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Abstract

We extends the previous 2D cascaded object pose regres-
sion work [9] in two aspects so that it works better for
3D articulated objects. Our first contribution is 3D pose-
indexed features that generalize the previous 2D parame-
terized features and achieve better invariance to 3D trans-
formations. Our second contribution is a principled hier-
archical regression that is adapted to the articulated object
structure. It is therefore more accurate and faster. Com-
prehensive experiments verify the state-of-the-art accuracy
and efficiency of the proposed approach on the challenging
3D hand pose estimation problem, on a public dataset and
our new dataset.

1. Introduction

The problem of pose estimation of 3D articulated objects

such as human body and hand has been studied for decades.

Recent years have seen rapid progress and significant suc-

cess of human body pose estimation [18, 29, 1, 19, 36] us-

ing consumer depth sensors. The state-of-the-art learning

approaches [18, 29] classify depth pixels into body parts

and then infer the body pose from the pixel classification

result. This paradigm has been applied for hand pose esti-

mation [6, 39, 10, 22] but is less successful than for body

pose. This is because body is mostly near-frontal and there

is less occlusion between limbs. However, hand motion ex-

hibits much larger variations in both camera viewpoints and

finger articulations. This generates more complex depth im-

ages and makes the pixel classification much more difficult.

Furthermore, the pixel classification approaches do not cap-

ture the structural constraints in the hand pose.

Regression based approaches directly estimate the hand

pose from the depth image, using latent regression for-
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est [34] or deep convolutional neutral networks [35]. Such

methods are more principled since their learning is directly

guided by the task. Nevertheless, only one regression model

is learnt in such works, which may have insufficient capaci-

ty to model the complex image variations, especially under

large viewpoints and hand motions.

We present a cascaded regression approach that is more

robust under large viewpoints and complex hand poses. It

is directly motivated by the cascaded pose regression frame-

work [9], where the object pose is estimated progressively

via a sequence of weak regressors and each weak regressor

uses features that depend on the estimated pose from the

previous stage. Such pose indexed features provide better

geometric invariance and simplify the learning tasks. This

framework has been successfully applied to several 2D pose

estimation tasks [9, 5]. Yet, it is unclear how to use it for 3D

objects with complex articulated structure like human hand.

We extend the framework for 3D articulated objects.

Our first contribution is 3D pose-indexed features. While

we use the similar pixel difference features as in cascad-

ed pose regression [9], face [5], human body [18, 29] and

hand [6, 39, 10, 20, 22], we show that the pixel parameter-

ization is the key to achieve certain geometrical invariance.

We analyze the invariance properties of previous parame-

terization methods, explain our rationale and propose a new

3D parameterization that generalizes the previous methods

and achieves better invariance to 3D transformations.

Our second contribution is a principled hierarchical ap-

proach that is adapted for the structure of articulated object-

s. Our key observation is that different object parts typi-

cally exhibit different amount of variations and degrees of

freedom due to the articulated structure. Thus, regressing

all parts together is unnecessarily difficult and causes slow

convergence and degraded accuracy. Our hierarchical ap-

proach regresses the pose of different parts sequentially in
the order of their articulation complexity. It firstly estimates

the pose of the easier root part (such as palm). Estimation
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Figure 1. Illustration of cascaded hand pose regression on a real example. Starting from the depth image and a rough initial hand pose (see

Section 3.5 about initialization), the hand pose is iteratively updated through six stages and approaching the ground truth. The top row is

the holistic hand regression (Section 3.3). The bottom row is the hierarchical regression (Section 3.4), i.e., palm is updated in the first three

stages with fingers fixed (relatively to the palm) and fingers are updated in the last three stages with palm fixed.

of more difficult sub-parts (such as fingers) are then con-

ditioned on the pose of the root part and thus easier. The

hierarchical approach does not only converge faster but is

also more accurate.

The proposed approach works on general 3D articulated

objects. It is applied for hand pose estimation in this work,

as exemplified in Fig. 1. Comprehensive experiments show

that it significantly outperforms the state-of-the-art, on both

public data and a large challenging dataset collected by us.

In addition to the high accuracy, our regression is also very

fast (> 300 FPS on CPU, single thread) and would be influ-

ential for real applications.

2. Related Work
The literature of (articulated) object pose estimation is

comprehensive. We briefly review the previous work from a

few viewpoints that are of interests and related to our work.

Viewpoint estimation Many previous works model the

camera viewpoint distribution as a hidden variable and

learn its distribution first. The object pose distribution is

then conditioned on it and learnt afterwards. This reduces

the variations caused by viewpoint and simplifies the pose

learning problem. This framework has been applied to fa-

cial landmark localization [8], human body pose estima-

tion [33] and hand pose estimation [6, 10]. However, for

hand this approach is less successful, because the viewpoint

variations for hand are far more complex than that in body

and face, which usually have only small viewpoint varia-

tions in yaw. Previous techniques (pre-clustering of hand

pose in [6] and using an augmented cost function with a

viewpoint classification term in [10]) are simple and can

only perform coarse viewpoint estimation. In this work,

we parameterize the viewpoint into the hand pose and esti-

mate it iteratively in a boosted regression framework. This

is more robust and accurate.

Cascaded pose regression and pose-indexed features
The framework [9] progressively updates the object pose

via a sequence of weak regressors. It extends boosted re-

gression [12] by exploiting the pose-indexed features, i.e.,

regressor learning in the current stage uses features that are

defined on the estimated pose from the previous stage. This

achieves better geometry invariance and makes each stage’s

learning easier. It has been successfully applied for 2D ob-

ject pose estimation problem [9], especially for facial land-

mark localization [5, 27]. In this work, for the first time

we extend the framework for 3D object pose estimation and

show how to define pose indexed features in 3D.

Per-joint estimation vs. holistic regression Many

methods [6, 39, 10, 22] estimate hand joints individually by

following the per-pixel classification approaches for human

body pose recognition [18, 29]. Such methods firstly classi-

fy all pixels into object parts and then convert them into se-

mantic joints. This strategy has two drawbacks. First, eval-

uating many pixels is slow. Second and more importantly,

estimating the joints individually may violate the inheren-

t structural constraints. By contrast, our holistic approach

evaluates the whole image just once and regresses all the

joints simultaneously. This is not only faster but also better

preserves the structural constraints, such as shown in [5].

We note that holistic regression is also used in [34, 35] for



hand pose estimation, but not in a cascaded manner.

Hierarchical pose estimation The progressive human

pose estimation approach [11] shares a similar idea with our

hierarchical regression at a high abstract level, but differs a

lot in details. We do not perform part detection but direct-

ly estimates the pose of object parts in the order of their

articulation complexity. This turns out more effective than

regressing all parts together.

Model based pose tracking There are a lot of model

based approaches for hand tracking [30, 14, 15, 16, 32, 23,

37, 26, 25, 31] and human body tracking [1, 19, 36]. They

are mostly based on slow but accurate local optimization

and require good initializations to work well. Such meth-

ods are mostly complementary to learning based methods,

which can provide fast and rough pose estimate as initial-

ization.

Early work on hand Most early works [17, 38, 4, 2, 13,

24] use RGB images or videos. Due to the lack of 3D in-

formation, they usually work under near-frontal viewpoints

and become less stable under large viewpoints.

3. Cascaded Hand Pose Regression
As illustrated in Fig. 2(a), the hand pose Θ is parame-

terized as 21 kinematic joints. We also represent Θ as six

parts, the palm Θp (6 joints) and five fingers {Θf} (each 3
joints), where f ∈ F = {1, 2, 3, 4, 5}. The palm encodes 6
degrees of freedom of the global viewpoint. Each finger and

its corresponding root point on the palm (4 joints in total)

encode 4 degrees of freedom of finger articulation.

To estimate the hand pose, we start from a depth image I
and an initial pose Θ0. In each stage t(= 1, ..., T ), the cur-

rent pose estimation is progressively updated by the stage

regressor Rt as

Θt = Θt−1 +Rt(I,Θt−1). (1)

The final pose estimation is ΘT .

During training, the stage regressor Rt is learnt to ap-

proximate the current pose residual δΘi, which is the d-

ifference between the ground truth pose and the estimated

pose from the previous stage Θt−1
i , over all training sam-

ples i. Note that the features for learning Rt depend on the

previous pose estimation Θt−1
i . Such pose-indexed features

provide better geometric invariance and have been shown

effective in several 2D pose regression tasks [9].

This cascaded pose regression framework is general and

introduced in [9]. Now we show how to extend it for 3D

hand pose regression. We first describe the basic principles,

i.e., 3D pose normalization and 3D pose-indexed features
in Section 3.1 and Section 3.2. Accordingly, we present a

holistic regression algorithm in Section 3.3. We then mo-

tivate and develop a new hierarchical regression algorithm

in Section 3.4. It exploits the characteristics of articulated
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Figure 2. (a) 21-joint representation of a canonical hand pose. (b)

Illustration of two finger coordinate frames and the palm coordi-

nate frame on a real 3D hand pose, as well as the corresponding

3D transformations. See Section 3.1 for details.

object and improves the holistic algorithm. Implementation

details are provided in Section 3.5.

3.1. 3D Pose Normalization

The hand pose update in Eq. (1) is defined in the 3D cam-

era coordinate frame in the depth image. This is undesirable

because it can be affected by non-essential transformation-

s between such coordinate frames, e.g., an in-plane image

rotation generates different depth images for the same hand.

To achieve certain invariance, we should use a single

canonical coordinate frame that is irrelevant to the individ-

ual camera coordinate frames. This is realized by apply-

ing a 3D transformation TΘ to normalize the pose Θ to the

canonical coordinate frame. This normalization is done for

all training samples so that they are roughly aligned in the

canonical coordinate frame before training. During testing,

the inverse transformation TΘ is used to transform the poses

back to the camera coordinate frame, where the actual pose

update happens. In essence, all previous body/hand pose

regression work implicitly uses this 3D pose normalization,

which nevertheless degenerates to a 3D translation, e.g., by

aligning the depth image patch/3D point cloud in advance

using a translation, or regressing the relative 3D joint offsets

(in camera coordinate frame) to a depth pixel [29].

In this work, for the first time we use a full 3D rigid

transformation so it has better invariance with respect to 3D

rotation in addition to translation. We define two types of

canonical coordinate frames. As illustrated in Fig. 2(b), the

first is aligned with palm root and the second is aligned with

finger root. The corresponding 3D normalization transfor-

mations are denoted as T p
Θ and T f

Θ . Specifically, the palm

coordinate frame has its origin at wrist, positive Y axis

pointing to the middle finger root and positive Z axis point-

ing outwards of the palm plane. As it is defined only using

the palm part, the transformation T p
Θ can also be written as

T p
Θp . The finger coordinate frame has its origin at finger



root, positive Y axis pointing along the first phalange and

X axis orthogonal to the finger plane 1. Note that the finger

coordinate frame has different 3D rotation from the palm

coordinate frame, which reflects the degrees of freedom at

the finger root. Therefore, for finger pose estimation T f
Θ is

better than T p
Θ because fingers from different poses are bet-

ter aligned in their local coordinate frame than the global

palm coordinate frame.

3.2. 3D Pose Indexed Features

Similar to previous depth based learning methods for hu-

man body [18, 29] and hand [6, 39, 10, 34, 22], we use the

pixel difference features, i.e., a feature is the difference of

two random pixels’ depth value, I(u1)− I(u2). The key to

achieve certain geometric invariance is how to parameterize

ui(i = 1, 2).
Following [18], almost all previous works parameterize

ui using random 2D offsets δui as

ui = u+
δui

z(u)
, i = 1, 2, (2)

where u is the reference pixel, i.e., the center of the depth

patch [34] or any pixel under consideration [6, 10, 22], and

z(u) is its depth. It is shown in [18] that such parameteriza-

tion is invariant to depth change of u.

The work in [39] extends Eq. (2) to achieve invariance

up to a 2D in-plane-rotation as

ui = u+
Rot(δui;u, α)

z(u)
, i = 1, 2, (3)

where Rot(·) is a 2D transformation that rotates δui around

pixel u by angle α. In [39], the in-plane-rotation angle α of

the hand pose is estimated in an initial regression step and

then fixed.

From 2D to 3D Both Eq. (2) and (3) index a pixel ui

using a 2D offset δui. We note that this 2D offset can also

be viewed as a 3D offset Δui, lying on a 3D plane that is

parallel to the image plane with depth z(u). Its major role

is to define a back-projection ray from the camera center to

find a 3D surface point, which is then projected to the pixel

to compute the depth feature.

From this viewpoint, we notice that the 3D offset Δui

actually does not have to be on that 3D plane but could be

arbitrarily defined. This provides us additional flexibility to

achieve certain invariance. In our case, given a current pose

Θ and a corresponding 3D transformation TΘ that normal-

izes it to some canonical coordinate frame, we parameterize

the 3D offset in the canonical coordinate frame to make it

invariant to TΘ. Our approach works as follows:

1A finger plane is defined by four finger joints. When the four joints

are collinear, the plane is degenerate and we simply use the X axis of palm

coordinate frame instead.

Algorithm 1 Training algorithm for holistic cascaded hand

pose regression.

1: input: image Ii, ground truth pose Θi, and initial pose

Θ0
i for all training samples i

2: for t = 1 to T do
3: δΘi = T p

Θp,t−1
i

(Θi)− T p

Θp,t−1
i

(Θt−1
i ) � residual

4: learn Rt to approximate δΘi

5: Θt
i = Θt−1

i + T p

Θp,t−1
i

(Rt(Ii,Θ
t−1
i )) � update

6: end for
7: output: regressors {Rt}Tt=1

1. Generate random 3D offsets Δui. They represent 3D

locations in the canonical coordinate frame.

2. Transform them using TΘ. Now they represent 3D lo-

cations in the camera coordinate frame and are ready

for feature generation.

3. Project them to image and compute depth feature.

In summary, our proposed parametization is written as

ui = CamProj(TΘ(Δui)), i = 1, 2. (4)

Discussions Our parameterization in Eq. (4) is a gener-

alization of these in Eq. (2) and (3). If TΘ degenerates to a

3D translation, Eq. (4) degenerates to Eq. (2). If the rotation

part of TΘ is constrained to contain only 2D in-image-plane

rotation, Eq. (4) degenerates to Eq. (3).

We note that none of the three parameterization in E-

q. (2), (3) and (4) achieve strict 3D invariance, because the

features are defined in the 2D depth image and the depth

image is an incomplete and distorted (due to occlusion and

projection) observation of the 3D object surface. Neverthe-

less, they are still good approximation of such invariance.

Our 3D parameterization is potential to generate features

that are fully invariant to the 3D transformation TΘ. We

note that steps (1) and (2) above are 3D invariant, i.e., the

same 3D offset Δui corresponds to the same relative 3D

location for different poses Θs that only differ by their 3D

transformation TΘs. Therefore, if we are able to replace the

depth feature in step (3) with some real 3D feature, e.g., the

signed distance of the 3D location to the 3D object surface

(if available, e.g., captured by multi-view depth sensors),

our approach is fully 3D invariant.

3.3. Holistic Regression

The holistic algorithm simply regresses the entire hand

pose Θ. It uses the palm based transformation T p
Θ for pose

normalization and feature parameterization. The training al-

gorithm is given in Algorithm 1. For each sample the pose

residual is normalized before training (line 3) and normal-

ized back to update the pose (line 5) for the next stage.



Algorithm 2 Testing algorithm for hierarchical cascaded

hand pose regression.

1: input: palm regressors {Rp,t}T1
t=1

2: input: finger regressors {Rf,t}T2
t=1, f ∈ F

3: input: image I and initial palm pose Θp,0

4: for t = 1 to T1 do � update palm

5: Θp,t = Θp,t−1 + T p
Θp,t−1(Rp,t(I,Θp,t−1))

6: end for
7: initialize {Θf,0}f∈F as canonical finger poses on Θp,t

8: Θ0 = Θp,T1 ∪ {Θf,0}f∈F � initialize whole hand

9: for t = 1 to T2 do
10: for all fingers f ∈ F do � update fingers

11: Θf,t = Θf,t−1 + T f
Θt−1(Rf,t(I,Θt−1))

12: end for
13: Θt = Θp,T1 ∪ {Θf,t}f∈F � update whole hand

14: end for
15: output: ΘT2

Due to the normalization, the general pose update rule in

Eq. (1) becomes

Θt = Θt−1 + T p
Θp,t−1(Rt(I,Θt−1)). (5)

To learn Rt (line 4), we use the standard regression ran-

dom forest [3, 7]. To train each split node in the trees,

we sample a large number of random pixel difference fea-

tures as described in Eq. (4) and pick the one that gives rise

to maximum variance reduction over all dimensions of the

pose residual. Each leaf node stores the average of all pose

residuals falling into the leaf, as the prediction of this leaf.

See details in Section 3.5.

3.4. Hierarchical Regression

The holistic regression algorithm above is general and

can be applied to any 3D object pose estimation problem.

It already works well, as shown in the experiments. For

highly articulated object like hand, we propose further im-

provement by making the following observations.

1. The pose variations of different parts (palm and finger-

s) are significantly different. Palm is much more stable

than fingers. Regressing all parts together is less ef-

fective and it slows down the convergence of boosted

regression framework [12], because each weak regres-

sor has relatively large errors.

2. The articulated structure of hand indicates that palm

pose severely affects finger pose. In other words,

a large amount of variations in the finger poses are

caused by the changes in the palm pose, other than fin-

ger articulation.

3. The five finger poses are largely independent and they

have additional degrees of freedom at the finger root, in

Algorithm 3 Training algorithm for hierarchical cascaded

hand pose regression.

1: input: image Ii, ground truth pose Θi, and initial palm

pose Θp,0
i for all training samples i

2: for t = 1 to T1 do � learn palm

3: δΘp
i = T p

Θp,t−1
i

(Θp
i )− T p

Θp,t−1
i

(Θp,t−1
i ) � residual

4: learn Rp,t to approximate δΘp
i

5: Θp,t
i = Θp,t−1

i + T p

Θp,t−1
i

(Rp,t(Ii,Θ
p,t−1
i )) � update

6: end for
7: initialize {Θf,0

i }f∈F as canonical finger poses on Θp,t

8: Θ0
i = Θp,T1

i ∪ {Θf,0
i }f∈F � initialize whole hand

9: for t = 1 to T2 do � learn fingers

10: for all fingers f ∈ F do
11: δΘf

i = T f

Θt−1
i

(Θf
i )− T f

Θt−1
i

(Θf,t−1
i ) � residual

12: learn Rf,t to approximate δΘf
i

13: Θf,t
i = Θf,t−1

i + T f

Θt−1
i

(Rf,t(Ii,Θ
t−1
i )) � update

14: end for
15: Θt

i = Θp,T1

i ∪ {Θf,t
i }f∈F � update whole hand

16: end for
17: output: palm regressors {Rp,t}T1

t=1

18: output: finger regressors {Rf,t}T2
t=1, f ∈ F

addition to the global viewpoint transformation of the

palm. Therefore, regressing all finger poses together

and using palm based 3D pose normalization is sub-

optimal for individual fingers.

All these observations are intuitive. They naturally mo-

tivate us to develop a new hierarchical regression algorith-

m. It extends the holistic algorithm in two aspects. Firstly,

regression is performed sequentially along the articulated

chain. The root part is estimated at first. Because it has

less variations, the learning is easier and converges faster,

than learning all parts together. Secondly, a sub-part is nor-

malized to its local coordinate frame that connects it to the

root part, and is learnt with the root part fixed. Such lo-

cal normalization can better align the sub-parts, reduce the

variations and make the learning easier.

The hierarchical regression is general for any articulated

objects. When applied to hand, we first estimate the palm

pose, fix it and then estimate the finger poses according-

ly. The palm pose learning is similar as in Section 3.3.

The five finger poses are learnt separately using different

regressors. Corresponding finger based 3D transformation

is used for finger pose normalization and feature parameter-

ization. The testing and training algorithms for hierarchical

hand pose regression are given in Algorithm 2 and 3. We

use almost exactly the same regression random forest. The

only difference is that the regression target is now palm Θp

or finger Θf instead of the whole hand Θ.



3.5. Implementation Details

Initialization Both training and testing require an initial

pose Θ0. It is computed heuristically. The global hand po-

sition (middle finger root) is initialized as the center of the

3D point cloud of the hand. The global rotation is initial-

ized from the principle component analysis (PCA) of the

point cloud: the Y axis is the 3D direction with the largest

variation and the Z axis is the 3D direction with the small-

est variation. All joints are then initialized at their canonical

positions, relative to the global pose, as shown in Fig. 2(a).

Unlike [9] that uses multiple random initial poses on the

same image to enhance the robustness, we only use one ini-

tialization during training and testing, as describe above.

The heuristic initialization is quite rough and may caus-

es errors when such initialization is unstable and inconsis-

tent on different hand poses. Yet, the cascaded regression

approach is usually strong enough to converge from such

rough initialization. Fig. 1 and 7 show real examples.

Training parameters Each regression random forest

(for whole hand, palm, or fingers) consists of 10 trees. Each

split node is trained with 512 random features. The tree

node splitting stops when the node contains less than 10

samples. The 3D offsets Δui in Eq. (4) are randomly sam-

pled in a 3D volume of roughly the same size of a real 3D

hand model. We note that the size of the 3D hand model is

different for different persons. In our experiment (training

and testing), such hand size parameters are assume known

and manually defined. For holistic regression, we use 6 cas-

caded stages. For fair comparison, we use 3 stages for both

palm and finger in hierarchical regression.

4. Experiments
Dataset There exists few public datasets for hand pose

estimation. Most early works perform quantitative evalu-

ation only on synthetic data. Several recent hand tracking

works [21, 32, 26] provide a small number of real video se-

quences. They are insufficient for learning based methods.

The recent work [34] releases its training/testing data2

and allows a fair comparison. It turns out that these data are

relatively simple and our approach achieves very good re-

sults on them. Therefore, in this work we collect and release

a large and more challenging dataset3.

Evaluation metric We use two accuracy metrics. The

first one is the per-joint error (in millimeters) averaged on

all images. The second one is the success rate, i.e., the per-

centage of good frames. A frame is considered good if its

maximum joint error is smaller than a small threshold (like

20 mm). This strict measure has been firstly used for human

pose estimation [19] and then used for hand [34].

2In its ground truth annotation, each hand has only 16 joints, one less in

each finger than ours. We interpolate the missing joint in our experiment.
3Available at http://research.microsoft.com/en-us/people/yichenw
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Figure 4. Viewpoint (pitch and yaw) distribution of testing dataset

in [34] and our dataset.

Two baselines For comparison, we implement two base-

lines that can be considered as degenerated variants of our

approach. Both use regression random forest to estimate the

whole hand pose Θ with different pixel feature parameter-

ization in Eq. (2) and (3). The reference pixel u in Eq. (2)

and (3) is the center of the patch. The in-plane rotation angle

α in Eq. (3) is estimated from our 3D PCA based initializa-

tion (see Section 3.5), i.e., the 2D projection of the Y axis of

the initial global rotation. The other training parameters in

forest are exactly the same. We denote the two baselines as

hand pose regression 2D (HPR-2D) and hand pose regres-

sion 2D+Rot (HPR-2D+Rot). Note that the second baseline

is in a similar spirit as in [39], i.e., both estimate the in-plane

rotation first and then use the features as in Eq. (3).

Comparison with state-of-the-art Many hand pose es-

timation methods [6, 39, 10, 22] are based on the pixel clas-

sification paradigm and seldom report joint estimation ac-

curacy, therefore not directly comparable to our approach.

The recent Latent Regression Forest method (short for LR-
F) in [34] is similar to ours in that it also performs holis-

tic (coarse to fine) joint regression and uses random forest.

Therefore, we compare with LRF using the same training

and testing data in [34]. Note that LRF [34] has been shown

superior than the methods in [6, 23]. Therefore we also in-

directly compare with [6, 23].

Results in Fig. 3 (left and middle) shows that: 1) cascad-

ed regression using 3D pose-indexed features is effective

since our two methods significantly outperform the base-

lines and LRF [34]; 2) hierarchical regression is better than

holistic regression. Example results are shown in Fig. 6.

Fig. 3 (right) further analyzes the convergence properties

of holistic and hierarchical regression over the 6 cascaded

stages (3 for palm and 3 for finger in hierarchical regres-

sion). There are several interesting observations: 1) palm

is much easier than fingers; 2) palm part in hierarchical re-

gression is more accurate and converges faster than that in

holistic regression; 3) finger parts are updated for 3 stages

in hierarchical regression and they are more accurate than

using 6 stages in the holistic method. These observations

indicate that, when articulated object parts exhibit different

amount of variations, the holistic regression is less effective.

It is better to perform hierarchical regression of all parts in

the order of their articulation complexity.
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Figure 3. Comparison of different methods on the dataset in [34]. Left: success rates over different thresholds. Middle: per-joint average

errors (R:root, T:tip). Right: average joint errors of palm and all fingers over 6 cascaded stages, for our holistic and hierarchical regression.
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Figure 5. Comparison of different methods on our dataset. Left: success rates over different thresholds. Middle/Right: the average joint

errors distributed over all yaw/pitch viewpoint angles. The standard deviations of the error distributions are shown in the legend titles.

Evaluation on our new dataset Our results on the data

in [34] are surprisingly good. The mean joint error of hierar-

chical regression is about 10 mm, as shown in Fig. 3 (mid-

dle). Such high accuracy is even comparable to the state-

of-the-art model based tracking approaches [15, 32, 23, 26]

but may indicate that the dataset is too simple. Fig. 4 shows

that the viewpoint variation of the testset is relatively smal-

l (yaw within [−30, 30] degrees and pitch within [−10, 45]
degrees) and most images are at nearly frontal viewpoint.

To better reveal the challenges of hand pose estimation

and further validate our approach, we collect a large scale

and more challenging dataset. It consists of 76, 500 depth

images captured from 9 subjects, using Intel’s Creative In-

teractive Camera. The ground truth hand pose is annotated

using the optimization method in [26] in a semi-automatic

manner, i.e., the annotator runs optimization and manually

corrects the hand pose iteratively until it is found correct.

During our data capture, each subject is asked to follow

one of the 17 hand gestures each time, move rapidly under

large viewpoints and change the finger articulation moder-

ately. For each gesture 500 frames are recorded. The 17
gestures are manually chosen by us and are mostly from

American Sign Language, in order to span the space of fin-

ger articulation as much as possible. As shown in Fig. 4,

our dataset has larger viewpoint variations (yaw nearly s-

pans the full [−90, 90] range and pitch within [−10, 90] de-

grees). To our best knowledge, our dataset is of the largest

magnitude and most difficult in the literature.

In the experiment, we train the regression model using 8

subjects and test it on the remaining one. This is repeated 9

times for all subjects and we report the average metrics. Re-

sults in Fig. 5 (left) show similar conclusions: our methods

outperform the baselines and hierarchical regression is the

best. Overall the results are clearly worse than that in Fig. 3,

indicating that our dataset is much more difficult. In Fig. 5

(middle and right) we report the average joint errors dis-

tributed over all yaw and pitch viewpoint angles (according

to ground truth). While all methods perform worse under

larger viewpoints, our two methods are not only better but

also more robust (with smaller standard deviations) than the

baselines. Fig. 7 shows intermediate results of hierarchical

regression on several challenging examples.

In Fig. 5 (left), hierarchical regression performs worse

than holistic regression under larger error thresholds. This

is different from Fig. 3 (left), where hierarchical regression

is consistently better than holistic regression. After inspec-

tion, we found that this is because the pose initialization

(see Section 3.5) is much more unstable on our new dataset

than on the dataset in [34] since our dataset has larger view-

point and gesture variations. A poor initialization usually

causes large error in palm pose estimation in hierarchical

regression and in turn leads to large error in fingers.
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Figure 7. Example intermediate results of hierarchical regression in our dataset. Note how the initial rough poses are gradually refined.

Runtime Random forests with pixel difference features

are fast to evaluate. Our hierarchical regression (including

the PCA based initialization) runs in more than 300 FPS

(Intel Xeon CPU 3.70GHz, single thread). Such high per-

formance is critical for real applications. Live demo video

can be found on the author’s website.

For comparison, our method is much faster than previous

learning based methods (8.6 FPS in [6], 12 FPS in [39], 25

FPS in [10], 62.5 FPS in [34], a few FPS in [22], 40 FPS

in [35]) and model based methods (10 FPS in [32], 60 FPS

in [23], 25 FPS in [26]).

5. Conclusion

We present a novel cascaded pose regression approach

for 3D articulated objects. It provides a new feature parame-

terization for better 3D invariance and a hierarchical princi-

ple that better exploits the articulated structure. It achieves

the state-of-the-art performance in both accuracy and effi-

ciency for hand pose estimation. Future work includes auto-

matic estimation of hand size and using stronger regression

models such as refined random forest [28] or convolutional

network [35] in a cascaded framework.
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