating the support constraint,
but the resulting models are much less convincing, and in-
teresting.

5. Conclusion
The method we have described recovers a structural ex-

planation of the shape of a scene from a set of silhouettes.
It is applicable in cases where structure can be described in
terms of a set of building blocks, and where this set contains
hundreds of thousands of elements. Experimental testing
has shown robustness to noise, and the general object tests



Figure 14. Three views of the ‘Temple of the Dioskouroi’ as con-
structed purely from cylindrical Lego blocks. Here the coarse res-
olution and limited composablity of cylindrical blocks make stair-
casing artifacts inevitable.

Figure 15. The two input images of the Archway sequence
from [22], their silhouettes, and those of the reconstructed model,
followed by two rendered images of the model.

Figure 16. The 2 images of the Eiffel Tower and their silhouettes.
The first input image is from Reuters taken by Charles Platiau, the
second from Wikipedia, taken by Stefan Krause. Each silhouette
was used twice, on the basis of the symmetry of the tower.

show it can recover plausible structures even when the ob-
ject in question was not constructed from the set of building
blocks that we wish to reconstruct it from.

The primary limitation of the method lies in its use of
parsimony. It tends to produce models which accurately re-

Figure 17. Three views of the reconstruction achieved using the
images from Figure 16. With so many blocks stacked vertically
the support constraints are complex, and leads to a very long opti-
mization process (over 2 hours on a 32 core machine).

Figure 18. Three views of the reconstruction achieved using the
images from Figure 16, without support constraints. The optimiza-
tion in this case took less than 2 minutes, but has many holes and
unsupported blocks.

Figure 19. Two views of a model constructed from ‘The Dinosaur
Sequence’ of Wolfgang Niem, University of Hannover.

construct the silhouettes of the input images, but which have
holes in them when viewed from other angles. Developing
an additional regularization term reflecting the assumption
that none of the images are taken from a particularly special
angle remains further work. We also aim in future to learn
a dictionary of template types from sufficient examples of
pre-existing scenes.

One of the most interesting features of the method is that
it optimizes over combinations of 3D building blocks, and
to this extent is reasoning in 3D about the problem of un-



derstanding scenes from image sets. It might thus offer step
towards reasoning about the relationships between general
objects in images.
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