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Figure 1. Removal of defocus blur in a photograph.

Abstract

Image deconvolution continues to be an active research
topic of recovering a sharp image, given a blurry one
generated by a convolution. One of the most challenging
problems in image deconvolution is how to preserve the
fine scale texture structures while removing blur and
noise. Various methods have been proposed in both
spatial and transform domains, such as gradient based
methods, nonlocal self-similarity methods, and sparsity
based methods. However, each domain has its advantages
and shortcomings, which can be complemented by each
other. In this work we propose a new approach for efficient
image deconvolution based on dual domain filters. In
the deblurring process, we offer a hybrid method that
a novel rolling guidance filter is used to ensure proper
texture/structure separation, and then in the transform
domain, we use the

short-time Fourier transform to recover the textures
while removing noise with energy shrinkage. Our hybrid
algorithm that is surprisingly easy to implement, and
experimental results clearly show that the proposed al-
gorithm outperforms many state-of-the-art deconvolution
algorithms in terms of both quantitative measure and visual
perception quality.

1. Introduction
Image deconvolution is a long-standing challenge in the

field of computer vision and computational photography[1].
For example, the camera might have moved when capturing
an image, resulting in an image corrupted by motion blur.
Another common source of blurriness is out-of-focus blur.

The process of deconvolution is known to be an ill-posed
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problem, even though the point spread function (PSF) is
known, restoring coherent high frequency image details can
still be very difficult.

In a typical deconvolution framework, a blurry image y
is often modeled as a convolution between a PSF h and a
sharp image uorig , with additive noise γ:

y = Huorig + γ = h ∗ uorig + γ (1)

In non-blind deconvolution, both y and h are given, and γ
is often assumed to be i.i.d Gaussian with known variance
σ2. The deconvolution problem is to reconstruct uorig from
the observation y.

Image deconvolution methods can be broadly divided
into two classes. The first class of methods relies on a
pre-processing step followed by denoising, whereas the sec-
ond class of methods is based on a variational optimization
problem where the desired solution minimizes a criterion
composed of fidelity and penalty terms.

The first category of methods apply a regularized inver-
sion of the blur, followed by a denoising procedure. First,
a regularized inversion of the blur is performed, such as
Fourier regularization. This makes the image sharper, but
also has the effect of amplifying the noise, as well as cre-
ating correlations in the noise. Then, a cleverly engineered
denoising algorithm is used to remove artifacts and colored
noise (non-flat power spectrum of the noise, not to be con-
fused with color noise of RGB images). Various denoising
methods have been used for this task: for instance, wavelet
transform [2], a Gaussian scale mixture model (GSM) [3], a
shape adaptive discrete cosine transform (SA-DCT)[4], or a
block matching with 3D-filtering kernel regression (BM3D)
[5].

The TV model[6], L0-ABS[7], SURE-LET[8], Jia
et al[9] and Yuan et al [10][11] belong to the second cate-
gory. The TV model assumes that the l1-norm of the gradi-
ent of the original image is small. It is well-suited for piece-
wise smooth images, and remarkably effective at preserving
edges. Variations of this method have also been proposed
in [12, 13, 14]. L0-ABS[7] is a sparsity-based deblurring
method exploiting a fixed sparse domain. SURE-LET[8]
method uses the minimization of a regularized Steins un-
biased risk estimate (SURE) for designing deconvolution
algorithms expressed as a linear expansion of thresholds.
Jia et al[9] adopt a local sparse representation in image de-
convolution. In [11], Yuan et al proposed a progressive
inter-scale and intra-scale non-blind image deconvolution
approach (PIEIAS) that significantly reduces the ringing ar-
tifacts.

In recent works, the sparsity and the self-similarity of
natural images are usually combined to achieve better per-
formance [15, 16, 17]. In [15], sparsity and self-similarity
are separately characterized by two regularization terms,
which are incorporated together into the final cost func-

tional of image restoration solution to enhance the image
quality. In [16], a nonlocally centralized sparse represen-
tation (NCSR) model is proposed, which centralizes the
sparse coding coefficients of the observed image to those
estimates to improve the performance of sparse representa-
tion based image restoration.

Lately, low-rank modeling based approaches have also
achieved great success in image restoration. Similar patches
are grouped such that the patches in each group share simi-
lar underlying structure and form a low-rank matrix approx-
imately. Finally, the matrix completion is carried out on
each patch group to restore the image [18, 19, 20].

In this paper, we propose a novel patch-less image de-
convolution method that integrates a rolling guidance filter
[21] and a short-time Fourier transform(STFT) technique
into the same framework. The rolling guidance filter is
a novel structure preserving smoothing operator that can
remove different levels of details in any input natural im-
ages. We propose an efficient iterative algorithm that con-
sists of two parts: debluring and denoising. The deblur-
ring step amplifies and colors the noise, and corrupts the
image information. Hence, in the denoising step, we use
the rolling guidance filter to obtain a high-contrast image,
and the residual image (texture and noise) is denoised in the
short-time Fourier transform domain using energy shrink-
age. The rolling guidance method can automatically refine
edges that can be preserved in order to preserve large-scale
structures optimally, but can not preserve low-contrast de-
tail like textures without introducing noise. STFT shrink-
age on the other hand results in good detail preservation,
but suffers from ringing artifacts near steep edges. We in-
tegrate these two methods to produce a new deconvolution
approach which outperforms many current state-of-the-art
schemes. Apart from operating in different domains, the
rolling guidance filter and the STFT shrinkage are very
alike; hence, we call our method dual-domain filters based
image deconvolution.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief overview of rolling guidance filter. Sec-
tion 3 shows how the rolling guidance filter and SIFT are
used for regularizing the deconvolution problem. Section 4
demonstrates the effectiveness of our approach via simula-
tion. Section 5 provides concluding remarks.

2. Rolling guidance filter
Structure-preserving filtering is an essential operation

with a variety of applications in computational photography
and image analysis. Such an operation decomposes an im-
age into prominent structure and fine-scale detail, making it
easier for subsequent image manipulation.

Many of the structure-preserving smoothing operators
are based on local filtering[22, 23, 24]. While these non-
linear filters are simple and intuitive to use, they are often
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ill-equipped to extract structure from texture due to the lack
of explicit measures to distinguish the two. On the other
hand, there are optimization-based[25, 26, 27] solutions,
some of which have been specifically designed to handle
texture and thus outperform local filtering in terms of tex-
ture removal. However, they usually come with additional
level of complexity and sophistication, which makes them
harder to implement, accelerate, scale, or adapt.

Recently, a novel method called rolling guidance filter
[21] is proposed for nonlinear image decomposition based
on a simple modification to bilateral filter[23]. It is in
essence a joint bilateral filter (JBF) [28] that effectively re-
moves texture while preserving structure, which the stan-
dard bilateral filter often fails to do. Being a simple exten-
sion to the popular bilateral filter, this method enjoys the
benefits that come with it, such as simplicity, speed, ease of
implementation, scalability, and adapt ability.

The rolling guidance filter first applies a Gaussian filter
with variance σ2

s to the image. When the image structure
scale is smaller than σs, it will be completely removed in
the filtered image. Structures of image are suppressed dif-
ferently according to their sizes. We denote the convolution
process with the input image I and Gaussian filter gσs of
variance σs as

Lσs = gσs ∗ I

=

∑
q∈N (p) kp,qI(q)∑

q∈N (p) kp,q
(2)

where the Gaussian kernel is kp,q = e
− (p−q)2

2σ2
s , and N (p)

is a square neighborhood window centered around pixel p
with window radius r. Lσs is a blurred image, one can see
that edges of structures with scales below the smoothing
scale are completely removed according to the Gaussian av-
erage mechanism, while large-scale structures are blurred
instead of eliminated. When applying Gaussian filter, the
average of the edges removes nearly all texture patterns. For
the large-scale intensity variation, Gaussian filter only blurs
it and the edge can still be found.

So, the rolling guidance filter is composed of two main
steps, i.e., small structure removal and edge recovery. The
iterative edge recovery step forms the major contribution in
this method. In this process, a guidance image J t is iter-
atively updated. Initially, J1 is set as Lσs in Eq.(2). The
value of J t+1 in the t-th iteration is obtained in a joint bilat-
eral filtering form given the input I and the value in previous
iteration J t:

J t+1(p) =

∑
q∈N (p) kp,qI(q)∑

q∈N (p) kp,q
(3)

where the bilateral kernel is:

kp,q = e
− (p−q)2

2σ2
s e

− (Jt(p)−Jt(q))2

2σ2
r (4)

σs and σr control the spatial and range weights respectively.
This expression can be understood as a filter that

smoothes the input I guided by the structure of J t. This
process is different by nature from how previous methods
employ joint bilateral filter. Since this process uses J t

to compute the affinity between pixels, it makes resulting
structures similar to J t. Put differently, it yields structure
transform from J to I .

Algorithm 1 depicts final scale-aware rolling guidance
filter construction:

———————————————————
Algorithm 1: Rolling guidance filter
1. Initialization: J1 = Lσs

, nitr, σs, σr

2. for t = 1 : nitr

J t+1 = JBF (I, J t, σs, σr) ◃ Eq.(3)
end

3. Output: Jnitr+1.
———————————————————
The rolling guidance filter can remove small-scale struc-

tures while preserving other content, parallel in terms of im-
portance to previous edge-preserving filter. This framework
is simple to implement, greatly extensible to accommodate
various tools for rolling guidance, and it yields decent per-
formance. In our work, we first integrate this filter into the
deconvolution problem. This leads to a powerful algorithm
that obtains high quality results.

In Figure 2, we show an example about rolling guidance
filter on noisy Barbara image. One can observe that the
rolling guidance filtering result is a structure-preserving im-
age without introducing noise, and texture and noise are in
the residual image. Because the noisy image can be written
as y = δ ∗ uorig + γ, we use our dual domain filters ”de-
convolute” to the noisy image and compare it with BM3D
denosing method[29].

3. Dual Domain Deconvolution
In this work, we intend to recover the underlying image

by iteratively deblurring and decnoising via dual domain
filters(DDFs). Our method relies on two steps: (1) a reg-
ularized inversion of the blur in Fourier domain and (2) a
denoising step using rolling guidance filter and short-time
Fourier transform. In this section, we describe these two
steps in detail.

3.1. Direct deconvolution

The goal of deconvolution is to make a blurry image
sharper. This has the positive effect of localizing informa-
tion, but it has the negative side-effect of introducing new
artifacts.

In our approach, we minimize the following energy func-
tion to estimate the noise-free image u.

min
u

∥ y − h ∗ u ∥2 +λ ∥ u− DDFs(u) ∥2 (5)
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Figure 2. Visual quality comparison of image denoising on gray
image Barbara. From left to right and top to bottom: original
image, noisy image (σ = 20), rolling guidance filtering result
(σs = 7, σr = 0.05, nitr = 2), residual image, our denoised
image (PSNR = 32.08dB), BM3D result [29] (PSNR=31.78dB).

Directly minimizing this energy is hard because DDFs(·)
is highly nonlinear. We found that iterating the following
two steps yields a good result in practice:

vk+1 = argmin
u

∥ y − h ∗ u ∥2 (6)

+ λk+1 ∥ u− uk ∥2 (7)
uk+1 = DDFs(vk+1)

Considering that Eq.(6) is a simple least squares prob-
lem, we can update v with its analytic solution. In Fourier
domain, this can be solved in a single step:

F(vk+1) =
F(h)∗ · F(y) + λk+1F(uk)

| F(h) |2 +λk+1
(8)

by using the convolution theorem for Fourier transform,
where F is the FFT operator and F(·)∗ denotes the com-
plex conjugate. The plus, multiplication, and division are
all component-wise operators.

For initialization, we set u0 to be zero (a black image).
Solving Eq.(6) yields a noisy image vk that also contains

useful high-frequency image structures. In the alternating
minimization process, the noise in vk is gradually reduced,
while the high-frequency image details are preserved.

The regularization parameter λk strikes a balance be-
tween the data fidelity and regularity. In practice, we find
that large λks often cause noisy results with ringing effects,
though they substantially reduce the noise variances. We
should choose a smaller λk which obtains an edge preserv-
ing image with more noise. Then, in the denoising step,
we propose a procedure that removes the leaked noise and
additional image artifacts.

For an image of size N×N at the k-th step, we compute
the parameters λk by:

λ0 =
N2σ2

∥ y − E(y) ∥22 −N2σ2

λk+1 = βλk (9)

where E(y) denotes the mean of y. From this equation, one
can see that the larger variance of image (∥ y − E(y) ∥22
−N2σ2) would obtain a smaller λ0, it can be preserving
the detail information, while the smaller variance of image
(a smooth image) which contains a few high-frequency in-
formation will not produce the strong ringing effects with
large λ0.

Parameter λ is automatically adapted in iterations start-
ing from a small value λ0, it is multiplied by β each time.
This scheme is effective to speed up convergence[12].

3.2. Dual domain denoising

To suppress the amplified noise and artifacts introduced
by Eq.(6), we plan to apply the dual domain transform to de-
noise the estimated image vk (DDFs(vk)). We observe that
spatial domain methods excel at denoising high-contrast im-
ages while transform domain methods excel at low-contrast
images. We therefore separate the image into two layers,
and denoise them separately. The rolling guidance filter is
appropriate for this decomposition. The high-contrast layer
is the rolling guidance filtered image, and the low-contrast
layer (texture and noise) is the residual image. Since the
high-contrast image is already denoised, it only remains to
denoise the low-contrast image in the transform domain us-
ing shrinkage.

In the first step, we calculate the denoised high-contrast
value using a rolling guidance filter. We use rolling guid-
ance filter to filter the noisy image vk, and obtain a filtered
image vkr .

In the second step, we prepare for the energy shrink-
age in the transform domain by extracting the low contrast
images and performing the STFT. The STFT is a discrete
Fourier transform (DFT) preceded by multiplication of the
signal with a window function to avoid boundary artifacts.
In this work, we choose the spatial Gaussian of the bilateral
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kernel as the window function. The low contrast images
can be obtained by subtracting the rolling guidance filtered
value vkr from vk. We define the coefficients V T k

p and ST k
p

for frequencies m in the Fourier window Mp with the same
size as |N (p)|.

V T k
p (m) =

∑
q∈N (p)

(vkr (q)− vkr (p))kp,qe
− i2πm·(q−p)

2r+1 (10)

ST k
p (m) =

∑
q∈N (p)

(vk(q)− vkr (p))kp,qe
− i2πm·(q−p)

2r+1 (11)

In the last step, we shrink the noisy short-time Fourier
coefficient ST k

p . We use shrinkage factor similar to the
range kernel of the Eq.(3). For the shrinkage factors Thk

p ,
we want to keep the signal and discard the noise, so we take
the reciprocal of the normalized Euclidean distance.

Under the assumption that the kernel kp,q is noise-free,
the variance σ2

k,p of the noisy Fourier coefficients is

σ2
k,p = σ2

k

∑
q∈N (p)

k2p,q. (12)

where σ2
k is the variance estimated from vk. The noise vari-

ance σ2
k is an important parameter for dual domain filters,

therefore we use the approach proposed in [30] to update
the estimation of noise variance in the denoising step.

We define Thk
p(m) = e

−
ησ2

k,p

|V Tk
p (m)|2 , where η plays a sim-

ilar role as the bilateral range parameter σr. And the shrunk
coefficients can be written as:

S̃T
k

p(m) = Thk
p(m)ST k

p (m) (13)

The inverse DFT over the frequency domain S̃T
k

p is

s̃t
k

p(q) =
1

|M(p)|
∑

m∈M(p)

S̃T
k

p(m)e
i2πm·(q−p)

2r+1 (14)

As we are only interested in the value at the center pixel
p, the low-contrast value is simply the mean of all shrunk
coefficients, we denote this value by stk(p):

stk(p) = s̃t
k

p(p) =
1

|M(p)|
∑

m∈M(p)

S̃T
k

p(m) (15)

Then, the original image can be approximated by the
sum of the two denoised layers as:

ũk = vkr + stk (16)

The resulting image stk usually contains a special form
of distortions and introduces additional visual artifacts.

Since bilateral filter can effectively remove the edges of
small magnitudes caused by these artifacts, we utilize it to
suppress visual artifacts and leave the edges and texture of
large magnitudes intact:

uk = JBF (vk, ũk, σs, σr) (17)

We summarize the main steps of the proposed image de-
convolution algorithm as shown in Algorithm 2

——————————————————-
Algorithm 2 : Image Deconvolution via Dual Domain

Filters
————————————————————–
1. Initialization: u0 = 0
2. Iterate on k = 0, 1, ..., iter − 1

2.1 Iterative regularization: obtain vk+1 using Eq.(8).
2.2 Image denoising via dual domain filters:

2.2.1 Rolling guidance filtering of vk+1 to obtain a
high-contrast image vk+1

r .
2.2.2 Shrinkage the residual image vk+1 − vk+1

r in
the short-time Fourier domain to extract the low contrast
image stk. ◃ Eq.(10)-Eq.(15)

2.2.3 Sum of the two denoised layers: vk+1
r and stk

to obtain ũk+1. ◃ Eq.(16)
2.2.4 Joint bilateral filtering of vk+1 using ũk+1

as guidance image to obtain an improved denoised image
uk+1. ◃ Eq.(17)

3. Output : uiter.
——————————————————-

4. Simulations
In this section,experiments are conducted to verify the

performance of the proposed algorithm on image deconvo-
lution.

In rolling guidance filter, we have found that the ISNR
values generally reach the peak value when σs in [5,9]. We
fixed this parameter value to 7 in our experiments. For the
parameter σr, we found that a large value of it would result
in a smooth image whereas a too small value would lead
to inadequate denoising. The choice of this parameter is
largely heuristic in nature. We have empirically found that
σr in [0.03, 0.07] generally yields good results and have ac-
cordingly used σr = 0.05 for the results in the experiments.

In STFT, for the shrinkage parameter η, we found that a
large value of it would result in a textureless image whereas
a too small value would lead to inadequate denoising. We
have found that the ISNR values generally reach the peak
value when shrinkage parameter in [0.25, 0.6]. We fixed
this parameter value to 0.4 in our experiments. In theory, the
Fourier coefficients ST k

p in Eq.(11)are conjugate symmet-

ric and Thk
pis symmetric which makes S̃T

k

p real. In prac-

tice, due to numerical errors, S̃T
k

p may become complex, in
which case we drop the imaginary part.
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We set the iteration number nitr = 2 in the rolling guid-
ance filter, and iter = 6 in Algorithm 2. The choice of
β Eq.(9) is taken as 1.5 which well balances efficiency and
performance.

All the experiments are performed in Matlab 7.11.0 on a
Pentium(R) Dual-Core CPU E5300 processor (2.60 GHz),
2.0G memory, and Windows Xp operating system. To give
an estimate of the complexity of the proposed algorithm,
we mention that, on a 256× 256 image, one iteration takes
about 52 seconds, and about 6 iterations are typically suffi-
cient.

The bottleneck is the transition from spatial to frequency
domain. If this transition was a pure Gabor transform,
we could exploit sliding window techniques to update the
Fourier coefficients incrementally. However, since the sig-
nal is multiplied by an arbitrary range kernel, we need a
per-pixel FFT with complexity O(N2 logN). Thus, we
implemented a C version using the FFTW library, which
shortened the time to 31 seconds. Since the pixels are mutu-
ally independent, we achieved linear scalability using dual
quad-core CPUs, reducing the time to 3.8 seconds.

In our set, six typical deblurring experiments (as shown
in Table 1) with respect to four standard gray images, which
have been presented in [7] and [5] are provided.

Scenario PSF σ2

1 1/(1 + i2 + j2), for i, j = −7, ..., 7 2
2 1/(1 + i2 + j2), for i, j = −7, ..., 7 8
3 9× 9 uniform kernel (boxcar) ≈ 0.3
4 [1 4 6 4 1]T [1 4 6 4 1]/256 49
5 25× 25 Gaussian with std = 1.6 4
6 25× 25 Gaussian with std = 0.4 64

Table 1. Experiment settings with different blur kernels and differ-
ent values of noise variance σ2 for pixel values in [0,255].

To evaluate the quality of there constructed image, the
improvement in signal-to-noise-ratio (ISNR) is calculated
to evaluate the visual quality. The ISNR is defined as

ISNR = 10 log10(
∥ uorig − y ∥22
∥ uorig − û ∥22

), (18)

where û is the corresponding estimated image.
The proposed dual domain filters deconvolution method

is compared with five recently developed deconvolution
approaches, i.e., ForWaRD [2], FTVd [12], L0-ABS [7],
SURE-LET [8], PIEIAS[11] and BM3DDEB [5] . We use
the default parameters suggested by the authors for the com-
peting algorithms.

The ISNR results on four gray test images in the set of
experiments are reported in Table 2. From Table 2, we can
see that the proposed algorithm achieves highly competi-
tive performance compared with other leading deblurring

Figure 3. Visual quality comparison of image deblurring on gray
image Cameraman (256×256). From left to right and top
to bottom: original image, noisy and blurred image (scenario
4), the deblurred image by L0-ABS (ISNR=2.93dB), SURE-LET
(ISNR=2.67dB), BM3DDEB (ISNR = 3.34dB ), and our method
(ISNR = 3.57dB).

methods. The highest ISNR results in the experiments are
labeled in bold.

L0-ABS and SURE-LET produce slightly higher aver-
age ISNR than ForWaRD and FTVd, while our method out-
performs L0-ABS by 1.2 dB for the scenario 3, outperforms
PIEIAS by 0.79 dB for scenario 2, and outperforms SURE-
LET by 2.6 dB for scenario 6, respectively. One can ob-
serve that BM3DDEB and our method produce very simi-
lar results, and obtain significant ISNR improvements over
other competing methods. In average, proposed method
outperforms BM3DDEB by (0.14dB, 0.40dB, 0.89dB, 0.25
dB, 0.23dB, and -0.083 dB) for the six settings, respec-
tively. The visual comparisons of the deblurring methods
are shown in Figures 3∼6, from which one can observe that
the our model produces cleaner and sharper image edges
and textures than other competing methods.

In particular, for image Barbara (512 × 512) with rich
textures, the proposed method outperforms current state-of-
the-art methods BM3DDEB more than 1 dB in the scenario
2 with more textures and clearer edges than other competing
methods, as shown in Figure 6.

Since the rolling guidance filter is highly nonlinear., it is
difficult to give its theoretical proof for global convergence
of proposed method. Here, we only provide empirical evi-
dence to illustrate the stability of the proposed deconvolu-
tion method. Figure 7 plots the evolutions of ISNR versus
iteration numbers for test images in the cases of scenario
3 (PSF = 9 × 9 uniform kernel, BSNR = 40) and sce-
nario 4 (PSF = [1 4 6 4 1]T [1 4 6 4 1], σ = 7) for four
test images. It is observed that with the growth of iteration
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Scenario Scenario
1 2 3 4 5 6 1 2 3 4 5 6

Method Cameraman (256× 256) House (256× 256)
BSNR 31.87 25.85 40.00 18.53 29.19 17.76 29.16 23.14 40.00 15.99 26.61 15.15

ForWaRD 6.76 5.08 7.40 2.40 3.14 3.92 7.35 6.03 9.56 3.19 3.85 5.52
FTVd 7.41 5.24 8.56 2.57 3.36 1.37 7.98 6.57 10.39 4.49 4.72 2.44

L0-Abs 7.70 5.55 9.10 2.93 3.49 1.77 8.40 7.12 11.06 4.55 4.80 2.15
SURE-LET 7.54 5.22 7.84 2.67 3.27 2.45 8.71 6.90 10.72 4.35 4.26 4.38

PIEIAS 8.10 6.14 9.23 3.41 3.49 4.65 8.94 7.76 11.22 4.85 4.94 7.07
BM3DDEB 8.19 6.40 8.34 3.34 3.73 4.70 9.32 8.14 10.85 5.13 4.56 7.21
Our Method 8.26 6.29 9.42 3.57 3.78 4.61 9.48 8.30 12.17 5.32 5.20 6.94

Scenario Scenario
1 2 3 4 5 6 1 2 3 4 5 6

Method Lena (512× 512) Barbara (512× 512)
BSNR 29.89 23.87 40.00 16.47 27.18 15.52 30.81 24.79 40.00 17.35 28.07 16.59

ForWaRD 6.05 4.90 6.97 2.93 3.50 5.42 3.69 1.87 4.02 0.94 0.98 3.15
FTVd 6.36 4.98 7.87 3.52 3.61 2.79 3.10 1.33 3.49 0.63 0.75 0.59

L0-Abs 6.66 5.71 7.79 4.09 4.22 1.93 3.51 1.53 3.98 0.73 0.81 1.17
SURE-LET 7.71 5.88 7.96 4.42 4.25 4.37 4.35 2.24 6.02 1.13 1.06 1.20

PIEIAS 7.68 6.22 8.16 4.69 4.39 5.85 6.72 3.30 4.48 1.57 0.98 5.01
BM3DDEB 7.95 6.53 8.06 4.81 4.37 6.40 7.80 3.94 5.86 1.90 1.28 5.80
Our Method 7.96 6.82 9.04 5.04 4.55 6.67 8.10 5.15 6.07 2.26 1.33 5.56

Table 2. Comparison of the output ISNR(dB) of the proposed deblurring algorithm. BSNR(Blurred Signal-to-noise ratio) is defined as
BSNR = 10 log10 V ar(y)/N2σ2, where V ar() is the variance.

Figure 4. Visual quality comparison of image deblurring on gray
image House (256×256). From left to right and top to bot-
tom: original image, noisy and blurred image (scenario 5), the de-
blurred image by FTVd (ISNR=4.72dB), PIEIAS (ISNR=4.94dB),
BM3DDEB (ISNR = 4.56dB ), and our method (ISNR = 5.20dB).

number, all the ISNR curves increase monotonically and ul-
timately become flat and stable, exhibiting good stability of
the proposed model. One also can observe that 6 iterations
(iter = 6) are typically sufficient.

Figure 5. Details of the image deconvolution experiment on image
Lena (512×512). From left to right and top to bottom: Crop from
original image, noisy and blurred image (scenario 3), L0-ABS
(ISNR=7.79dB), the deblurred image by PIEIAS (ISNR=8.16dB),
BM3DDEB (ISNR = 8.06dB ), and our method (ISNR = 9.04dB).

5. Conclusion

We have presented a new deconvolution method that
uses a combination of the rolling guidance filter in the spa-
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Figure 6. Details of the image deconvolution experiment on image
Barbara (512×512). From left to right and top to bottom: origi-
nal image, noisy and blurred image (scenario 2), the deblurred im-
age by ForWaRD (ISNR=1.87dB), SURE-LET (ISNR=2.24dB),
BM3DDEB (ISNR = 3.94dB ), and our method (ISNR = 5.15dB).
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Figure 7. Change of the ISNR with iterations for the different se-
tups of the proposed algorithm. Left: deblurring of Cameraman
and House image, scenario 3; Right: deblurring of Lena and
Barbara image, scenario 4.

tial domain and short-time Fourier transform (STFT) based
shrinkage in the frequency domain. Rolling guidance fil-
ter has been proved to remove small-scale structures while
preserving other content, parallel in terms of importance
to previous edge-preserving filter, but it can not preserve
low-contrast detail like textures. STFT shrinkage on the
other hand results in good detail preservation, but it suffers
from ringing artifacts near steep edges. We first integrate
these two filters into the deconvolution problem to propose
an efficient iterative algorithm, which leads to highquality
results. Through twenty-four standard simulation experi-
ments, it outperforms five existing state-of-the-art deconvo-
lution algorithms.
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