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Abstract

We address the problem of action detection in videos.
Driven by the latest progress in object detection from 2D
images, we build action models using rich feature hierar-
chies derived from shape and kinematic cues. We incor-
porate appearance and motion in two ways. First, starting
from image region proposals we select those that are motion
salient and thus are more likely to contain the action. This
leads to a significant reduction in the number of regions be-
ing processed and allows for faster computations. Second,
we extract spatio-temporal feature representations to build
strong classifiers using Convolutional Neural Networks. We
link our predictions to produce detections consistent in time,
which we call action tubes. We show that our approach out-
performs other techniques in the task of action detection.

1. Introduction
In object recognition, there are two traditional problems:

whole image classification, “is there a chair in the image?”,
and object detection, “is there a chair and where is it in
the image?”. The two problems have been quantified by
the PASCAL Visual Object Challenge [11, 10] and more
recently the ImageNet Challenge [8, 7]. The focus has been
on the object detection task due to its direct relationship to
practical, real world applications. When we turn to the field
of action recognition in videos, we find that most work is
focused on video classification,“is there an action present
in the video”, with leading approaches [40, 41, 35] trying to
classify the video as a whole. In this work, we address the
problem of action detection, “is there an action and where
is it in the video”.

Our goal is to build models which can localize and clas-
sify actions in video. Figure 1 outlines our approach. In-
spired by the recent advances in the field of object detection
in images [13], we start by selecting candidate regions and
use convolutional networks (CNNs) to classify them. Mo-
tion is a valuable cue for action recognition and we utilize
it in two ways. We use motion saliency to eliminate re-

gions that are not likely to contain the action. This leads
to a big reduction in the number of regions being processed
and subsequently in compute time. Additionally, we incor-
porate kinematic cues to build powerful models for action
detection. Figure 2 shows the design of our action mod-
els. Given a region, appearance and motion cues are used
with the aid of convolutional neural networks to make a pre-
diction. Our experiments indicate that appearance and mo-
tion are complementary sources of information and using
both leads to significant improvement in performance (Sec-
tion 4). Predictions from all the frames of the video are
linked to produce consistent detections in time. We call the
linked predictions in time action tubes.

Our detection pipeline is inspired by the human vision
system and, in particular, the two-streams hypothesis [14].
The ventral pathway (“what pathway”) in the visual cortex
responds to shape, color and texture while the dorsal path-
way (“where pathway”) responds to spatial transformations
and movement. We use convolutional neural networks to
computationally simulate the two pathways. The first net-
work, spatial-CNN, operates on static cues and captures the
appearance of the actor and the environment. The second
network, motion-CNN, operates on motion cues and cap-
tures patterns of movement of the actor and the object (if
any) involved in the action. Both networks are trained to
discriminate between the actors and the background as well
as between actors performing different actions.

We show results on the task of action detection on two
publicly available datasets, that contain actions in real world
scenarios, UCF Sports [33] and J-HMDB [17]. These are
the only datasets suitable for this task, unlike the task of ac-
tion classification, where more datasets and of bigger size
(up to 1M videos) exist. Our approach outperforms all
other approaches ([15, 42, 38, 25]) on UCF sports, with the
biggest gain observed for high overlap thresholds. In par-
ticular, for an overlap threshold of 0.6 our approach shows
a relative improvement of 87.3%, achieving mean AUC of
41.2% compared to 22.0% reported by [42]. On the larger
J-HMDB, we present an ablation study and show the effect
of each component when considered separately. Unfortu-
nately, no other approaches report numbers on this dataset.
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Additionally, we show that action tubes yield improved re-
sults on action classification on J-HMDB. Using our action
detections we are able to achieve an accuracy of 62.5% on
J-HMDB, compared to 56.6% reported by [40] and 56.5%
achieved by a whole frame video classification technique
with CNNs.

The rest of the paper is organized as follows. In Section 2
we mention related work on action classification and action
detection in videos. In Section 3 we describe the details of
our approach. In Section 4 we report our results on the two
datasets.

2. Related Work
There has been a fair amount of research on action recog-

nition. We refer to [1, 30, 43] for recent surveys in the field.
For the task of action classification, recent approaches use
features based on shape (e.g. HOG [5], SIFT [28]) and mo-
tion (e.g. optical flow, MBH [6]) with high order encod-
ings (e.g. Bag of Words, Fischer vectors) and train classi-
fiers (e.g. SVM, decision forests) to make action predic-
tions. More specifically, Laptev et al. [26] extract local fea-
tures at spatio-temporal interest points which they encode
using Bag of Words and train SVM classifiers. Wang et
al. [40] use dense point trajectories, where features are ex-
tracted from regions which are being tracked using optical
flow across the frames, instead of fixed locations on a grid
space. Recently, the authors improved their approach [41]
using camera motion to correct the trajectories. They es-
timate the camera movement by matching points between
frames using shape and motion cues after discarding those
that belong to the humans in the frame. The big relative
improvement of their approach shows that camera motion
has a significant impact on the final predictions, especially
when dealing with real world video data. Jain et al. [16]
make a similar observation.

Following the impressive results of deep architectures,
such as CNNs, on the task of handwritten digit recogni-
tion [27] and more recently image classification [23] and
object detection in images [13], attempts have been made
to train deep networks for the task of action classification.
Jhuang et al. [18] build a feedforward network which con-
sists of a hierarchy of spatio-temporal feature detectors of
predesigned motion and shape filters, inspired by the dorsal
stream of the visual cortex. Taylor et al. [37] use convo-
lutional gated RBMs to learn features for video data in an
unsupervised manner and apply them for the task of action
classification. More recently, Ji et al. [19] build 3D CNNs,
where convolutions are performed in 3D feature maps from
both spatial and temporal dimensions. Karpathy et al. [21]
explore a variety of network architectures to tackle the task
of action classification on 1M videos. They show that op-
erating on single frames performs equally well than when
considering sequences of frames. Simonyan & Zisserman

[35] train two separate CNNs to explicitly capture spatial
and temporal features. The spatial stream operates on the
RGB image while the temporal stream on the optical flow
signal. The two stream structure in our network for action
detection is similar to their work, but the crucial difference
is that their network is for full image classification while
our system works on candidate regions and can thus local-
ize the action. Also, the way we do temporal integration is
quite different since our work tackles a different problem.

Approaches designed for the task of action classification
use feature representations that discard any information re-
garding the location of the action. However, there are older
approaches which are figure centric. Efros et al. [9] com-
bine shape and motion features to build detectors suitable
for action recognition at low resolution and predict the ac-
tion using nearest neighbor techniques, but they assume that
the actor has already been localized. Schüldt et al. [34]
build local space-time features to recognize action patters
using SVM classifiers. Blank et al. [3] use spatio-temporal
volume silhouettes to describe an action assuming in addi-
tion known background. More recently, per-frame human
detectors have been used. Prest et al. [31] propose to de-
tect humans and objects and then model their interaction.
Lan et al. [25] learn spatio-temporal models for actions us-
ing figure-centric visual word representation, where the lo-
cation of the subject is treated as a latent variable and is
inferred jointly with the action label. Raptis et al. [32] ex-
tract clusters of trajectories and group them to predict an
action class using a graphical model. Tian et al. [38] ex-
tend the deformable parts model, introduced by [12] for ob-
ject detection in 2D images, to video using HOG3D feature
descriptors [22]. Ma et al. extract segments of the human
body and its parts based on color cues, which they prune us-
ing motion and shape cues. These parts serve as regions of
interest from which features are extracted and subsequently
are encoded using Bag of Words. Jain et al. [15] produce
space-time bounding boxes, starting from super-voxels, and
use motion features with Bag of Words to classify the action
within each candidate. Wang et al. [42] propose a unified
approach to discover effective action parts using dynamical
poselets and model their relations.

3. Building action detection models

Figure 1 outlines our approach. We classify region pro-
posals using static and kinematic cues (stage a). The classi-
fiers are comprised of two Convolutional Neural Networks
(CNNs) which operate on the RGB and flow signal respec-
tively. We make a prediction after using action specific
SVM classifiers trained on the spatio-temporal representa-
tions produced by the two CNNs. We link the outputs of
the classifiers across the frames of the videos (stage b) to
produce action tubes.
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Figure 1: An outline of our approach. (a) Candidate regions are fed into action specific classifiers, which make predictions using static and
motion cues. (b) The regions are linked across frames based on the action predictions and their spatial overlap. Action tubes are produced
for each action and each video.

3.1. Regions of interest

Given a frame, the number of possible regions that con-
tain the action is enormous. However, the majority of these
candidates are not descriptive and can be eliminated without
loss in performance. There has been a lot of work on gener-
ating useful region proposals based on color, texture, edge
cues ([39, 2]). We use selective search [39] on the RGB
frames to generate approximately 2K regions per frame.
Given that our task is to localize the actor, we discard the re-
gions that are void of motion, using the optical flow signal.
As a result, the final regions we consider are those that are
salient in shape and motion. One could use more compli-
cated techniques, such as action saliency detectors trained
on human eye fixations and low level cues [29].

Our motion saliency algorithm is extremely simple. We
view the normalized magnitude of the optical flow signal
fm as a heat map at the pixel level. If R is a region, then
fm(R) = 1

|R|
∑
i∈R fm(i) is a measure of how motion

salient R is. R is discarded if fm(R) < α.

For α = 0.3, approximately 85% of boxes are discarded,
with a loss of only 4% in recall on J-HMDB, for an overlap
threshold of 0.5. Despite the small loss in recall, this step is
of great importance for the algorithm’s time complexity. It
takes approximately 11s to process an image with 2K boxes,
with the majority of the time being consumed in extract-
ing features for the boxes (for more details see [13]). This
means that a video of 100 frames would require 18min to
process! This is prohibitive, especially for a dataset of thou-
sands of videos. Eliminating regions which are unlikely to
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Figure 2: We use action specific SVM classifiers on spatio-
temporal features. The features are extracted from the fc7 layer
of two CNNs, spatial-CNN and motion-CNN, which were trained
to detect actions using static and motion cues, respectively.

contain the action reduces the compute time significantly.

3.2. Action specific classifiers

We use discriminative action classifiers on spatio-
temporal features to make predictions for each region. The
features are extracted from the final layer of the CNNs
which are trained to discriminate among different actions
as well as between actions and the background. We use
a linear SVM with hard negative mining to train the final
classifiers. Figure 2 shows how spatial and motion cues are
combined and fed into the SVM classifier.

3.2.1 CNNs for action detection

We train two Convolutional Neural Networks for the task of
action detection. The first network, spatial-CNN, takes as



input RGB frames and captures the appearance of the ac-
tor as well as cues from the scene. The second network,
motion-CNN, operates on the optical flow signal and cap-
tures the movement of the actor. Spatio-temporal features
are extracted by combining the output from the intermediate
layers of the two networks. Action specific SVM classifiers
are trained on the spatio-temporal features and are used to
make predictions at the frame level. Figure 2 schematically
outlines the procedure. Subsequently, we link the detections
in time to produce temporarily consistent action predictions,
which we call action tubes.

We train spatial-CNN and motion-CNN similar to R-
CNN [13]. Regions of interest are computed at every frame
of the video, as described above. At train time, the regions
which overlap more than 50% with the ground truth are con-
sidered as positive examples, and the rest are negatives. The
networks are carefully initialized to avoid overfitting.

The architecture of spatial-CNN and motion-CNN is
identical and follows [23] and [44]. Assume C(k, n, s) is
a convolutional layer with kernel size k × k, n filters and a
stride of s, P (k, s) a max pooling layer of kernel size k× k
and stride s, N a normalization layer, RL a rectified lin-
ear unit, FC(n) a fully connected layer with n filters and
D(r) a dropout layer with dropout ratio r. The architec-
ture of our networks follows: C(7, 96, 2)−RL−P (3, 2)−
N − C(5, 384, 2) − RL − P (3, 2) − N − C(3, 512, 1) −
RL−C(3, 512, 1)−RL−C(3, 384, 1)−RL−P (3, 2)−
FC(4096)−D(0.5)−FC(4096)−D(0.5)−FC(|A|+1).
The final fully connected layer has number of outputs as
many as the action classes plus one for the background
class. During training a softmax loss layer is added at the
end of the network.

Network details The architecture of our CNNs is inspired
by two different network designs, [23] and [44]. Our net-
work achieves 17% top-5 error on the ILSVRC-2012 vali-
dation set for the task of classification.

Weight initialization Proper initialization is a key for
training CNNs, especially in the absence of data.
spatial-CNN: We want spatial-CNN to accurately local-
ize people performing actions in 2D frames. We initialize
spatial-CNN with a model that was trained on the PASCAL
VOC 2012 detection task, similar to [13]. This model has
learned feature representations necessary for accurately de-
tecting people under various appearance and occlusion pat-
terns, as proven by the high person detection AP reported
on the VOC2012 test set.
motion-CNN: We want motion-CNN to capture motion
patterns. We train a network on single frame optical flow
images for the task of action classification. We use the
UCF101 dataset (split 1) [36], which contains 13320 videos
of 101 different actions. Our single frame optical flow
model achieves an accuracy of 72.2% on split 1, similar to

73.9% reported by [35]. The 1.7% difference can be at-
tributed to the differences in the network’s architectures.
Indeed, the network used in [35] yields 13.5% top-5 error
on the ILSVRC-2012 validation set, compared to the 17%
top-5 error achieved by our network. This model is used
to initialize motion-CNN when trained on smaller datasets,
such as UCF Sports and J-HMDB.

Processing of input data We preprocess the input for each
of the networks as follows
spatial-CNN: The RGB frames are cropped to the bounds
of the regions of interest, with a padding of 16 pixels, which
is added in each dimension. The average RGB values are
subtracted from the patches. During training, the patches
are randomly cropped to 227 × 227 size, and are flipped
horizontally with a probability of 0.5.
motion-CNN: We compute the optical flow signal for each
frame, according to [4]. We stack the flow in the x-, y-
direction and the magnitude to form a 3-dimensional image,
and scale it by a constant (s = 16). During training, the
patches are randomly cropped and flipped.

Parameters We train spatial-CNN and motion-CNN with
backpropagation, using Caffe [20]. We use a learning rate
of 0.001, a momentum of 0.9 and a weight decay of 0.0005.
We train the networks for 2K iterations. We observed more
iterations were unnecessary, due to the good initialization
of the networks.

3.2.2 Training action specific SVM classifiers

We train action specific SVM classifiers on spatio-temporal
features, which are extracted from an intermediate layer of
the two networks. More precisely, given a region R, let
φs(R) and φm(R) be the feature vectors computed after
the 7th fully connected layer in spatial-CNN and motion-
CNN respectively. We combine the two feature vectors
φ(R) = [φs(R)T φm(R)T ]T to obtain a spatio-temporal
feature representation for R. We train SVM classifiers wα

for each action α ∈ A, where ground truth regions for α
are considered as positive examples and regions that over-
lap less than 0.3 with the ground truth as negative. During
training, we use hard negative mining.

At test time, each region R is a associated with a score
vector score(R) = {wT

αφ(R) : α ∈ A}, where each entry
is a measure of confidence that action α is performed within
the region.

3.3. Linking action detections

Actions in videos are being performed over a period of
time. Our approach makes decisions on a single frame level.
In order to create temporally coherent detections, we link
the results from our single frame approach into unified de-
tections along time.



Assume two consecutive frames at times t and t + 1,
respectively, and assume Rt is a region at t and Rt+1 at
t+ 1. For an action α, we define the linking score between
those regions to be

sα(Rt, Rt+1) = wT
αφ(Rt)+wT

αφ(Rt+1)+λ·ov(Rt, Rt+1)
(1)

where ov(R, R̂) is the intersection-over-union of two re-
gions R and R̂ and λ is a scalar. In other words, two re-
gions are strongly linked if their spatial extent significantly
overlaps and if they score high under the action model.

For each action in the video, we seek the optimal path

R̄∗α = argmax
R̄

1

T

T−1∑
t=1

sα(Rt, Rt+1) (2)

where R̄α = [R1, R2, ..., RT ] is the sequence of linked re-
gions for action α. We solve the above optimization prob-
lem using the Viterbi algorithm. After the optimal path is
found, the regions in R̄∗α are removed from the set of re-
gions and Eq. 2 is solved again. This is repeated until the
set of regions is empty. Each path from Eq. 2 is called an
action tube. The score of an action tube R̄α is defined as
Sα(R̄α) = 1

T

∑T−1
t=1 sα(Rt, Rt+1).

4. Results
We evaluate our approach on two widely used datasets,

namely UCF Sports [33] and J-HMDB [17]. On UCF sports
we compare against other techniques and show substantial
improvement from state-of-the-art approaches. We present
an ablation study of our CNN-based approach and show re-
sults on action classification using our action tubes on J-
HMDB, which is a substantially larger dataset than UCF
Sports.

Datasets UCF Sports consists of 150 videos with 10 dif-
ferent actions. There are on average 10.3 videos per action
for training, and 4.7 for testing 1. J-HMDB contains about
900 videos of 21 different actions. The videos are extracted
from the larger HMDB dataset [24], consisting of 51 ac-
tions. Contrary to J-HMDB, UCF Sports has been widely
used by scientists for evaluation purposes. J-HMDB is more
interesting and should receive much more attention than it
has in the past.

Metrics. To quantify our results, we report Average-
Precision at a frame level, frame-AP, and at the video level,
video-AP. We also plot ROC curves and measure AUC, a
metric commonly used by other approaches. None of the
AP metrics have been used by other methods on this task.
However, we feel they are informative and provide a direct

1The split was proposed by [25]

link between the tasks of action detection and object detec-
tion in images.

• frame-AP measures the area under the precision-recall
curve of the detections for each frame (similar to the
PASCAL VOC detection challenge [11]). A detec-
tion is correct if the intersection-over-union with the
ground truth at that frame is greater than σ and the ac-
tion label is correctly predicted.

• video-AP measures the area under the precision-recall
curve of the action tubes predictions. A tube is correct
if the mean per frame intersection-over-union with the
ground truth across the frames of the video is greater
than σ and the action label is correctly predicted.

• AUC measures the area under the ROC curve, a metric
previously used on this task. An action tube is correct
under the same conditions as in video-AP. Following
[38], the ROC curve is plotted until a false positive rate
of 0.6, while keeping the top-3 detections per class and
per video. Consequently, the best possible AUC score
is 60%.

4.1. Results on UCF sports

In Figure 3, we plot the ROC curve for σ = 0.2 (red).
In Figure 4 we plot the average AUC for different values of
σ. We plot the curves as produced by the recent state-of-
the-art approaches, Jain et al. [15], Wang et al. [42], Tian et
al. [38] and Lan et al. [25]. Our approach outperforms all
other techniques by a significant margin for all values of σ,
showing the most improvement for high values of overlap,
where other approaches tend to perform poorly. In particu-
lar, for σ = 0.6, our approach achieves an average AUC of
41.2% compared to 22.0% by [42].

Table 1 shows frame-AP (second row) and video-AP
(third row) for an interestion-over-union threshold of σ =
0.5. Our approach achieves a mean AP of 68.1% at the
frame level and 75.8% at the video level, with excellent
performance for most categories. Running is the only ac-
tion for which the action tubes fail to detect the actors (11.7
% video-AP) , even though our approach is able to local-
ize them at the frame level (54.9% frame-AP). This is due
to the fact that the test videos for Running contain multiple
actors next to each other and our simple linking algorithm
fails to consistently associate the detections with the cor-
rect actors, because of the proximity of the subjects and the
presence of camera motion. In other words, the action tubes
for Running contain the action but the detections do not al-
ways correspond to the same person. Indeed, if we make
our evaluation agnostic to the instance, video-AP for Run-
ning is 83.8%. Tracking objects in a video is a very inter-
esting but rather orthogonal problem to action localization
and is beyond the scope of this work.
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Figure 3: ROC curves on UCF Sports for an intersection-over-
union threshold of σ = 0.2. Red shows our approach. We manage
to reach a high true positive rate at a much smaller false positive
rate, compared to the other approaches shown on the plot.
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Figure 4: AUC on UCF Sports for various values of intersection-
over-union threshold of σ (x-axis). Red shows our approach. We
consistently outperform other approaches, with the biggest im-
provement being achieved at high values of overlap (σ ≥ 0.4).

AP (%) Diving Golf Kicking Lifting Riding Running Skateboarding Swing1 Swing2 Walking mAP
frame-AP 75.8 69.3 54.6 99.1 89.6 54.9 29.8 88.7 74.5 44.7 68.1

video-AP 100 91.7 66.7 100 100 11.7 41.7 100 100 45.8 75.8

Table 1: AP on the UCF Sports dataset for an intersection-over-
union threshold of σ = 0.5. frame-AP measures AP of the action
detections at the frame level, while video-AP measures AP of the
predicted action tubes.

Figure 7 shows examples of detected action tubes on
UCF sports. Each block corresponds to a different video.
The videos were selected from the test set. We show the
highest scoring action tube for each video. Red boxes in-
dicate the detections in the corresponding frames. The pre-
dicted label is overlaid.
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Figure 5: AUC on J-HMDB for different values of intersection-
over-union threshold (averaged over the three splits).

4.2. Results on J-HMDB

We report frame-AP and video-AP for the 21 actions of
J-HMDB. We present an ablation study of our approach by
evaluating the performance of the two networks, spatial-
CNN and motion-CNN. Table 2 shows the results for each
method and for each action category.

As shown in the ablation study, it is apparent that the
combination of spatial and motion-CNN performs signif-
icantly better for almost all actions. In addition, we can
make some very useful observations. There are specific cat-
egories for which one signal matters more than the other.
In particular, motion seems to be the most important for ac-
tions such as Clap, Climb Stairs, Sit, Stand and Swing Base-
ball, while appearance contributes more for actions such as
Catch, Shoot Gun and Throw. Also, we notice that even
though motion-CNN performs on average a bit worse than
spatial-CNN at the frame level (24.3% vs. 27.0% respec-
tively), it performs significantly better at the video level
(45.7% vs. 37.9% respectively). This is due to the fact that
the flow frames are not very informative when considered
separately, however they produce a stronger overall predic-
tion after the temporal smoothing provided by our linking
algorithm.

Figure 5 shows the AUC for different values of the
intersection-over-union threshold, averaged over the three
splits on J-HMDB. Unfortunately, comparison with other
approaches is not possible on this dataset, since no other
approaches report numbers or have source code available.

Figure 8 shows examples of action tubes on J-HMDB.
Each block corresponds to a different video. The videos
are selected from the split 1 test set. We show the highest
scoring action tube for each video. Red boxes indicate the
detections in the corresponding frames. The predicted label
is overlaid.



frame-AP (%) brush hair catch clap climb stairs golf jump kick ball pick pour pullup push run shoot ball shoot bow shoot gun sit stand swing baseball throw walk wave mAP
spatial-CNN 55.8 25.5 25.1 24.0 77.5 1.9 5.3 21.4 68.6 71.0 15.4 6.3 4.6 41.1 28.0 9.4 8.2 19.9 17.8 29.2 11.5 27.0
motion-CNN 32.3 5.0 35.6 30.1 58.0 7.8 2.6 16.4 55.0 72.3 8.5 6.1 3.9 47.8 7.3 24.9 26.3 36.3 4.5 22.1 7.6 24.3
full 65.2 18.3 38.1 39.0 79.4 7.3 9.4 25.2 80.2 82.8 33.6 11.6 5.6 66.8 27.0 32.1 34.2 33.6 15.5 34.0 21.9 36.2

video-AP (%)
spatial-CNN 67.1 34.4 37.2 36.3 93.8 7.3 14.4 29.6 80.2 93.9 17.4 10.0 8.8 71.2 45.8 17.7 11.6 38.5 20.4 40.5 19.4 37.9
motion-CNN 66.3 16.0 60.0 51.6 88.6 18.9 10.8 23.9 83.4 96.7 18.2 17.2 14.0 84.4 19.3 72.6 61.8 76.8 17.3 46.7 14.3 45.7
full 79.1 33.4 53.9 60.3 99.3 18.4 26.2 42.0 92.8 98.1 29.6 24.6 13.7 92.9 42.3 67.2 57.6 66.5 27.9 58.9 35.8 53.3

Table 2: Results and ablation study on J-HMDB (averaged over the three splits). We report frame-AP (top) and video-AP (bottom) for the
spatial and motion component and their combination (full). The combination of the spatial- and motion-CNN performs significantly better
under both metrics, showing the significance of static and motion cues for the task of action recognition.

Figure 6: The confusion matrix on J-HMDB for the classification
task, when using action tubes to predict a label for each video.

Action Classification Our approach is not limited to action
detection. We can use the action tubes to predict an action
label for the whole video. In particular, we can predict the
label l for a video by picking the action with the maximum
action tube score

l = argmax
α∈A

max
R̄∈{R̄α}

Sα(R̄) (3)

where Sα(R̄) is the score of the action tube R̄ as defined by
Eq. 2.

If we use Eq. 3 as the prediction, our approach yields
an accuracy of 62.5%, averaged over the three splits of J-
HMDB. Figure 6 shows the confusion matrix.

In order to show the impact of the action tubes in the
above result, we create a baseline model for action classi-
fication, similar to [35]. We use spatial and motion-CNNs
in a classification setting, where full frames are used as in-
put instead of regions. The weights of the CNNs are ini-
tialized from networks trained on UCF 101 (split1) for the

Accuracy (%) Wang et al. [40] CNN (1/3 spatial, 2/3 motion) Action Tubes
J-HMDB 56.6 56.5 62.5

Table 3: Classification accuracy on J-HMDB (averaged over the
three splits). CNN (third column) shows the result of the weighted
average of spatial and motion-CNN on the whole frames, while
Action Tubes (fourth column) shows the result after using the
scores of the predicted action tubes to make decisions for the
video’s label.

task of action classification. We average the class probabili-
ties as produced by the softmax layers of the CNNs, instead
of training SVM classifiers (We observed major overfitting
problems when training SVM classifiers on top of the com-
bined fc7 features). We average the outputs of spatial- and
motion-CNNs, with weights 1/3 and 2/3 respectively, and
pick the action label with the maximum score after averag-
ing the frames of the videos. This approach yields an ac-
curacy of 56.5% averaged over the three splits of J-HMDB.
This compares to 56.6% achieved by [40]. Table 3 summa-
rizes the results for action classification on J-HMDB. It is
quite evident that focusing on the actor is beneficial for the
task of video classification, while a lot of information is be-
ing lost when the whole scene is analyzed in an orderless
fashion.

5. Conclusions
We propose an approach to action detection using convo-

lutional neural networks on static and kinematic cues. We
experimentally show that our action models perform state-
of-the-art on the task of action localization. From our ab-
lation study it is evident that appearance and motion cues
are complementary and their combination is mandatory for
accurate predictions across the board.

However, there are two problems closely related to ac-
tion detection that we did not tackle. One is, as we men-
tion in Section 4, the problem of tracking. For example,
in a track field it is important to recognize that the athletes
are running but also to be able to follow each one through-
out the race. For this problem to be addressed, we need
compelling datasets that contain videos of multiple actors,
unlike the existing ones where the focus is on one or two
actors. Second, camera motion is a factor which we did



Figure 7: Examples from UCF Sports. Each block corresponds to a different video. We show the highest scoring action tube detected in
the video. The red box indicates the region and the predicted label is overlaid. We show 4 frames from each video. The top example on
the right shows the problem of tracking, while the 4th example on the right is a wrong prediction, with the true label being Skate Boarding.

Figure 8: Examples from J-HMDB. Each block corresponds to a different video. We show the highest scoring action tube detected in the
video. The red box indicates the region and the predicted label is overlaid. We show 4 frames from each video. The 2nd example on the
left and the two bottom ones on the right are wrong predictions, with true labels being catch, sit and run respectively.

not examine, despite strong evidence that it has a signifi-
cant impact on performance [41, 16]. Efforts to eliminate
the effect of camera movement, such as the one proposed
by [41], might further improve our results.
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