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Abstract

Deep neural networks have achieved remarkable per-
formance in both image classification and object detection
problems, at the cost of a large number of parameters and
computational complexity. In this work, we show how to
reduce the redundancy in these parameters using a sparse
decomposition. Maximum sparsity is obtained by exploit-
ing both inter-channel and intra-channel redundancy, with
a fine-tuning step that minimize the recognition loss caused
by maximizing sparsity. This procedure zeros out more than
90% of parameters, with a drop of accuracy that is less
than 1% on the ILSVRC2012 dataset. We also propose
an efficient sparse matrix multiplication algorithm on CPU
for Sparse Convolutional Neural Networks (SCNN) models.
Our CPU implementation demonstrates much higher effi-
ciency than the off-the-shelf sparse matrix libraries, with
a significant speedup realized over the original dense net-
work. In addition, we apply the SCNN model to the ob-
ject detection problem, in conjunction with a cascade model
and sparse fully connected layers, to achieve significant
speedups.

1. Introduction

In this paper, we show how expressing the filtering steps
in a convolutional neural network using sparse decompo-
sition can dramatically cut down the cost of computation,
while maintaining the accuracy of the system. Deep neu-
ral networks have achieved remarkable performance in both
image classification and object detection problems [14][8].
Results of ImageNet LSVRC [2] competitions in recent
years have demonstrated a strong correlation between the

∗This work was supported in part by the National Science Founda-
tion under grants IIS-1212948, IIS-091686, DMS-1106564 and DMS-
1407475.

output	  feature	  maps	  

output	  feature	  maps	  

kernel	  
	  basis	  

input	  feature	  maps	  
input	  feature	  maps	  

convolu1on	  kernels	  

channel	  
	  	  	  basis	  

sparse	  
kernel	  
matrix	  

Figure 1: Overview of our sparse convolutional neural network.
Left: the operation of convolution layer for classical CNN, which
convolves large amount of convolutional kernels with the input
feature maps. Right: our proposed SCNN model. We apply two-
stage decompositions over the channels and the convolutional ker-
nels, obtaining a remarkably(more than 90%) sparse kernel matrix
and converting the operation of convolutional layer to spare matrix
multiplication.

network size and the classification accuracy. The ILSRVR
2014 submission from VGG [20] builds a network with up
to 16 convolutional layers that reduces the top-5 classifi-
cation error to 7.4%, at the expense of approximately one
month of network training with 4 high-end GPUs.

The structure of these networks makes it reasonable to
conjecture that there exists heavy redundancy in these huge
networks. Due to the highly non-convex property of neural
networks, over-parameterization, together with random ini-
tialization, is necessary to overcome the negative impact of
local minimum in network training. Additionally, the fact
that no independence constraint is imposed among the con-
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volutional kernels for each layer in the training phase also
indicates high potential for redundancy.

In this paper, we show that this redundancy makes it pos-
sible to notably reduce the amount of computation required
to process images, by sparse decompositions of the convo-
lutional kernels. As Figure 1 illustrate, two-stage decom-
positions are applied to explore the inter-channel and intra-
channel redundancy of convolution kernels. We first per-
form an initial decomposition based on the reconstruction
error of kernel weights, then fine-tune the network while
imposing the sparsity constraint. In the fine-tuning phase,
we optimize the network training error, the sparsity of con-
volutional kernels, as well as the number of convolutional
bases simultaneously, by minimizing a sparse group-lasso
object function. Surprisingly high sparsity can be achieved
in our model. We are able to zero out more than 90% of the
convolutional kernel parameters of the network in [14] with
relatively small number of bases while keeping the drop of
accuracy to less than 1%.

In our Sparse Convolutional Neural Networks (SCNN)
model, each sparse convolutional layer can be performed
with a few convolution kernels followed by a sparse ma-
trix multiplication. It could be assumed that the sparse ma-
trix formulation naturally leads to highly efficient compu-
tation. However, computing sparse matrix multiplication
can involve severe overhead that makes it difficult to actu-
ally achieve attractive acceleration. Thus, we also propose
an efficient sparse matrix multiplication algorithm. Based
on the fact that the sparse convolutional kernels are fixed
after training, we avoid the necessity of indirect and dis-
continuous memory access by encoding the structure of the
input sparse matrix into our program as the index of reg-
isters. Our CPU-based implementation demonstrates much
higher efficiency than off-the-shelf sparse matrix libraries
and a significant speedup over the original dense networks
is realized. While convolutional network systems are dom-
inated by GPU-based approaches, advances in CPU-based
systems are useful because they can be deployed in com-
modity clusters that do not have specialized GPU nodes.

Contribution Relative to Previous Work

As will be discussed in Section 2, below, previous work,
such as [4][12], have used low-rank approximations to ex-
press the network computations in terms of a smaller num-
ber of basis filter. The approach presented here gains ad-
ditional efficiency by expressing the filtering steps using a
sparse decomposition, in addition to low-rank approxima-
tions. As will be shown in Section 6.2, this results in a com-
bination of efficiency and accuracy that cannot be matched
by just a low-rank decomposition.

2. Related Work
Several attempts have been made to study the redun-

dancy of deep neural networks. Denil et al. [3] reduce
the number of parameters in general neural network with
low rank matrix factorization. They obtain 95% parameter
reduction of MLP network on MNIST. Both Jaderberg et
al. [12] and Denton et al. [4] use the idea of tensor low-
rank expansions technique to speedup convolutional neural
networks. Jaderberg et al. [12] obtain 4.5x speedup with
less than 1% drop in accuracy of a 4 layer CNN trained on
a scene character classification dataset. Denton et al. [4]
achieve 2× speedup on the first two convolutional layers of
CNN trained on ILSVRC dataset. Notably, both [12] and
[4] only demonstrate speedups on relatively large convolu-
tional kernel size. None of them show that their method can
work on kernels as small as 3 × 3, which are extensively
used in state-of-the-art CNN models.

There are also several works that try to optimize the
speed of CNN from other perspectives. Vanhoucke et
al. [22] studies CPU based general neural network speed
optimization. They discuss the usage of SIMD instructions,
alignment of memory, as well as fixed point quantization
of the network. Mathieu et al. [17] proposes to utilize FFT
to perform convolution in Fourier domain. They achieve 2x
speedup on Alex net. Their method prefers a relatively large
kernel size due to the overhead of FFT. Farabet et al. [6] im-
plement a large scale CNN based on FPGA infrastructure
that can perform embedded real-time recognition tasks.

Previous works on sparse matrix computation focus on
the sparse matrix dense vector multiplication (SpMV) prob-
lem. The sparse matrix is stored with various formats,
such as CSR [1] and ESB [15], for efficiency. Blocking
is adopted in register [11] and cache [18] level to improve
the spatial locality of sparse matrix. To further reduce band-
width requirement, various techniques including matrix re-
ordering [19], value and index compression [23] are pro-
posed. We refer readers to [9] for a more comprehensive
review.

3. Our Method
3.1. Sparse Convolutional Neural Networks

Consider the input feature maps I in Rh×w×m, where h,
w and m are the height, width and number of channels of
the input feature maps, and the convolutional kernel K in
Rs×s×m×n, where s is size of the convolutional kernel and
n is the number of output channels. We assume the convo-
lution is performed with no padding zeros and stride equals
to 1. Then, the output feature maps of a convolutional layer
O ∈ R(h−s+1)×(w−s+1)×n = K ∗ I are given by

O(y,x,j)=

m∑
i=1

s∑
u,v=1

K(u, v, i, j)I(y+u−1,x+v−1,i) (1)



Our objective is to replace computationally expensive con-
volutional operation O = K ∗ I in formula (1) by its fast
sparsified version which is based on multiplication of sparse
matrices.

For this purpose, we first transform the tensor I to J ∈
Rh×w×m and convolutional kernel K to R ∈ Rs×s×m×n

using a matrix P ∈ Rm×m obtaining O ≈ R ∗ J where

K(u, v, i, j) ≈
m∑

k=1

R(u, v, k, j)P(k, i)

J(y, x, i) =

m∑
k=1

P(i, k)I(y, x, k)

(2)

Next, for every channel i = 1, · · · ,m, we decompose
tensor R(·, ·, i, ·) ∈ Rs×s×n into the product of matrix
Si ∈ Rqi×n and tensor Qi ∈ Rs×s×qi , where qi is the
number of bases:

R(u, v, i, j) ≈
qi∑

k=1

Si(k, j)Qi(u, v, k)

Ti(y, x, k) =

s∑
u,v=1

Qi(u, v, k)J(y+u−1, x+v−1, i).

(3)

so that
O(y, x, j) ≈

m∑
i=1

qi∑
k=1

Si(k, j)Ti(y, x, k) (4)

Note that if we represent the tensor O and Ti as matrices by
combining the first two dimensions, and concatenate both
Si and Ti along the dimension qi, formula (4) can be imple-
mented by a single matrix multiplication.

Here, we shall search for matrices P, Qi and Si, i =
1, · · · ,m, such that qi are much smaller than s2, matrices
Si have a large number of zero elements and columns, while
our new sparse convolutional kernel R provides output that
is close to the one obtained with the original kernel K.

3.2. Computational Complexity

We analyze the theoretical complexity of our method by
measuring the number of multiplications. The multiplica-
tions required by original convolution is given by:

mns2(h− s+ 1)(w − s+ 1) (5)

Our method reduces the complexity by sparsifying the the
convolutional kernel, while introducing overhead of two
matrix decompositions:(
γmn+

n∑
i=1

qi

)
s2(h− s+ 1)(w − s+ 1) +m2hw (6)

where γ is the proportion of non-zeros of the sparse matrix.
The decomposition overhead is small when (1) average of
qi is much smaller than γm and (2) m is much smaller than
γns2.

3.3. Learning Parameters

The parameters of Sparse Convolutional Neural Net-
works are learned in two phases: initial decomposition and
fine-tuning. The factorization in both formula (2) and for-
mula (3) can be treated as matrix factorization problem if
we transform the convolutional kernel from tensor to matrix
along the decomposition dimension. Sparse matrix decom-
position algorithm is an intuitive choice for initialization.
However, there are a couple of concerns regarding current
sparse dictionary learning algorithms: (a) They are not con-
vex and therefore cannot achieve a global optimum solution.
(b) The learning process is a tradeoff between accuracy and
sparsity, hence cannot provide exact decomposition. Due
to these concerns, we choose the following decomposition
methods and compare their performance in Section 6.4:
• Decompose K and R using the sparse dictionary

learning algorithm in [16], with P, Qi the bases
• Decompose K and R using Principal Component

Analysis (PCA), with P, Qi the principal components
• Initialize P, Qi as identity matrices, and keep K and
R unchanged. In this way, sparsity is achieved solely
by fine-tuning.

As initial decompositions, the above methods can only
obtain very limited sparsity, but provide meaningful starting
point with very low or no reconstruction error. Further fine-
tuning is critical for obtaining a highly sparse network. In
the fine-tuning phase, we impose sparsity constraints over
the network parameters, while continuing to train the whole
network. The underlying reason of why fine-tuning can in-
crease sparsity is that the original network is trained with-
out any sparsity constraint. Since the network is known to
be over-parameterized to avoid the sensitivity to initializa-
tion, it should have some freedom of modification without
compromising the classification accuracy. The initializa-
tion phase can only obtain sparsity based on the reconstruc-
tion error, while the fine-tuning process can fully exploit
the sparsity potential of our model by adopting the network
loss as the direct error measurement. Our experiments jus-
tify this point by showing a significant increase in sparsity
due to fine-tuning.

Formally, we minimize the following objective function
in the fine-tuning phase

minimize
P,Qi,Si

Lnet+λ1

m∑
i=1

‖Si‖1+λ2

m∑
i=1

qi∑
j=1

‖Si(j, ·)‖2

s.t. ‖P(·, j)‖2 ≤ 1, j = 1, . . . ,m

‖Qi(·, ·, k)‖2 ≤ 1, i = 1, . . . ,m, k = 1, . . . , qi

(7)

where Lnet stands for the logistic loss function of the output
layer of the network[14], and ‖ · ‖1 and ‖ · ‖2 denote the
element-wise l1 and l2 norms of a matrix. The second term
in (7) imposes lasso constraint over each of the elements
of Si, and the third term treats each row of Si as a group



variable in a spirit of group-lasso formulation. The effective
columns of eachQi that need to be calculated is equal to the
number of non-zero rows of corresponding Si. In this way,
we can further reduce the overhead of convolving Qi over
the feature maps.

3.4. Comparison between our method and low-rank
decomposition

Like [12] [4], our model uses a low-rank decomposition,
but goes beyond previous work by encouraging sparsity in
the weights used to express the filter to further reduce the
redundancy in convolutional layers. We impose both sparse
constraints and low-rank constraints with a combination of
an l1 norm and group lasso penalty

Consider the decomposing matrix M ∈ Rm×n as the
multiplication of S ∈ Rm×n and P ∈ Rn×n. Using a
sparse decomposition, the speedup is proportional to the
percentage of non-zero elements in S, while the reduction
in complexity using a decomposition is proportional to the
percentage of non-zero columns. The sparsity constraint is
able to target specific entries in S, while a low-rank con-
straint must eliminate entire columns. This makes it pos-
sible for our approach to target redundancy more precisely.
As the results in Section 6.2 will show, this leads to remark-
able performance improvement using the multiplication al-
gorithm.

4. Sparse Matrix Multiplication Algorithm
While the sparsity penalties can target redundancy more

precisely, the performance benefits can only be realized
with a sparse matrix multiplication algorithm that does not
incur overhead that overwhelms the benefit of the sparse
matrix. In this section, we show how the multiplication can
be implemented efficiently.

4.1. Motivation

To avoid extra storage and calculation of zero values, the
non-zero elements in a sparse matrix are typically stored
continuously, with their locations indexed in some specific
structure. This leads to indirect jumping memory access
when traversing the matrix, which is much slower than the
continuous direct access used in the dense case. In addition,
the irregular pattern of input matrices also makes it difficult
to fully utilize the capacity of Single Instruction Multiple
Data (SIMD) micro architectures, which is the key in high-
performance dense matrix algorithms.

We propose an efficient, sparse-dense matrix multiplica-
tion algorithm for executing the sparse convolutional ker-
nels. Our idea is based on the following two key observa-
tions:

• Once the network is fully trained, the convolutional
kernels are constant while the input feature maps vary

Figure 2: Matrix Multiplication Algorithm in OpenBLAS. The in-
put matrices are first divided into blocks which can fit in L2 cache.
Each block is then divided into 8 element wide strips. The multi-
plication outputs of two strips are held in 8 AVX registers during
calculation.

with input images. Therefore, the location of non-zero
elements are known and can be encoded directly in the
compiled multiplication code.

• Only the convolutional kernels are treated as sparse
matrices. The input feature maps do possess moder-
ate sparsity for some layers, but will be treated as a
dense matrix.

We implemented our method on x86 64 CPU micro-
architecture with the Advanced Vector Extension (AVX),
which is available on both Intel and AMD’s CPUs after
2011, although we expect that this approach could be ex-
tended to GPU architectures. Our method is based on
OpenBLAS[24], which is an open source dense linear al-
gebra library. In the following sections, we first briefly de-
scribe the matrix multiplication algorithm in OpenBLAS,
then introduce our method on sparse matrices.

4.2. Dense Matrix Multiplication in OpenBLAS

There are two main considerations on designing an ef-
ficient matrix multiplication algorithm: (a) Taking advan-
tage of SIMD instructions for higher computing through-
put; (b) Maximally utilizing the caches to reduce memory
access latency. In latest OpenBLAS library, matrix multipli-
cation is implemented with AVX instruction sets, in which
8 float numbers can be stored in one 256bit AVX register.
Namely, 8 pairs of float point numbers can be multiplied
and added simultaneously in one cycle of each CPU core.
To maximally reduce the memory latency, the input matri-
ces are first divided into blocks that can fit into the L2 cache
of CPU. Each block of one input matrix is then multiplied
with each block of the other input matrix in the following
way: One block is divided to 8-elements wide row strips
and the other block is divided to 8-elements wide column
strips. Then every two strips are multiplied to generate an
8 × 8 tiny square which can be stored in 8 AVX registers.



Figure 2 gives a graphical illustration of the matrix multi-
plication algorithm in OpenBLAS.

4.3. Sparse Matrix Multiplication

We focus on the sparse-dense matrix multiplication
problem C = A × B. A ∈ Rm×k is a dense matrix
and B ∈ Rk×n is a fixed sparse matrix. A and B are di-
vided into blocks and strips in the same way as the dense
case described above. Now, we consider the multiplication
of one row strip and one column strip C̄ = Ā × B̄, Ā ∈
R8×k, B̄ ∈ Rk×8, C̄ ∈ R8×8. For any matrix M, let mi,∗
be the ith row of M and m∗,j be the jth column of M. The
matrix multiplication can be represented as

c̄∗,j =

k∑
i=1

ā∗,ib̄i,j , 1 ≤ j ≤ 8 (8)

In which every c̄∗,j and ā∗,i are held in one AVX vector.
Since B̄ is sparse in our case, we need to have the knowl-
edge of the locations of non-zero elements and skip the ze-
ros. To avoid indirect memory access, we propose to encode
the structure of B̄ into the program. For each non-zero value
b̄i,j , i indicates which ā∗,i to multiply with and j indicates
which c̄∗,j to save to. Since they both correspond to sin-
gle AVX registers, we can simply encode i and j into our
program as the index of registers. Figure 3 shows a toy ex-
ample of how our method generates code from given sparse
matrix.

5. Application to Object Detection

We now apply SCNN to the object detection problem.
Girshick et al. [8] first proposed to use CNN to solve the ob-
ject detection problem. They warp each candidate window
generated by the Selective Search[21] method to a fixed
size and use CNN to generate high level discriminative fea-
tures, with whick linear SVM with hard negative mining is
adopted to train object detection model. He et al. [10] sig-
nificantly improves the speed of [8] by utilizing a Spatial
Pyramid Pooling (SPP) scheme, in which the convolutional
layers only need to be performed once (single scale) or sev-
eral times (multiple scales) on the whole image and only
the fully connected layers are performed on each candidate
window. Due to large amount of candidate windows in each
image (∼2000), the total running time of fully connected
layers in [10] is comparable to or dominant over the one of
convolutional layers.

We apply SCNN to accelerate the convolutional layers
of SPP model. Although our method can accelerate the
convolutional layers by a high factor, the total running time
would not reduce much due to the relatively time consum-
ing fully connected layers. In this section, we propose two
schemes to reduce the complexity of fully connected layers
to achieve an overall high efficiency.

(a) An example sparse matrix
B. The shadowed squares rep-
resent non-zero elements and
the blank squares represent zero
elements.

our modification for sparse matrix.

4.1 Matrix Multiplication in OpenBLAS

There are two main considerations on designing an efficient matrix multiplication algorithm: (a) Maxi-
mumly utilizing the caches for computation; (b) Taking advantage of SIMD (Single Instruction Multiple
Data) instructions for higher computing capacity. Figure. 2 shows the matrix multiplication algorithm de-
signed in OpenBLAS. In OpenBLAS, the authors split the input matrices into blocks that can be stored
completely into the L2 cache of CPUs, and iteratively multiply 8-elements wide strips. Since there are 16
256 bits wide registers in the AVX instruction sets, each SIMD instruction can multiply 8 float element at
a time. The result of multiplying two strips can be stored in 8 256 bit registers, thus saving the time for
writing the result to memory after each multiplication.

4.2 Efficient Sparse Matrix Multiplication

We assume that one of the input matrices is sparse and the other one is dense. And we assume that the sparse
matrix is known before calculation (even before the compilation of the code), and the dense matrix changes
for each call of the multiplication function.

For dense matrix multiplication, the computation time is dominant over the data loading time. There are
two types of data loading. The first one is loading the blocks to the L2 cache of CPU, and the second one is
loading each strips from the L2 cache to the registers of CPU. In OpenBLAS, the first one is only less than
1
10 of the total running time, while the second one can be up to 1

3 of the running time. However, due to the
pipeline design of modern CPU, the second loading can run in parallel with the data computation, therefore
the overhead of loading is very small for the whole pipeline.

However, if one of the input matrix is sparse, the amount of computation is greatly reduced, therefore
the second loading time becomes the dominant time consuming operations. Our focus is to deal
Input:

A: 8× 12 dense matrix
B: 12× 8 sparse matrix

Output:
C = A×B

Operations:
c7+ = a1 × b1,7
c3+ = a2 × b2,3
c6+ = a3 × b3,6
c2+ = a5 × b5,2
c5+ = a5 × b5,5
c4+ = a7 × b7,4
c5+ = a7 × b7,5
c3+ = a10 × b10,3
c5+ = a10 × b10,5
c4+ = a11 × b11,4
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(b) Generated Pseudo code for
calculating C = A × B. ci is
the ith column of C and aj is
the jth column of A. bi,j is the
element of B at ith column and
jth row

Figure 3: An example that illustrates how our algorithm generates
code for multiplying a dense matrix and a sparse matrix

First, we propose to apply a cascade scheme over the
network in a similar fashion to [7]. Since the output of the
last convolutional layer is already highly discriminative, di-
rectly applying a linear SVM classifier over it achieves good
performance [8][10]. Therefore, we can use the last convo-
lutional layer as the first stage of our cascade model to prune
large portion of candidate windows, and then use the output
of the final fully connected layer as a second stage classifier
to generate the final detection results. The decision of detec-
tion threshold of first stage is a tradeoff between efficiency
and accuracy. A lower threshold retains high recall so that
the overall accuracy is not affected while a higher thresh-
old removes more candidates to achieve higher efficiency.
In our case, we found that a threshold with a correspond-
ing precision equals 0.05 is a balanced tradeoff. Previous
work on cascade models were applied only to single class
detection. Multiple class detection, in general, achieve less
gain, since the number of candidates rapidly increases with
the number of classes. However in our model we can still
remove considerably large portion of candidates with mul-
tiple classes.

Second, we decompose the fully connected layer in a
similar fashion as we did with the convolutional layers. The
operation of fully connected layer can be represented by
matrix-vector multiplication followed by the neuron func-
tion. We decompose the weight matrix into the product of
one sparse matrix and one dense matrix as M ≈ PS, where
M ∈ Rm×n, P ∈ Rm×k and S ∈ Rk×n. We choose to
enforce sparsity on P if m > n and on S otherwise, so
that the dense matrix has a smaller dimension. We impose



layer conv1 conv2 conv3 conv4 conv5
kernel size 11 5 3 3 3
input channels 3 96 256 384 384
output channels 96 256 384 384 256
complexity% 15.8 33.6 22.5 16.8 11.2
sparsity% 0.927 0.950 0.951 0.942 0.938
average qi 29 7.91 5.23 4.32 3.95
theoretical speedup 2.61 7.14 16.12 12.42 10.77
Actual speedup 2.47 4.52 6.88 5.18 3.92

Table 1: Sparsity, Average number of bases ,theoretical and actual
speedup corresponding to each convolutional layer for our SCNN
model. qi is the average number of bases in each channel. Results
demonstrates that our highly sparse model could lead to remark-
ably acceleration for computation in both theory and practice.

both l1 norm and group lasso cost function so that k is also
reduced.

6. Experimental Results
6.1. Setup

We trained our model on the ImageNet LSVRC 2012
[2] dataset. We start from a pre-trained Caffe[13] refer-
ence CNN model, which is almost identical to the model
described in [14]. The model consists of 5 convolutional
layers and two fully connected layers, interlaced with sub-
sampling layers, local normalizing layers, max pooling lay-
ers, rectified linear unit layers and dropout layers. The first
convolutional layer has relatively large 11× 11 kernels and
only 3 input channels; the second convolutional layer has
5× 5 kernels; The third, fourth and fifth convolutional lay-
ers have very small 3 × 3 kernels. The difference of kernel
sizes as well as the number of input kernels affects the pos-
sible sparsity that can be achieved.

All 5 convolutional layers are optimized simultaneously
according to Equation 7 using stochastic gradient decent
with momentum. The base learning rate is initially set to
0.001, while sparsifying the network parameters. To stabi-
lize the training process, we adopt a thresholding function
that sets parameters smaller than 1e−4 to zero during train-
ing. Once the training process converges, we remove the
sparsity constraint, but keep the thresholding function. Fi-
nally, we gradually decrease the base learning rate to fine-
tune the network for best accuracy.

6.2. Results on ILSVRC12

Table 1 shows the results on ILSVRC12. For all 5 convo-
lutional layers, we obtain more than 90% sparsity. The av-
erage number of bases in each layer is significantly smaller
than s2(square of kernel size), which corresponds to the full
rank decomposition. The theoretical speedup are the ratio
between the running time of our SCNN layer, and the orig-
inal convolutional layer. The final column of Table 1 shows
the actual acceleration factor achieved. Because of the over-

layer conv1 conv2 conv3 conv4 conv5
kernel size 7 5 3 3 3
sparsity% 0.840 0.956 0.893 0.904 0.890
average qi 21 9.06 6.76 6.86 6.98
theoretical speedup 2.62 7.06 8.03 8.78 7.29
low-rank[4] 2.4 2.5 - - -

Table 2: Comparison between a model, similar to[10], trained
with sparsity and the speedup factors reported in [4].

head in sparse matrix multiplication, it is expected that ac-
tual performance improvements will not match theoretical
results.

The speedup factor in conv1 is not as significant as other
layers due to limited redundancy that is caused by large ker-
nel size and the small number of input and output channels.
The number of bases in conv1, although substantially re-
duced, still accounts for a large portion of running time be-
cause of small number of output channels. This issue is
also present in previous low-rank approaches [12]. We ex-
perimented with decomposing the basis filters with combi-
nation of separable filters, but the bases showed too much
variation to be expressed with separable filters.

6.3. Comparison with Only Using Low-Rank Ap-
proximations

To more directly compare with previous work, we also
trained a modified version of the model used in [10], which
is similar to that used in [4]. The primary difference lies in
a spatial pyramid layer that will not affect the sparsity prop-
erties of the convolutional layers. Table 2 shows the com-
parison of theoretical speedup factors between [4] and our
method trained based on [10]. We have a similar speedup as
[4] in conv1 due to the above mentioned reason, while ob-
taining much higher speedup for conv2. It should be noted
that [4] did not attempt to accelerate the later layers, likely
due to the tiny size of filters (3×3), while our method is able
to achieve significant speedup.

6.4. Comparison of Initialization Methods

Figure 4 shows a comparison of the performance of dif-
ferent initialization methods that we adopted. Both PCA
and sparse coding obtain more than 90% sparsity, while ran-
dom initialization shows inferior sparsity by a large margin.
Notably, all the methods obtain very limited sparsity with
only initialization. These results demonstrate the impor-
tance of both initialization and fine-tuning. All of the meth-
ods show very small amount of accuracy drop during the
fine-tuning process. The accuracy numbers shown in Figure
4 are generally lower than final accuracy since the learning
rate we set during sparsifying the network is higher than fi-
nal learning rate for faster convergence. Among all the three
methods, the accuracy of PCA is slightly better than the oth-
ers. The sparse coding method, although seems to make
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Figure 4: Comparison of initial decomposition methods. We show
the variation of both the accuracy and the average sparsity of our
sparse CNN during the training process.

more sense theoretically, is inferior practically. We argue
that the main reason is its non-convexness and non-accurate
reconstruction. Although PCA is also a non-convex prob-
lem, global unique optimum can be obtained with SVD.

6.5. Bases Visualization

Figure 6 shows the average number of non-zero elements
in our sparse convolution kernels corresponding to each ba-
sis of our decomposition over both input channels and ker-
nels inside each channel. The bases are sorted according
their eigenvalues of PCA initialization. High correlation
can be found between the sparseness and the eigenvalues of
PCA, which justifies the importance of PCA initialization.
For a significant portion of the bases, the sparse kernels are
almost all zero. The all zero bases are equivalent to the ones
that can be eliminated by low-rank decomposition. For rela-
tively large-size kernels, like conv1 and conv2, the percent-
age of all zero bases is significant enough to achieve mod-
erate level of speedup. However, for small-size kernels like
conv3, conv4 and conv5, the percentage of all zero bases is
very limited. Even a speedup factor of 2 will significantly
sacrifice the accuracy with low-rank decomposition. The
advantages of our method are clearly shown by the sparsity
obtained for the non-zero bases, shown in Figure 6.

To justify the necessity of fine-tuning, we compare the
convolution kernels in the original model and the ones that
are reconstructed from our fine-tuned sparse model in Fig-
ure 5. We only show the kernels of conv1, conv2 and conv3
layers due to limited space. We ignore the kernels that are
all zeros, which is very common from conv3 to conv5. We
also measure the average similarity between the original and
reconstructed kernels by first deduct the mean values from
both kernels, and then calculate the cosine similarity mea-
surement, which is defined as Simcos(x,y) = x·y

‖x‖‖y‖ . From

org	  

rec	  

rec	  

org	  

rec	  

org	  

Conv1(sim	  =	  0.85)	  

Conv2(sim	  =	  0.60)	  

Conv3(sim	  =	  0.34)	  

Figure 5: Comparison between the original convolution kernels
and the convolution kernels reconstructed from our sparse ker-
nels. Here we show randomly sampled kernels conv1, conv2 and
conv3 layers. conv4 and conv5 are very similar to conv3. For
each layer, the first row shows the original kernels and the second
row shows the reconstructed ones. The average cosine similarity
between them are displayed under.

Figure 5, we can see that the average similarity decreases
rapidly from conv1 to conv3. The kernels in conv3 look
very different from the original ones. Considering how little
the accuracy drops in our model, this justifies our argument
that the original network is extremely over-parameterized
and significant regularization can be imposed without af-
fecting the performance. Thus, one can hardly exploit the
full sparsity potential of the network by only attempting
to approximate the original kernel instead of network loss
based fine-tuning adopted in our method.

6.6. Evaluation of Sparse Matrix Multiplication Al-
gorithm

We first analyze the performance of our sparse dense
matrix multiplication algorithm with a randomly generated
matrix. We randomly generate one 1024× 1024 dense ma-
trix and one sparse 1024 × 1024 matrix, and measure the
running time of multiplying them with our algorithm. Our
experiments are performed on an Intel i7-3930k CPU. We
measure the single-thread performance in this case for sim-
plicity. The multi-thread performance should be consistent.
Figure 7 shows the result of our evaluation. The following
conclusions can be drawn from this figure: (a)The arith-
metic time is strictly proportional to the density of the input
matrix, and very close to the theoretical limit; (b) The I/O
time decreases with the increase in sparsity, but in a sub-
linear speed. The time of loading from memory to cache
and storing results are constant regardless of the variation
of sparsity, and the time of loading the dense matrix from
cache to CPU depends on the percentage of consecutive 8
zeros in the sparse matrix; (c) The I/O time is increasingly
dominant when the sparsity increases, when the density is
less than 10%, the I/O operations takes more than 80% of
the total running time. (d) Note that the sum of arithmetic
time and I/O time is significantly higher than the total time.
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Figure 6: Average ratio of non-zero elements in our sparse convolution kernels corresponding to the bases of decompositions over channels
and filters. (a) (b) show the bases over channels and (c) to (g) show the bases over filters.The bases in each figure are sorted in descending
order of their eigenvalues in PCA initialization.
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Figure 7: Running time analysis of our sparse-dense matrix mul-
tiplication algorithm. The horizontal axis stands for the percent-
age of non-zero elements in the input sparse matrix, and the ver-
tical axis is the relative running time comparing to the dense ma-
trix multiplication code in OpenBLAS. The arithmetic time is the
running time of multiplication and addition, and the I/O time in-
cludes loading the input matrix from memory to cache, loading
from cache to CPU and writing result to memory. The theoret-
ical time is the best possible speedup one can achieve, which is
identical to the density of the input matrix.

layer conv1 conv2 conv3 conv4 conv5
Channel Decomp 0.06 0.14 - - -
Basis Convolution 0.78 0.41 0.21 0.30 0.44
Matrix Mult 0.16 0.45 0.79 0.70 0.56
Original 2.47 4.52 6.88 5.18 3.92

Table 3: Running time analysis and comparison with original
dense networks. All the numbers for each layer are normalized
with the layer’s total running time with our method. The last row
is the speed-up factor of our method.

This is due to the parallelism introduced by the pipeline
strategy of CPU. For this reason, the arithmetic operations
and I/Os can be executed simultaneously, thus providing a
significantly better efficiency.
6.7. Running Time Analysis

Table 3 shows the actual speed of our code as well as
the proportion of each component. Significant speedups are
achieved for all 5 layers. The sparse matrix multiplication
time is dominant for the last three layers while the basis
convolution time takes a large portion for the first two lay-
ers, which is consistent with theoretical analysis. The gap
between actual speedup and theoretical one comes mainly

fc7(1s) fc7bb(1s) fc7(5s) fc7bb(5s)
spp[10] 52.47 54.19 54.75 57.19
ours 50.16 52.64 52.58 55.13

Table 4: Mean average precision of object detection with our
method compared with [10]. “bb” stands for bounding box re-
gression, “1s” means 1 scale and “5s” means 5 scales. Our sparse
model is inferior to [10] by approximately 2%.

from two factors: (1) Overhead of sparse matrix multiplica-
tion; (2) Low efficiency of basis convolution. Caffe imple-
ments convolution as matrix multiplication, which is rela-
tively inefficient for small number of filters as in our case.
We implement a faster version but is still not fully opti-
mized. In addition, joint cache optimization with both con-
volution and sparse matrix multiplication will further im-
prove the efficiency.

6.8. Results on Object Detection

We used the fine-tuned model in Table 2 to perform ob-
ject detection on PASCAL VOC2007 [5] dataset. The accu-
racy of our method compared with the original one in [10]
is shown in Table 4. We are not able to reproduce the accu-
racy using the code published by [10], so we put the num-
ber we get instead. Our method is approximately 2% worse
than the original SPP model, while obtaining several times
faster speed. We speculate that the higher accuracy drop
than classification problem is probably due to the fact that
the convolutional layer is trained on ILSVRC dataset, while
only the fully connected layer are fine-tuned to adapt to the
PASCAL data as in [10]. Thus, although we are sparsifying
the convolutional layers with fine-tuning, the loss of the net-
work is not equivalent to the loss of the detection problem.
A whole network based fine-tuning should further reduce
the accuracy drop of our method.

In our cascade model, we set the thresholds of first stage
so that the precision for each class equals 0.05. Approxi-
mately 80% of candidate windows are pruned for each im-
age, thus bringing approximately 5× speedup of fully con-
nected layers with almost no drop in accuracy. In addition,
85% and 68% sparsity are achieved for the first and second
fully connected layer, further providing over 2× speedup.
The running time of fully connected layer is thus reduced to
be much smaller than the convolutional layers.
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