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Deformable Parts Models and Convolutional Networks each have achieved
notable performance in object detection. Yet these two approaches find their
strengths in complementary areas: DPMs are well-versed in object compo-
sition, modeling fine-grained spatial relationships between parts; likewise,
ConvNets are adept at producing powerful image features, having been dis-
criminatively trained directly on the pixels.

In this paper, we propose a new model (shown in Fig. 1) that com-
bines these two approaches, obtaining the advantages of each. We train
this model using a new structured loss function that considers all bounding
boxes within an image, rather than isolated object instances. This enables
the non-maximal suppression (NMS) operation, previously treated as a sep-
arate post-processing stage, to be integrated into the model. This allows for
discriminative training of our combined Convnet + DPM + NMS model in
end-to-end fashion. We evaluate our system on PASCAL VOC 2007 and
2011 datasets, achieving competitive results on both benchmarks.

For a given input image x, we first construct an image pyramid of ap-
pearance features φA(x) using the first five layers of a Convolutional Net-
work pre-trained for the ImageNet Classification task. We first train an eight
layer classification model, which is composed of five convolutional feature
extraction layers, plus three fully-connected classification layers. After this
network has been trained, we throw away the three fully-connected layers,
replacing them instead with the DPM. The five convolutional layers are then
used to extract appearance features.

The deformation layer finds the optimal part locations, accounting for
both apperance and a deformation cost that models the spatial relation of the
part to the root. Given appearance scores Fpart

v,p , part location p relative to
the root, and deformation parameters wD,v,p for each part, the deformed part
responses are the following (input variables (xs,y) omitted):

Fdef
v,p = max

δi,δ j

Fpart
v,p [pi +δi, p j +δ j]−wpart

D,v,pφD(δi,δ j) (1)

where Fpart
v,p [pi +δi, p j +δ j] is the part response map Fpart

v,p (xs,y) shifted by
spatial offset (pi + δi, p j + δ j), and φD(δi,δ j) = [|δi|, |δ j|,δ 2

i ,δ
2
j ]

T is the

shape deformation feature. wpart
D,y,v ≥ 0 are the deformation weights.

Combining the scores of root, parts and object views is done using an
AND-like accumulation over parts to form a score Fv for each view v, fol-
lowed by an OR-like maximum over views to form the final object score
F :

Fv(xs,y) = F root
v (xs,y)+ ∑

p∈parts
Fdef

v,p (xs,y) (2)

F(xs,y) = max
v∈views

Fv(xs,y) (3)

F(xs,y) is then the final score map for class y at scale s, given the image x
as shown in Fig. 2.

Final-prediction loss that takes into account the NMS step used in in-
ference. In contrast to bootstrapping with a hard negative pool, such as in
[2] [1], we consider each image individually when determining positive and
negative examples, accounting for NMS and the views present in the image
itself.

NMS stage produces a set of assignments predicted by the model A =
{(bi,yi,ri)i=1...n} from the set B of all possible assignments. We compose
the loss using two terms, C(A) and C(A′). The first, C(A), measures the cost
incurred by the assignment currently predicted by the model, while C(A′)
measures the cost incurred by an assignment close to the ground truth. The
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Figure 1: An overview of our system: (i) a convolutional network ex-
tracts features from an image pyramid; (ii) a set of deformable parts models
(each capturing a different view) are applied to the convolutional feature
maps; (iii) non-maximal suppression is applied to the resulting response
maps, yielding bounding box predictions.
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Figure 2: Overview of the top part of our network architecture

current prediction cost C(A) is:

C(A) = ∑
(bi,yi,ri)∈A

H(ri,yi)︸ ︷︷ ︸
CP(A)

+ ∑
(b j ,y j ,r j)∈S(A)

H(r j,0)︸ ︷︷ ︸
CN(A)

(4)

where H(r,y) = I(y > 0)max(0,1− r)2 + I(y = 0)max(0,r + 1)2 i.e. a
squared hinge error.
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