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Abstract

This paper presents a generic method for transforming
MRFs for the marginal inference problem. Its major appli-
cation is to downsize MRFs to speed up the computation.
Unlike the MAP inference, there are only classical algo-
rithms for the marginal inference problem such as BP etc.
that require large computational cost. Although downsizing
MRFs should directly reduce the computational cost, there
is no systematic way of doing this, since it is unclear how
to obtain the MRF energy for the downsized MRFs and also
how to translate the estimates of their marginal distribu-
tions to those of the original MRFs. The proposed method
resolves these issues by a novel probabilistic formulation
of MRF transformation. The key idea is to represent the
joint distribution of an MRF with that of the transformed
one, in which the variables of the latter are treated as la-
tent variables. We also show that the proposed method can
be applied to discretization of variable space of continu-
ous MRFs and can be used with Markov chain Monte Carlo
methods. The experimental results demonstrate the effec-
tiveness of the proposed method.

1. Introduction
Markov Random Fields (MRFs) have been used for a

wide range of problems in computer vision, such as optical
flow estimation [6, 26, 25], image restoration [17], bundle
adjustment [4, 22], object segmentation [9, 13] etc. There
are two types of inference problems for MRFs. One is the
MAP (Maximum a Posteriori) inference and the other is
the marginal inference problem. In this study we consider
the latter, which is to estimate the marginal distributions of
MRF variables.

As for the MAP inference problem, there exists many
sophisticated algorithms such as sequential tree-reweighted
message passing (TRW-S) [11] and FastPD [12]. On the
other hand, there are only classical methods for the marginal
inference problem, such as mean field (MF) approximation
and belief propagation (BP), which usually require a large
computational cost. The marginal inference problem is nev-

ertheless important, as it needs to be solved for MPM (max-
imum posterior marginal) inference [15, 10, 13], learning
parameters of conditional random fields (CRFs) [21], and
Boltzmann machines [19, 5].

The goal of this study is to provide methods for solving
the marginal inference problem more efficiently. As for the
MAP inference, a mainstream approach to reduce compu-
tational cost is to transform an MRF into a smaller, sim-
pler one. The energy function of the MRF is transformed
accordingly and is minimized to find the MAP solution.
This approach has been successful in practice, resulting in
a number of efficient algorithms. However, the same ap-
proach cannot be directly used for the marginal inference
problem. In this problem, we are interested in the proba-
bilistic structure (given by the Boltzmann distribution) of
the MRF, which needs to be preserved as much as possible
before and after transforming the MRF. Otherwise, there is
no guarantee that the estimates of the marginal distributions
obtained for the transformed MRF well approximate those
of the original MRF. Furthermore, it is even unclear how the
estimates of the marginal distributions of the transformed
MRF can be translated to those of the original MRF. Sup-
pose an image segmentation problem for example. How
can we obtain pixel-level marginal distributions from the
estimates of the marginal distributions at superpixels? Note
that these are not the case with the MAP inference, as it is
basically point estimation that can be performed using the
energy function alone.

To deal with these difficulties, we propose a novel
generic method for transforming MRFs. The key idea is
to use the variables of the transformed MRF as latent vari-
ables and then represent the joint distribution of the target
MRF with them. To be specific, the representation con-
sists of a conditional distribution of the original variables
conditioned on the latent variables and their joint distribu-
tion. The former conditional distribution is determined by
the selected MRF transformation. This formulation enables
the direct computation of the energy function of the trans-
formed MRF, which we call the augmented energy; this new
energy gives the joint distribution of the transformed MRF
as its Boltzmann distribution. Then, the marginal distribu-
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tions of the transformed MRF are estimated from this joint
distribution using any regular algorithm such as BP etc. Fi-
nally, the marginal distributions of the original MRF are di-
rectly calculated from them. This method is based on the
variational principle and has a firm theoretical foundation.

This paper is organized as follows. We present our
generic method for MRF transformations in Section 3.
We then show three practical applications of the proposed
method in Section 4, which are i) discretizing variable space
of continuous MRFs, ii) grouping discrete labels of MRFs
to reduce the number of labels, and iii) coarse graining of
MRFs by grouping multiple sites. In Section 5, we show
how some of these MRF transformations are combined to
perform coarse-to-fine inference, and also how our MRF
transformation approach is applied to Markov chain Monte
Carlo methods. Section 6 presents experimental results.

2. Related work
Discretization of continuous MRF Continuous MRFs
whose site variables are continuous have only a limited ap-
plicability, as the marginal distributions of their variables
need to be represented by a limited set of pdfs (e.g., Gaus-
sian distribution). As there is no such limitation for discrete
MRFs, it is quite common to formulate problems in discrete
domain, even if they are more natural to formulate in con-
tinuous domain. However, as is pointed out by Saito et al.
[18], a naive discretization of variable space can cause a
problem; the estimates can have errors, when the discretiza-
tion is non-uniform. They extend MF and BP algorithms to
be able to properly deal with this. In the present study, we
reformulate the discretization as MRF transformation. This
enables to deal with a wider class of algorithms, which con-
tains practically any algorithm derived by the variational-
principle such as TRW and generalized BP, and also higher-
order MRFs [17, 9], both of which cannot be dealt with by
their approach.

Grouping of discrete labels The number of labels in dis-
crete MRFs directly affects computational cost. For exam-
ple, in the case of second-order MRFs, the complexity of
BP per one iteration is proportional to O(KL2), where K
is the number of neighboring sites and L is the number of
labels. Thus, if we can reduce the number of labels, so does
the computational cost. The problem is how we can reduce
them while minimizing the loss of accuracy. As far as the
MAP inference is concerned, there exist some related stud-
ies. Veksler [23] and Wang et al. [24] both proposed heuris-
tic algorithms for reducing the search space of variables for
the problem of stereo matching. Yang et. al. [27] also
proposed a sophisticated BP algorithm that makes the com-
putational cost independent of L by selecting a few labels
having small data cost. However, to the authors’ knowl-
edge, there is no study of reducing the number of labels for

the marginal inference problem. The above methods cannot
be directly applied to the marginal inference problem.

Coarse-graining of MRFs As computational cost also
depends on the number of sites and edges between them,
it is also effective to apply coarse-graining to MRFs, i.e.,
transforming their graphs into smaller ones in such a way
that a number of connected sites are grouped into a single
site. As with the label grouping mentioned above, existing
studies are limited for the MAP inference. They are targeted
at specific problems such as stereo matching [6, 14, 27] and
object segmentation [8]. Although Conejo et. al. [3] pro-
posed a general method for speeding-up MRF optimization
by using the coarse-graining and the label pruning methods,
their method is only targeted at the MAP inference. As for
the marginal inference problem, the only study the authors
are aware of is that of Ferriera et al. [7], which considers
only Gaussian MRFs, though. There are a few difficulties
with using coarse-graining of MRFs for the marginal infer-
ence problem. One is how the marginal distributions of the
original MRF can be obtained from the estimates of those
of a coarse MRF. Another is how the joint distribution (or
the energy function) of the coarse MRF can be obtained.

3. General-purpose method for transformation
of MRFs

This section presents a general-purpose method for
transforming MRFs. Its applications to specific problems
will be presented in Section 4.

3.1. Preliminaries

Suppose a general MRF with N sites. Let G be its graph
and C be the set of factors in G. Each site i ∈ {1, . . . , N}
has a variable xi defined in space Xi. The space for all the
variables x = [x1, . . . , xN ] is expressed as X =

⊗
i Xi,

where
⊗

is the Cartesian product. The variables may be
either continuous or discrete. We will use the symbol

∑
to

represent not only a summation over discrete variables but
also an integral over continuous variables.

For brevity, we focus on MRFs in what follows. It is
noted however that our method is applicable to any graphi-
cal models including directed models.

3.2. Minimization of free energy

A variety of algorithms for the estimation of marginal
distribution, such as MF, BP, and TRW, can be derived by
the same procedure, in which a free energy is minimized
based on the variational principle. This subsection summa-
rizes this fundamental methodology.

The probability distribution of a MRF G is given by

p0(x) =
1

Z0

∏
c∈C

φc(xc), (1)



whereZ0 is a normalization constant called a partition func-
tion, φc is the function of the factor c, and xc is the site
variables included in c. Letting fc(xc) be the negative
logarithm of φc(xc), i.e., fc(xc) = − lnφc(xc), we may
rewrite p0 into

p0(x) =
1

Z0
exp(−E0(x)), (2)

E0(x) =
∑
c∈C

fc(xc). (3)

As it is generally intractable to directly compute the
marginal distributions of the site variables using p0 defined
as above, an arbitrary distribution q0(x) is introduced that
approximates p0(x), using which the marginal distributions
are approximately computed.

The distribution q0(x) has a certain degree of freedom,
within which we search for q0(x) the best approximating
p0(x). This is done by minimizing the KL distance between
the two:

D[q0‖p0] =
∑
x
q0(x) ln

p0(x)

q0(x)
. (4)

The substitution of Eq.(2) into Eq.(4) yields

D[q0‖p0] = 〈E0(x)〉q0 −H[q0] + lnZ0, (5)

where 〈E0(x)〉q0 =
∑

xE0(x)q0(x) is the expectation
of the energy E0(x) with respect to q0(x), and H[q0] =
−
∑

x q0(x) ln q0(x) is the entropy of q0(x). As the third
term of Eq.(5) is independent of q0(x), the minimization of
Eq.(5) is equivalent to that of the following free energy:

F [q0] = 〈E0(x)〉q0 −H[q0]. (6)

Many algorithms including MF, BP, and TRW are derived
by minimizing this free energy for some selected class of
q0. For example, the generalized BP algorithm is derived
when q0 is chosen as

q0(x) =

∏
c∈C qc(xc)∏

i qi(xi)
N (i)−1 , (7)

where N (i) is the number of clusters that include the i-th
site.

3.3. MRF transformation

We now present our method for transforming MRFs. It is
often the case that depending on the structure of MRFs, the
algorithms of MF, BP etc. are impossible to derive, or the
derived ones are computationally costly. To cope with such
difficulties, we consider transforming the MRF and its asso-
ciated objective function F [q0] into another one, for which
the resulting minimization is easier to perform.

Toward this end, introducing a new variable z1, we con-
sider an approximate distribution q0(x) defined in the form
of

q0(x) =
∑
z1

q0,1(x|z1)q1(z1), (8)

where q0,1(x|z1) is a conditional distribution that we arbi-
trarily choose for our purpose and q1(z1) is a unknown dis-
tribution that we are to determine. By using Eq.(8) we wish
to transform the optimization of q0(x) into that of q1(z1)
that will be easier to perform. For example, it is often effec-
tive to use z1 having a lower-dimensionality than x, or to
use discrete z1 when x is continuous. An obvious issue is
how to choose q0,1(x|z1). We choose it differently for dif-
ferent purposes, which will be described in the subsequent
sections.

Using Eq.(8), the free energy of q0 given in Eq.(6) is
rewritten as follows:

F [q0] = 〈E1(z1)〉q1 −H[q1] + 〈S1(x)〉q0(x) , (9)

where E1(z1) and S1(x) are defined as follows:

E1(z1) =
∑
x
q0,1(x|z1) {E0(x) + ln q0,1(x|z1)} , (10)

S1(x) = −
∑
z
q0,1(z1|x) ln q0,1(z1|x). (11)

In the above, we used q0,1(z1|x) =
q0,1(x|z1)q1(z1)/q0(x). The right hand side of Eq.(9) has
a similar form to a free energy (defined as in Eq.(6) for q0)
except for the third term. To be specific, if we neglect the
third term, we may think of Eq.(9) as the free energy of
q1(z1) for the MRF whose energy is given by Eq.(10).

The third term of Eq.(9) does vanish when a condition is
met as follows.

Lemma 3.1. (Erasure of S1) Let δ(z1) be the delta func-
tion. It holds that S1(x) = 0 if there exists a unique map-
ping function ζ1 : X 7→ Z1 that satisfies

q0,1(z1|x) = δ(ζ1(x)− z1), (12)

for any x ∈ X and for any distribution q1(z1).

Thus, under the condition of this lemma, we can regard
Eq.(9) as the free energy of the MRF model with a new
energy E1(z1). As this energy includes the original energy
E0(x) as well as additional terms as in Eq.(10), we call
this the augmented energy. The results are summarized as
follows:

Theorem 3.2. (MRF transformation) Suppose a MRF spec-
ified by the distribution p0(x). When its approximation
q0(x) is specified by Eq.(8) with q0,1(x|z1) satisfying the



condition of Lemma 3.1, the variational solution to the
marginal inference problem with this MRF (which searches
for q0(x) that minimizes D[q0‖p0]) reduces to that with the
MRF specified by p1(z1) defined as

p1(z1) =
1

Z1
exp(−E1(z1)), (13)

where E1(z1) is the augmented energy defined by Eq.(10).

When the marginal inference problem with a MRF is
intractable or computationally costly (even with the varia-
tional approach), we may transform the MRF into another
one using the above method. As the transformed MRF is a
regular MRF, many existing algorithms including MF, BP,
and TRW can be used for its marginal inference. The out-
line of the proposed method is summarized as follows.

1. Choose q0,1(x|z) that implements the target transfor-
mation of the MRF.

2. Compute the augmented energy E1(z1) as in Eq.(10).

3. Compute the marginal distributions for the trans-
formed MRF (having E1(z1) as the energy) by using
a selected algorithm (e.g., BP, TRW, etc.).

The marginal distributions of q0(x) may sometimes be nec-
essary. In that case, they are to be computed from those of
q1(z1). Although there is no automatic method, it will be
easy to do so in some cases, as will be shown in the next
section.

4. Applications
This section shows how the above method for MRF

transformation can be applied to real problems. We con-
sider three problems, the discretization of variable space,
the grouping of discrete labels, and the coarse graining of
MRFs.

4.1. Discretization of variable space

As described earlier, the discrete formulation of MRFs
has a wider applicability than the continuous formulation.
Thus, it is a common approach to discretize the variable
space of a continuous problem and then apply some al-
gorithm designed for discrete variables. However, as was
pointed out in [18], if the discretization is non-uniform, the
regular algorithms that do not consider the non-uniformity
could yield inaccurate results. The method presented in the
last section can derive algorithms that better handle such
non-uniformity.

To do so, the method transforms the target MRF in the
following way. Suppose an MRF having N sites with con-
tinuous variables x = [x1, . . . , xN ]. We define z1 =
[z1, . . . , zN ], where zi is the discrete variable of the i-th

site that takes one of Si discrete values, i.e., zi ∈ Zi ≡
{1, · · · , Si}. We then choose q0,1(x|z1) of Eq.(8) as

q0,1(x|z1) =

N∏
i=1

q(xi|zi), (14)

where q(xi|zi) is a rectangular density such that the posi-
tion of the rectangle varies depending on zi. To be specific,
when zi takes a discrete value s ∈ Zi, it is given as

q(xi|zi = s) ≡ hsi (xi), (15)

where hsi (xi) is defined to be

hsi (xi) =

{
1/Vs

i if xi ∈ X s
i

0 otherwise,
(16)

whereX s
i is the support of hsi (xi) inX and Vs

i is its volume;
see Fig.1. By choosing X s

i appropriately, the requirement
of the proposed method is met.

Proposition 4.1. If X s
i ∩ X t

i = ∅ for any s 6= t, then
q0,1(x|z1) of Eq.(14) satisfies the condition of Lemma 3.1.

The augmented energyE1(z1) is calculated in a straight-
forward manner. Let X (zc) =

⊗
i∈c X

zi
i and V(zc) be the

volume of X (zc). (Recall c is a factor of the graph.) From
Eqs.(10), (14), and (15), E1(z1) is calculated as follows:

E1(z1) =
∑
c∈C

gc(zc)−
N∑
i=1

lnVzi
i , (17)

where gc(zc) is given by

gc(zc) =
1

V(zc)

∑
xc∈X (zc)

fc(xc). (18)

Note that the first term in the augmented energy is the reg-
ular energy of discrete MRFs. The second term is the addi-
tional term that accounts for the non-uniform discretization.
In fact, when the discretization is uniform, X zi

i ’s will have
the same shape and thus Vzi

i ’s will be constant for differ-
ent zi’s. Then we may neglect the term − lnVzi

i , resulting
in the regular energy. If the discretization is non-uniform,
we need to consider the second term. We can use any
discrete algorithm for the marginal inference of the trans-
formed MRF. We have only to replace the regular energy
with the augmented energy derived as above.

4.2. Grouping of discrete labels

A similar method to the above one for dividing continu-
ous variable space Xi into a discrete set of X s

i ’s can be used
to dividing discrete variable space, by which we can reduce
the number of labels. To be specific, we divide the dis-
crete variable space Xi into several subsets X s

i ⊂ Xi such



Grouping
Figure 1. Left: Discretization of variable space. Right: Grouping of discrete labels. fi(xi) is the unary term in the site i. X s

i is the support
of a label and is a set of labels to be grouped into a label.

that X s
i

⋂
X t

i = ∅; see Fig.1. This grouping of the labels
is represented by making a few modifications to the above
continuous-discrete transformation. We replace hsi (xi) of
Eq.(16) with

hsi (xi) =

{
1/|X s

i | if xi ∈ X s
i

0 otherwise,
(19)

where |X zi
i | is the number of elements in X zi

i . Then the
augmented energy will be

E1(z1) =
∑
c∈C

gc(zc)−
N∑
i=1

ln |X zi
i |, (20)

where gc(zc) is equivalent to the one in Eq.(18) except that
V(zc) is replaced with |X (zc)|.

As with the above continuous-discrete transformation,
the additional term − ln |X zi

i | compensates for the non-
uniformity of the grouping of labels. Its effect will be large
when each group X zi

i contains a different number of labels.

4.3. Coarse graining of MRFs

The proposed method can also be applied to coarse
graining of MRFs. After downsizing the graph of an MRF,
it is then required to transform the energy E0(x) accord-
ingly. Our method provides a systematic way for this trans-
formation, which was missing in the literature.

Our method assumes that it is already determined how
to modify the graph. Suppose that N sites of the graph are
grouped into K blocks (K < N ). Each block becomes
a single site of the new graph. Let C(k) be the set of the
sites grouped into the k-th block (k = 1, . . . ,K), such that
C(k) 6= ∅ for any k and also C(k) ∩ C(k′) = ∅ for any
k 6= k′. We then consider a new variable zk for each block
k, which shares the same variable space as xi; thus, if xi is
discrete, so is zi.

We choose q0,1(x|z1) of Eq.(8) as

q0,1(x|z1) =

M∏
k=1

q(xk|zk), (21)

where xk indicates a vector containing all the site variables

of the k-th block, and further choose q(xk|zk) as

q(xk|zk) =
∏

i∈C(k)

δ(xi − zk), (22)

where δ(x) is Dirac’s delta function if the site xi is con-
tinuous and is Kronecker’s delta function if xi is discrete.
Although there are other possibilities, the above choice of
q0,1(x|z) is natural, as it enforces that the sites of the origi-
nal MRF belonging to each group will have the same value
as the corresponding site of the coarse grained MRF. It also
satisfies the requirement of the proposed method.

Proposition 4.2. The conditional distribution q0,1(x|z1)
defined by Eqs.(21) and (22) satisfies the condition of
Lemma 3.1.

The augmented energy E1(z1) can be calculated as
above, but unlike earlier MRF transformations, the results
will vary depending on the structure of MRFs. For lack of
space, we show here only the derivation for second-order
MRFs. The energy E0(x) of a second-order MRF is given
as

E0(x) =
∑
i

fi(xi) +
∑

(i,j)∈E

f(xi, xj), (23)

where fi(xi) and fij(xi, xj) are the unary and the pairwise
terms, respectively; E is the set of edges in G. Using Eq.(10)
and Eqs. (21) - (23), E1(z1) is calculated as

E1(z1) =
∑
k

( ∑
i∈C(k)

fi(zk) +
∑

(i,j)∈In(k)

fij(zk, zk)

)

+
∑

(k,l)∈EEx

∑
(i,j)∈Ex(k,l)

fij(zk, zl), (24)

where In(k) indicates the set of the edges contained in the
k-th block (i.e., the edges between any pair of the sites in
the k-th block); EEx is the set of pairs of any neighboring
blocks; Ex(k, l) indicates the set of the edges crossing the
boundary between the neighboring (k-th and l-th) blocks.

For notational simplicity, we rewrite Eq.(24) as

E1(z1) =
∑
k

gk(zk) +
∑

(k,l)∈EEx

gkl(zk, zl), (25)



gk(hk)

gkl(hk, hl)

Ex(k, l)

In(k)

Figure 2. Illustration of coarse graining of an MRF graph and how
the interactions between the sites in the original graph are trans-
formed to unary and pairwise terms of the coarse-grained MRF.

where

gk(zk) =
∑

i∈C(k)

fi(zk) +
∑

(i,j)∈In(k)

fij(zk, zk), (26a)

gkl(zk, zl) =
∑

(i,j)∈Ex(k,l)

fij(zk, zl). (26b)

The second term of (26a) expresses the interaction occur-
ring within each block, and constitutes the unary term of
the augmented energy. The term gkl(zk, zl) of (26b) ex-
presses the interaction between the blocks and serves as the
pairwise term. These are illustrated in Fig.2. As in the ear-
lier MRF transformations, we may use any algorithm for the
transformed, coarse grained MRF. One can use the derived
augmented energy as if it is a regular energy of a regular
MRF.

Although it is omitted here, higher-order MRFs can be
treated in a similar way, and the results are similar, too. For
any energy term having only the site variables contained in
a single block, it reduces to the form of (26a). For any term
having site variables split to different blocks, it will reduce
to the form of (26b).

5. Other applications
5.1. Coarse-to-fine inference

We have shown how the proposed method is used to
transform MRFs for different purposes. Although it is not
explicitly mentioned so, the discussion so far mostly con-
siders MRF transformations in the direction of downsizing
them. This is the case with the grouping of discrete la-
bels and the MRF coarse graining. However, the proposed
method can be used to “upsizing” MRFs, i.e., transforming
MRFs into those having more sites or more labels. This is
useful when we employ the coarse-to-fine strategy for the
inference with large-size MRFs.

Such coarse-to-fine inference can be implemented as fol-
lows. For a given MRF, we first transform it into a smaller
one by one (or a combination) of the above techniques and
perform the marginal inference with the transformed MRF.
We then consider another transformation of the original
MRF that has an intermediate size between the first and the

original MRFs. Let the approximate distributions for the
first and second MRFs be q(x) =

∑
z1
q0,1(x|z1)q1(z1)

and q′(x) =
∑

z2
q0,2(x|z2)q2(z2), respectively. By ap-

propriately designing the second transformation such that
the space of q′(x) include that of q(x), there always exists
q2(z2) such that q(x) = q′(x). Therefore, we can transfer
the result obtained with the first MRF (i.e., q1(z1)) to the
second MRF, which gives an estimate of q2(z2). Using this
as an initial value, we perform the marginal inference with
the second MRF, which is expected to yield more accurate
estimate of p0(x) due to the increased degrees of freedom.
We may iterate this process until we reach the original MRF.

As good initial values are given at each step, the infer-
ence in this coarse-to-fine manner is expected to reduce the
total computational cost as compared with performing the
marginal inference with the original MRF once. The pro-
posed method provides a smooth connection between two
MRFs in consecutive steps. Thus, it is also possible to em-
ploy the coarse graining and the label grouping at the same
time at each step.

5.2. Markov chain Monte Carlo (MCMC)

As mentioned above, the proposed method can be used
with any algorithm derived from the variational principle,
such as MF, BP, TRW etc. The method can also be used
with MCMC-based algorithms such as Gibbs Sampling and
Slice Sampling. It is similarly expected to reduce computa-
tional cost by downsizing MRFs.

MCMC-based methods estimate marginal distributions
by generating a lot of samples from the target distribution
p0(x). From the viewpoint of the variational principle, it is
equivalent to defining the approximate density q0(x) as

q0(x) =
1

M

∑
m

δ(x− xm), (27)

where M is the number of samples, xm is the sample from
the distribution p0(x), and δ is the delta function. It is easy
to calculate (the estimate of) the marginal distribution of xi
from q0(x), which is merely the histogram of the generated
samples, i.e., (

∑
m δ(xi − xmi ))/M .

An advantage of using MCMC methods for marginal in-
ference is that the estimates can be more accurate than those
of MF, BP etc., provided that we can generate a large num-
ber of samples. However, this prohibitively increases com-
putational cost in most cases, which is the reason why MF,
BP etc. are preferred. The computational cost of MCMC
methods depend on the size of the MRF, rigorously, the
number of sites and either the dimensionality of the variable
space in continuous cases or the number of labels in discrete
cases. Therefore, it is attractive to downsize the MRF and
reduce the computational cost by the proposed method.

To do so, we transform the target MRF with p0(x) into
a smaller one with p1(z1) by one or a combination of the



individual methods described in Section 4. We then apply
a regular MCMC method to the transformed MRF, gener-
ating samples z11 , . . . , z

M
1 from p1(z1). (Note that this is

expected to be computationally less costly than sampling
p0(x).) The approximate distribution of p0(x) is given
from these samples as

q′0(x) =
1

M

∑
m

∑
z1

q0,1(x|z1)δ(z1 − zm
1 )

=
1

M

∑
m

q0,1(x|zm
1 ). (28)

It differs from the original q0(x) of Eq.(27) in that it con-
sists of a set of distributions q0,1(x|zm) not of samples xm.
It is nevertheless still easy to calculate the marginal densi-
ties of x using q′0(x).

A caveat is that unlike q0(x), q′0(x) will never coincide
with the true density p0(x) even if we generate an infinite
number of samples from p1(z1). Our experiments show
that this might not be a serious issue in reality, although this
is not a rigorous proof. Even when it is really a problem,
the above approach will still be useful when used with the
coarse-to-fine strategy, in which starting with a small-size
MRF, we gradually increase the MRF size until reaching
the original MRF. In that case, Eq.(28) gives a smooth con-
nection in the transition from an MRF to another.

6. Experimental results
6.1. Discretization of variable space

If the variable space of a MRF is discretized in a uniform
manner and nevertheless an ordinary algorithms is naively
used for it, the results will be inaccurate. This was first
pointed out in [18], in which only MF and BP are con-
sidered. The proposed method can handle any algorithm
derived from the variational principle as well as methods
of MCMC, yielding their extensions that can properly deal
with non-uniform discretization. To demonstrate these, we
show here the results for TRW and Gibbs sampling. We
used OpenGM [1] for their implementation.

For the sake of comparison, we use the same experimen-
tal setting as [18]. That is, we consider a simple Gaussian
MRF of a 5 × 5 grid graph with pairwise 4-neighbor con-
nections:

E(x) =
∑
i

x2i +
∑

(i,j)∈E

(xi − xj)2. (29)

For this MRF, we divide the variable space in an asymmetric
way that the negative and positive parts in the range [−2 : 2]
are discretized by 64 and 16 points, respectively, as shown
in Fig.3. We then applied the ordinary and extended ver-
sions of TRW and Gibbs sampling to this MRF. For Gibbs

sampling, we generated 107 samples, from which we calcu-
late marginal distributions either naively (by Eq.(17) with-
out the second term) or by our method. We set the burn-in
period to 1000 steps.

Figure 3 shows the results. They are the estimates of the
marginal distribution of the site at the upper-left corner of
the 5 × 5 graph. The white dots are the results of the naive
TRW and Gibbs sampling, whereas the blue histograms are
those of their extended counterparts that are obtained by the
proposed method. Note that the former are purely discrete
distributions and we adjusted the vertical scale properly for
comparison. The red curves are the exact distributions. (As
it is a Gaussian MRF, its marginal distributions can be com-
puted analytically in the continuous domain.) It is observed
that while the distributions estimated by the naive methods
have some biases, those of the extended methods do not.
Although they are less significant, the variances are more
accurate for the extended methods, too.

6.2. Downsizing CRFs

We next examine how the proposed method works for
downsizing a discrete CRF. As an example problem, we
chose a CRF-based formulation of semantic labeling. To
be specific, we consider its learning step for determining
CRF parameters, to which we applied coarse graining and
label grouping. Owing to its theoretical foundation, the pro-
posed method is expected to minimize inaccuracy caused by
the downsizing. Therefore we evaluated computational effi-
ciency as well as estimation accuracy. We used the MSRC-
21 dataset [20] for the experiments. It consists of images of
320× 213 pixels, each of which is given one of 21 discrete
object labels. We used the ”accurate ground truth” intro-
duced by [13] for the evaluation of results.

We consider a grid CRF whose energy is given by

E(x|I; θ) =
∑
i

fi(xi|I)

+
∑

(i,j)∈E

∑
s,t

θstδ(xi − s)δ(xj − t), (30)

where I is the input image; xi is the variable of the i-th site
taking one of the 21 labels; fi(xi|I) is the unary term; and
θst is the parameter representing the interaction between the
label s and t. In the learning step, θst is determined from
the training data consisting of the pairs of an image and its
true label. This is performed by maximizing the likelihood
calculated from the (estimates of) marginal distributions at
the sites. Their estimation requires to use BP or similar
methods, which is the bottleneck in the entire process of
learning. This can be resolved or mitigated by downsizing
the MRF.

We used the following two methods for the downsizing.
The first is grouping the discrete labels, where we reduced
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Figure 3. Results for non-uniformly discretized variable space. The marginal distribution of the site at the upper-left corner of a 5× 5 grid
is estimated by the naive and extended versions of TRW and Gibbs sampling. See text for details.

Table 1. Quantitative results on the MSRC-21 dataset.
time [h] speedup disparity accuracy

full MRF 9.5 - 0.0 81.6
2 labels 0.89 10.6× 0.01235 77.8
3 labels 0.95 10.0× 0.00526 80.7
4 labels 1.0 9.2× 0.00496 81.3
5 labels 1.1 9.0× 0.00473 81.3

4× 4 grid 0.66 14.4× 0.215 81.5
3× 3 grid 1.1 8.5× 0.236 81.6
2× 2 grid 2.5 3.9× 0.237 81.7

the number of labels to K for each pixel. (We fixed it
throughout the learning.) To be specific, we selected K − 1
labels having the smallest values of the unary terms and
grouped the other labels into one label. Note that the se-
lection was performed independently at each pixel and thus
the resulting grouping may be different for different pix-
els. The second is coarse graining of the MRF, where we
downsized the original grid MRF by grouping the pixels in
b × b square blocks into a single “superpixel.” Note that in
spite of the downsizing, we do estimate the marginal distri-
butions of the original MRF. They are used to calculate the
likelihood, which is to be minimized.

We divided the MSRC-21 dataset into 276, 59, and 256
images for training, validation, and test, which is the same
as [13, 20]. We used BP [16] with the damping factor 0.5
and 50 iteration counts for estimating marginal distributions
for each MRF. We multiplied the unary term of [13] by 1/10
to stabilize the computation. We employ the stochastic gra-
dient descent (SGD) method for maximizing the likelihood
to determine θst’s. We set the learning rate to 1.5 × 10−5,
the batch size to 8, and the number of epochs to 5. In the
testing step, we used the α-expansion [2] to obtain the MAP
estimates for the MRF, which was used to measure the ac-
curacy of the learned parameters. We used OpenGM [1] for
the implementation on a PC with Intel Core i7-2600 having
eight CPU cores clocked at 3.40GHz.

Table 1 shows quantitative results. The “disparity” col-
umn shows the mean differences of the parameter θst be-
tween the full MRF and its downsized versions. The “ac-
curacy” column shows the percentage of correctly labeled
pixels. The rows of “L labels” show the results of differ-

image ground truth full MRF

2 labels 4 labels 4× 4 grid
Figure 4. Qualitative results on the MRRC-21 dataset.

ent label grouping, and those of “b × b grid” show the re-
sults of differently coarse-grained MRFs. It is observed that
both methods for downsizing achieve significant speed ups
at a small expense of inaccuracy. An exception is two-label
grouping, which shows considerably lower accuracy. This
indicates that the reduction from 21 to only two labels is
excessive. An interesting remark is that the label grouping
yields much smaller disparity than the coarse graining, and
nevertheless their labeling accuracy are almost the same or
the latter is even slightly better. An implication of this is
that label grouping is more “accurate” in the sense that it
is more close to the results of full MRFs. However, there
is no guarantee that full MRFs are better at learning bet-
ter parameters. The coarse grained MRFs could avoid local
maxima.

Figure 4 shows a qualitative comparison of the results. It
is observed that the two-label grouping yields very inaccu-
rate labeling and the four-label grouping and the 4×4 coarse
graining both yield similar results to the original MRF. We
have checked that this is the case with the other images.

7. Summary
We have described a novel generic method for trans-

forming MRFs and its applications to several practical prob-
lems. We have also described that these MRF transforma-
tions are combined to perform coarse-to-fine inference, and
can be used with MCMC methods. The experimental results
demonstrate the effectiveness of the proposed method.
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