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Abstract

Person re-identification has been widely studied due to
its importance in surveillance and forensics application-
s. In practice, gallery images are high-resolution (HR)
while probe images are usually low-resolution (LR) in the i-
dentification scenarios with large variation of illumination,
weather or quality of cameras. Person re-identification in
this kind of scenarios, which we call super-resolution (S-
R) person re-identification, has not been well studied. In
this paper, we propose a semi-coupled low-rank discrimi-
nant dictionary learning (SLD2L) approach for SR person
re-identification. For the given training image set which
consists of HR gallery and LR probe images, we aim to
convert the features of LR images into discriminating HR
features. Specifically, our approach learns a pair of HR
and LR dictionaries and a mapping from the features of HR
gallery images and LR probe images. To ensure that the
converted features using the learned dictionaries and map-
ping have favorable discriminative capability, we design a
discriminant term which requires the converted HR features
of LR probe images should be close to the features of HR
gallery images from the same person, but far away from
the features of HR gallery images from different persons.
In addition, we apply low-rank regularization in dictionary
learning procedure such that the learned dictionaries can
well characterize intrinsic feature space of HR and LR im-
ages. Experimental results on public datasets demonstrate
the effectiveness of SLD2L.

1. Introduction
Person re-identification is a fundamental task in auto-

mated video surveillance and has been widely researched
in recent years. Given an image/video of a person taken
from one camera, re-identification is the process of identi-
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Figure 1. Super-resolution person re-identification problem.

fying the person from images/videos taken from a different
camera [2]. Many methods have been presented for person
re-identification [34, 33, 13, 15, 17, 21]. These methods
can be roughly classified into two categories: (1) Methods
on feature representation [1, 6, 23, 31]: they focus on seek-
ing a distinct and robust feature representation for matching.
The Literature [9] seeks a more distinctive representation
by exploiting the class information to overcome the large
intra-class appearance variations. Literature [24] is present-
ed to solve the feature selection problem. Literature [22]
is proposed to learn the most discriminative attribute that
characterizes a particular individual, in which saliency de-
tection is utilized to drive automatically the PTZ camera to
focus on certain parts of a human body. (2) Methods on
distance learning [10, 14, 19, 35, 36]: they focus on seek-
ing an optimal distance metric for person re-identification.
In [10], Hirzer et al. learned a metric from pairs of samples
belonging to different cameras using discriminative Maha-
lanobis metric learning, which can be efficiently solved af-
ter some relaxations. In [14], a distance metric is learned
based on equivalence constraints from a statistical infer-
ence perspective. In [36], Zheng et al. learned a Maha-
lanobis distance metric with a probabilistic relative distance
comparison (RDC) method. Recently, dictionary learning



technique has been introduced into person re-identification.
In [17], two coupled dictionaries are learned to bridge the
human appearance variations across cameras.

The above methods have relieved some difficulties in
person re-identification to some extent. In practice, the
captured pedestrian image by cameras usually suffers from
low resolution due to insufficient illumination, bad weath-
er, poor quality of camera devices, or even some com-
plex combinations of these factors. Therefore, person
re-identification usually should be done between low-
resolution and high-resolution pedestrian images. One re-
identification scenario is that gallery images are captured
with enough illumination at noon while probe images are
captured with poor illumination even at night. Another sce-
nario is that gallery images are captured with normal weath-
er while the probe images are captured in rain or snow. Un-
der this kind of scenarios, the captured gallery images are
high-resolution (HR) and probe images are low-resolution
(LR). We call re-identification under this kind of scenarios
the super-resolution (SR) person re-identification. In most
cases, person re-identification depends on the visual appear-
ance feature of pedestrian images. However, since low res-
olution will result in the loss of visual appearance feature,
existing person re-identification methods can not well deal
with the problem of re-identification between HR and LR
pedestrian images. Therefore, it is necessary and mean-
ingful to investigate SR person re-identification. Figure 1
illustrates the SR person re-identification problem.

To improve the quality of LR images, many SR restora-
tion methods [4, 8, 27] have been presented in recen-
t years. Dictionary learning (DL) is an effective fea-
ture learning technique in the field of machine learning
[11, 30, 37]. Nowadays, some DL based SR restoration
methods have been developed, and achieved desirable per-
formance. The coupled dictionary learning model for image
super-resolution is proposed in [29, 28] with an assumption
that there exist coupled dictionaries of HR and LR images,
over which each pair of HR and LR patches have the same
sparse representations. The semi-coupled dictionary learn-
ing model [25] relaxes the strong assumption of coupled
dictionary learning model. And it learns a mapping matrix
to capture the relationship of the sparse representations be-
tween HR and LR spaces, which brings more flexibility to
characterize image structures. However, the above methods
are designed for improving human visual perception only,
rather than machine perception [32], thus there is no guar-
antee of identification improvements.

1.1. Motivation

Super-resolution (SR) person re-identification is an im-
portant application in practice; however, it has not been well
studied. Existing DL based SR restoration methods can im-
prove the quality of LR images by uncovering the relation-

ships between LR and HR images. However, what these
methods uncover is the relationship between the features
of LR and HR images that are good for human perception,
rather than identification.

Motivated by SR restoration works, we intend to uncover
the relationship between the features of LR and HR images
from the side of person re-identification. The semi-coupled
DL technique is introduced to address the SR person re-
identification problem. Yet we should address the following
two specific problems: (1) Semi-coupled DL is designed for
SR restoration, rather than for re-identification. If we direct-
ly apply semi-coupled DL for SR person re-identification,
the learned dictionary pair and mapping matrix would have
no desirable discriminability. (2) Since pedestrian images
usually contain noises, the dictionary pair learned by semi-
coupled DL directly cannot well characterize the intrinsic
feature spaces of LR and HR images.

1.2. Contribution

The main contributions of our work are summarized as
following three points:

(1) We are the first attempt to solve the SR person re-
identification problem, and propose a semi-coupled low-
rank discriminant dictionary learning (SLD2L) approach.
SLD2L learns a pair of HR and LR dictionaries and a map-
ping function from the features of HR and LR training im-
ages. With the learned dictionary pair and mapping func-
tion, the features of LR images can be converted into dis-
criminating HR features.

(2) To ensure that the converted features using the
learned dictionaries and mapping have favorable discrimi-
native capability, we design a discriminant term for semi-
coupled dictionary learning. The discriminant term can
make the converted HR features of LR probe images be
close to the features of HR gallery images from the same
person, but far away from the features of HR gallery im-
ages from different persons.

(3) To ensure that the learned dictionary pair can well
characterize the intrinsic feature spaces of LR and HR im-
ages, we introduce the low-rank regularization into semi-
coupled DL. So far, the low-rank regularization technique
has not been applied to semi-coupled DL in existing works.

2. Brief Review of Related Work
In this section, we briefly review the related coupled

or semi-coupled dictionary learning methods including SS-
CDL [17] and SCDL [25]. Then, discussion of the differ-
ence between our approach and related methods is given.

2.1. Semi-Supervised Coupled Dictionary Learning
(SSCDL) for Person Re-identification

Assume that x = {x1, x2, · · · , xn} and
y = {y1, y2, · · · , ym} are two sets of training data



from two different cameras. To bridge human appearances
across cameras, SSCDL [17] employs labeled pairs of
persons as well as unlabeled persons from the gallery
and probe cameras to jointly learn a coupled dictionary
pair. Specifically, SSCDL learns two dictionaries Dx

and Dy such that the sparse representation α(xi) in
terms of Dx should be the same as α(yi) in terms of
Dy . The objective function of SSCDL is as follows:
Q(Dx,Dy,α)=Elabeled(Dx,Dy,α

(s))+Eunlabeled(Dx,α
(x))

+Eunlabeled(Dy, α
(y))

where α(s) is the shared coefficient matrix for labeled
image pairs and α(x) and α(y) are the coefficient matrices
for unlabeled images from two cameras, respectively.

2.2. Semi-Coupled Dictionary Learning (SCDL)

The SCDL [25] model is designed for image super-
resolution and photo-sketch synthesis. With the assumption
that there exists a dictionary pair over which the repre-
sentations of two styles have a stable mapping, SCDL
simultaneously learns a pair of dictionaries and a mapping
function. The objective function of SCDL is as follows:

min
Dx,Dy,W

‖X−DxΛx‖2F +‖Y −DyΛy‖2F +γ ‖Λy−WΛx‖2F
+ λx‖Λx‖1 + λy‖Λy‖1 + λW ‖W‖2F

s.t. ‖dx,i‖l2 ≤ 1, ‖dy,i‖l2 ≤ 1, ∀i
where X and Y represent the training datasets formed
by the image patch pairs of two different resolutions (or
styles). γ, λx, λy, λW are regularization parameters to
balance the terms in the objective function. dx,i, dy,i are
the atoms of Dx and Dy , respectively. Λx and Λy are the
coding coefficients. W is the mapping matrix.

2.3. Comparison with Related Works

Compared with SSCDL: SSCDL is designed for per-
son re-identification. And it is based on a strong assump-
tion that there exists a coupled dictionary pair between two
cameras, over which images of the same person from dif-
ferent cameras must have the same sparse representation.
While our approach is designed for person re-identification
between HR and LR pedestrian images. And our approach
aims to learn a pair of HR and LR dictionaries, over which
the representations of each pair of HR and LR patches have
a mapping.

Compared with SCDL: SCDL is designed for image
super-resolution and photo-sketch synthesis, rather than i-
dentification. The learned dictionaries and mapping have
no favorable discriminative capability. While our approach
is designed for SR person re-identification. We design a
discriminant term to enhance the discriminative capability
of the learned dictionary pair and mappings. In addition,
we introduce low-rank matrix recovery to semi-coupled DL
to better characterize intrinsic feature spaces of HR and LR
images.

3. Semi-coupled Low-rank Discriminant Dic-
tionary Learning (SLD2L)

In this section, we first describe the problem formulation,
and then provide the optimization of the proposed approach.

3.1. Problem Formulation

Assume that CA is a HR pedestrian image set from cam-
era A and CB is a LR pedestrian image set from camera
B, we aim to learn a pair of HR and LR dictionaries and a
mapping function between features of HR and LR images,
such that the features of LR images in CB can be converted
into discriminating HR features.

To this end, we firstly generate the LR version of CA

by performing down-sampling and smoothing operations,
which has the same resolution as CB and is denoted by
C ′A. By this way, the underlying relationship between HR
and LR feature spaces can be revealed. Then we exploit
semi-coupled DL to learn a pair of HR and LR dictionaries
and a mapping matrix between the corresponding features
of CA and C ′A. Since the dictionaries and mapping matrix
learned by semi-coupled DL directly don’t have discrimi-
native capability, we require that HR features of images in
CB , which are reconstructed using the learned dictionary
pair and mapping matrix, should be close to the features of
images from the same person in CA, but far away from the
features of images from different persons in CA.

In practice, low resolution has different influences on d-
ifferent patches, e.g., patches with pure color suffer little
influence, while patches with complex texture suffer more
influence. Therefore, learning a common mapping function
is not enough to catch all the relationships. Intuitively, we
can divide images into patches and group patches into sev-
eral clusters, and then a pair of HR and LR sub-dictionaries
and a more stable mapping function can be learned for each
cluster. In this paper we group patches in C ′A and CB us-
ing K-means algorithm [7] according to the similarity of
patch features. Then, the patches in CA are grouped ac-
cording to clustering results of the corresponding patches
in C ′A. We require that each cluster-specific sub-dictionary
has good representation ability for the patches from the
associated cluster but poor representation ability for oth-
er clusters. Denote by Di

H and Di
L the HR and LR sub-

dictionaries of the ith cluster, respectively. And Vi denotes
the mapping of the ith cluster. By separately combining HR
and LR sub-dictionaries, we can obtain the structured HR
and LR dictionaries, namelyDH= [D1

H ,D
2
H , · · · , Dc

H ] and
DL= [D1

L,D
2
L, · · · , Dc

L], where c is the number of clusters.
To ensure that the learned sub-dictionary pairs can well

characterize the intrinsic feature spaces of HR and LR im-
ages, the noises should be separated from patches in the
learning process. Considering that patches from the same
cluster are linearly correlated, we can employ low-rank



Figure 2. The flowchart of SLD2L.

matrix recovery technique to separate noises from patches
[18, 20, 26]. Figure 2 illustrates the overall flow of SLD2L.

LetX ,X ′ and Y be the patch sets ofCA, C ′AandCB , re-
spectively. Xi, X ′i and Yi separately represent the ith clus-
ters of X , X ′ and Y , and xi, x′i and yi separately represent
the ith patch in X , X ′ and Y . Denote by ai, Ai and A the
coding coefficients of xi, Xi and X over DH , respectively.
a′i, A

′
i and A′ denote the coding coefficients of x′i, X

′
i and

X ′ overDL, respectively. bi,Bi andB separately represent
the coding coefficients of yi, Yi and Y over DL. Denote by
Aj

i the coding coefficient of Xi over Dj
H . Aj′

i and Bj
i are

the coding coefficients of X ′i and Yi over Dj
L, respectively.

Let V = {V1, V2, · · · , Vc} be the mappings of all clusters.
The objective function of our approach is designed as

follows:
min

DH ,DL,V
Φ(DH , DL, V, A,A

′, B) (1)

s.t. Xi = DHAi + Ei, Xi = Di
HA

i
i + Ei,

X ′i = DLA
′
i + Ej , X

′
i = Di

LA
i′
i + Ej ,

Yi =DLBi+Ek, Yi =Di
LB

i
i +Ek, i=1,· · ·, c

where

Φ(DH , DL, V, A,A
′, B) =

c∑
i=1

{Emapping(Vi,Ai,A
′
i)+

Erepresent(D
i
H ,D

i
L,Ai,A

′
i,Bi)+Elowrank(Di

H ,D
i
L)+

Ereg(Ai,A
′
i,Bi,Vi,Ei,Ej ,Ek)}+Ediscriminant(DH,A,B,V)

The constraints mean that the learned dictionaries and
sub-dictionaries can well characterize the intrinsic fea-
tures of training samples. Ei, Ej and Ek represent the
separated noises. Emapping(Vi, Ai, A

′
i) = ‖Ai−ViA′i‖2F

is the mapping fidelity term to represent the mapping
error between the coding coefficients of HR and L-
R image features. Erepresent(D

i
H , D

i
L, Ai, A

′
i, Bi) =

λ1
c∑

j=1,j6=i

∥∥∥Di
HA

j
i

∥∥∥2
F
+λ2

c∑
j=1,j6=i

∥∥∥Di
LA

j
i

′∥∥∥2
F
+λ3

c∑
j=1,j6=i

∥∥∥Di
LB

j
i

∥∥∥2
F

is the sub-dictionary representation capability term to
make each sub-dictionary have poor representation abili-
ty for other clusters. Elowrank(Di

H , D
i
L) = γ1

∥∥Di
H

∥∥
∗+

γ2
∥∥Di

L

∥∥
∗ is the low-rank regularization term to en-

sure the learned HR and LR sub-dictionaries being low-
rank, where ‖.‖∗ denotes the nuclear norm of a ma-
trix. Ereg(Ai, A

′
i, Bi, Vi, Ei, Ej , Ek) = ‖Ai‖1+‖A′i‖1+

‖Bi‖1 + β1‖Ei‖1 + β2‖Ej‖1 + β3‖Ek‖1 + λ4 ‖Vi‖2F is
the regularization term to regularize the coding coeffi-
cients and separated noises as well as the mapping ma-
trix. Here, λ1, λ2, λ3, λ4, γ1, γ2, β1, β2 and β3
are balancing factors. Ediscriminant(DH , A,B, V ) =

1
|S|

∑
(i,j)∈S

∥∥∥ziA−zjB∥∥∥2
2
− 1
|D|

∑
(i,j)∈D

∥∥∥ziA−zjB∥∥∥2
2

is a discrim-

inant term to ensure that the reconstructed features have
good discriminability. S and D are the collections of pos-
itive and negative pairs, respectively. |·| represents the size
of a collection. ziA = {DHa

i
1;DHa

i
2; · · · ;DHa

i
n} rep-

resents the reconstructed feature of the ith image in CA,
ziB = {DHVv(1)b

i
1;DHVv(2)b

i
2; · · · ;DHVv(n)b

i
n} represents

the converted HR feature of the ith image in CB . n is the
number of patches per image, and v(i) represents the cluster
index of ith patch.

3.2. The Optimization of SLD2L

There is no theoretical guarantee that our objective func-
tion in Formula 1 is jointly convex to (DH , DL, V ); how-
ever, it is convex with respect to each of DH , DL, V when
the others are fixed. To tackle the energy-minimization of
our objective function, we divide the objective function in
Formula 1 into three sub-problems: (1) updating coding co-
efficients by fixing DH , DL and V ; (2) updating DH and
DL by fixing A, A′, B and V ; (3) updating V by fixing
DH , DL and coding coefficients.

(1) Updating the representation coefficients. Here,
we update representation coefficients by fixingDH , DL and
V . First, we should initialize the dictionary pair and the
mapping function. The PCA basis is employed to initialize
each sub-dictionary. Similar to [25], the mapping function
of each cluster is simply initialized as the identity matrix.

The sparse coding coefficients ai , a′i and bi can be cal-



culated as follows:

min
ai,ei
‖ai‖1 + β1‖ei‖1 +

∥∥ai − Vv(i)a
′
i

∥∥2
F

+ d(ai)

s.t. xi = DHai + ei

(2)

min
a′

i,ej
‖a′i‖1 + β2‖ej‖1 +

∥∥ai − Vv(i)a′i∥∥2F
s.t. x′i = DLa

′
i + ej

(3)

min
bi,ek
‖bi‖1 + β3‖ek‖1 + d(bi)

s.t. yi = DLbi + ek
(4)

where d(ai) and d(bi) represent the discriminant terms as-
sociated with ai and bi in Ediscriminant(DH , A,B, V ), re-
spectively.

We first convert Formula 2 to the following equivalent
problem:

min
ai,ei
‖Z‖1 + β‖J‖1 + l(ai)

s.t. xi = DHai + ei, Z = ai, J = ei,
(5)

where l(ai) =
∥∥ai − Vv(i)a′i∥∥2F + d(ai). Formula 5 can be

addressed by solving the following Augmented Lagrange
Multiplier problem [16]:

min
ai,ei
‖Z‖1+β‖J‖1+l(ai)+tr[T t

1(xi−DHai−ei)]

+ tr[T t
2(ai − Z)] + tr[T t

3(ei − J)]+
µ

2
(‖xi −DHai − ei‖2F + ‖ai − Z‖2F + ‖ei − J‖2F )

(6)

where T1, T2 and T3 are Lagrange multipliers and µ is a
positive penalty parameter. T1, T2, T3 and µ can be obtained
using the similar means as [16, 18]. Formulas 3 and 4 can
be solved in the same way as Formula 2.

(2) Updating dictionary pair. Here, we update Di
H and

Di
L one by one by fixingDj

H ,Dj
L,A,A′,B and V , j 6= i. If

Di
H is updated, the corresponding coefficientsAi

i for coding
Xi should be updated to meet the condition Xi = Di

HA
i
i +

Ei. Similarly, Ai′

i and Bi
i should also be updated to meet

the conditions X ′i = Di
LA

i′

i + Ej and Yi = Di
LB

i
i + Ek,

respectively. So, Ai
i, A

i′

i and Bi
i are updated in this step.

Let Ui = [X ′i, Yi], W
i
i = [Ai′

i , B
i
i ], W

j
i = [Aj′

i , B
j
i ], E =

[Ej , Ek]. Di
H and Di

L can be updated as follows:

min
Di
H

∥∥∥Ai
i

∥∥∥
1
+γ1

∥∥∥Di
H

∥∥∥
∗
+β1‖Ei‖1+λ1

c∑
j=1,j6=i

∥∥∥Di
HA

j
i

∥∥∥2
F

+d(Di
H)

s.t. Xi = Di
HA

i
i + Ei,

∥∥∥djH∥∥∥2
2
≤ 1, j = 1, 2, · · · ,K

(7)

min
Di

L

∥∥∥W i
i

∥∥∥
1
+γ2

∥∥∥Di
L

∥∥∥
∗
+β2‖E‖1+λ2

c∑
j=1,j6=i

∥∥∥Di
LW

j
i

∥∥∥2
F

s.t. Ui = Di
LW

i
i + E,

∥∥∥djL∥∥∥2
2
≤ 1, j = 1, 2, · · · ,K

(8)

where djH and djL are dictionary atoms, K is the num-
ber of atoms in each sub-dictionary. d(Di

H) rep-
resents the discriminant term associated with Di

H in
Ediscriminant(DH , A,B, V ):

d(Di
H)=

1

|S|
∑
(p,q)∈S

n∑
k=1

‖fi(p,q,k)‖2−
1

|D|
∑

(p,q)∈D

n∑
k=1

‖fi(p,q,k)‖2

where

fi(p,q,k)=Di
H(aip,k−v(k)biq,k)+

c∑
j=1,j6=i

Dj
H(ajp,k−v(k)bjq,k).

aip,k and bip,k are representation coefficients of the kth patch
in the pth and qth images, respectively. n is the number of
patches per image.

We convert Formula 7 to the following equivalent prob-
lem:

min
Di

H ,Ai
i,Ei

‖Z‖1+γ1‖J‖∗ + β1‖Ei‖1 + λl(Di
H)

s.t. Xi = Di
HA

i
i + Ei,J = Di

H , Z = Ai
i,∥∥∥djH∥∥∥2

2
≤ 1, j = 1, 2, · · · ,K

(9)

where l(Di
H) = λ1

C∑
j=1,j 6=i

∥∥∥Di
HA

j
i

∥∥∥2
F

+ d(DH). Formu-

la 9 can be addressed by solving the following Augmented
Lagrange Multiplier problem:

min
Di

H,Ai
i,Ei

‖Z‖1+γ1‖J‖∗+β‖Ei‖1+λl(Di
H)+tr[T t

1(Di
H−J)]

+tr[T t
2(Ai

i − Z)] + tr[T t
3(Xi −Di

HA
i
i − Ei)]

+
µ

2
(
∥∥Di

H−J
∥∥2
F

+
∥∥Ai

i−Z
∥∥2
F

+
∥∥Xi−Di

HA
i
i−Ei

∥∥2
F

)

(10)

where T1, T2 and T3 are Lagrange multipliers and µ is a
positive penalty parameter. Formula 8 can be solved in the
same way as Formula 7.

(3) Updating mapping function. By fixing Di
H , Di

L,
A, A′, B and Vj , j 6= i, Vi can be updated as follows:

min
Vi

‖Ai − ViA′i‖
2
F + λ4 ‖Vi‖2F + d(Vi) (11)

where d(Vi) represents the discriminant term associated
with Vi in Ediscriminant(DH , A,B, V ). Formula 11 is a
ridge regression problem and the solution can be analytical-
ly derived as:

Vi=
(
Ai

xA
it
y − d′(Vi)

)
(Ai

yA
it
y + λ4I)−1

where d′(Vi) is the derivative of d(Vi) with respect to Vi. I
is an identity matrix. The optimization of our approach is
summarized as Algorithm 1.



Algorithm 1 The optimization of SLD2L

Input: Data X , X ′ and Y
Output: Dictionaries DH and DL, Mapping V
Initialize: Dictionaries DH and DL, Mapping V
while j < m (max iteration number) do

1. Fix DH , DL and V , and update A, A′ and B according to
Formulas (2), (3) and (4), respectively.

2. Fix A, A′, B and V , and update DH , DL according to
Formulas (7) and (8), respectively.

3. Fix DH , DL, A, A′ and B, and update V according to
Formula (11).

4. Break if the value of Φ(DH , DL, V, A,A
′, B) in adjacent

iterations are close enough.
end while

4. Super-Resolution Person Re-identification
with Learned Dictionaries and Mappings

This section elaborates on the SR person re-identification
with the learned DH , DL and {V1, V2, · · · , Vc}. Assume
that G = {g1, g2, · · · , gm} is a HR gallery set and p is a
probe image, the process of re-identifying p in G can be
described as follows:

(1) Converting feature of LR probe image into HR
feature. Firstly, we divide p into n patches. Denote by
yi the feature of ith patch. We compute the representation
coefficient of ith patch over DL, namely ai, as:

min
ai,ei
‖ai‖1 + β‖ei‖1 s.t. yi = DLai + ei

where ei denotes the noise. Then, the cluster index j of ith

patch can be computed as follows:

min
j

∥∥∥yi −Dj
La

j
i − ei

∥∥∥2
F
, j = 1, 2, · · · , c

With the corresponding mapping of the cluster j and DH ,
yi can be converted into HR feature as: yHi = DHVjai.
Finally, we concatenate the HR features of n patches as the
total HR feature of p.

(2) Computing reconstructed features of gallery im-
ages. For the ith gallery image gi, we divide gi into n patch-
es. Denote by {x1, x2, · · · , xn} the features of n patch-
es. Then we compute the representation coefficient of each
patch over DH as:

min
ai,ei
‖ai‖1 + β‖ei‖1s.t. xi = DHai + ei

We take DHai as the new feature of xi. The feature of
gi can be obtained by concatenating the new features of n
patches.

(3) Re-identifying the probe image in gallery images.
Firstly, we compute the distance between p and gallery im-
ages using the obtained features. Then the nearest neighbor
classifier is employed for matching, and the gallery image
with the smallest distance is the true match of p.

5. Experimental Results
5.1. Compared Methods and Experimental Settings

To evaluate the effectiveness of the proposed approach,
we compare SLD2Lwith several state-of-the-art person re-
identification methods including SSCDL [17], RDC [36],
RPLM [10] and KISSME [14]. For methods RDC and
KISSME, we perform experiment with the code provided
by the original authors. For SSCDL and RPLM, the authors
don’t provide the code, so we re-implement these methods
by carefully tuning their parameters.

For each patch, we extract the HSV and LAB histograms
and LBP descriptor. All the feature descriptors are concate-
nated together to represent the patch. For fair comparison,
all compared methods use the same data and experimental
settings as those of our approach. We repeat each experi-
ment 10 times and compare the average results of all meth-
ods in the range of the first 50 ranks on the VIPeR and PRID
datasets, and the first 30 ranks on the i-LIDS dataset. To fur-
ther analyze the advantages of our approach, we compare
the matching rates with different down-sampling rates.

Parameter Settings. There are 9 parameters in our ap-
proach including λ1, λ2, λ3, λ4, γ1, γ2, β1, β2, β3. In ex-
periment, we find that the changes of λ1, λ2, λ3 and λ4
have little influence on identification results. Thus, we
set them as 1 for all the three datasets. γ1, γ2, β1, β2
and β3 are set by using the 5-fold cross validation
technique with training data. Specifically, they are
set as γ1 = 1, γ2 = 1.5, β1 = 0.1, β2 = 0.1, β3 = 0.1 for
VIPeR; γ1 = 1, γ2 = 1, β1 = 0.05, β2 = 0.1, β3 = 0.1 for
i-LIDS; and γ1 = 1, γ2 = 2, β1 = 0.15, β2 = 0.2, β3 = 0.2
for PRID. In addition, we experimentally set the number
of clusters as 64 (when it reaches 64, the performance of
SLD2L begins to stabilize), image patch size as 8 × 8 and
the number of atoms in each sub-dictionary as 48.

5.2. Evaluation on the VIPeR Dataset

The VIPeR dataset [5] contains 632 persons with each
having a pair of images captured from two outdoor cameras.
Similar to [12] , down-sampling and smoothing operations
are performed on all images from camera B to generate LR
images. 632 images from camera A and the generated 632
LR images from camera B form 632 image pairs. All image
pairs are randomly split into two sets (316 pairs for each
set) with one for training and the other for testing. We take
images from camera A in the testing set as the HR gallery
image set, and use the LR images from camera B in the
testing set to construct the LR probe set.

Figure 3 (a) and Table 1 report the matching results of
all compared methods at sampling rate of 1/8. We can see
that the matching results of all competing methods are sig-
nificantly lower than those provided in the original papers.
The reason is that low resolution results in the loss of use-
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Figure 3. Experimental results on the (a) VIPeR, (b) i-LIDS, (c) single-shot PRID and (d) multi-shot PRID datasets.

Table 1. Top r ranked matching rates (%) on the VIPeR dataset
with sampling rate of 1/8.

Method r=1 r=5 r=10 r=20 r=50
RDC 3.48 16.14 26.58 38.29 52.22
SSCDL 10.44 31.33 48.42 72.78 89.24
RPLM 7.59 26.58 42.72 64.24 82.43
KISSME 8.74 28.58 45.02 68.20 85.62
SLD2L 16.86 41.22 58.06 79.00 95.57

ful information and these methods cannot work well in this
scenario. The experimental results of SLD2L always out-
perform these related methods, which demonstrates the ef-
fectiveness of our approach for SR person re-identification.

5.3. Evaluation on the i-LIDS Dataset

The i-LIDS dataset [35] consists of 119 persons with
a total of 476 shots captured by multiple non-overlapping
cameras with an average of four images for each person.
We randomly select one image from each person as the HR
image set, and select another image from each person and
perform down-sampling and smoothing operations to gen-
erate LR image set. Thus 119 image pairs are formed. Then,
59 image pairs are randomly selected for training, and the
remaining 60 image pairs are used for testing. We further
select the HR images in the test set to constitute the gallery
set. All the remaining LR images in the test set are used to
constitute the LR probe set.

Table 2. Top r ranked matching rates (%) on the i-LIDS dataset
with sampling rate of 1/8.

Method r=1 r=5 r=10 r=20 r=30
RDC 5.00 21.67 31.67 50.67 58.33
SSCDL 25.00 53.67 70.33 84.00 90.00
RPLM 21.67 46.00 59.33 78.67 85.67
KISSME 16.67 37.33 55.33 75.33 84.00
SLD2L 33.33 65.00 80.00 90.33 96.67

Figure 3 (b) and Table 2 provide the matching results
of all compared methods at sampling rate of 1/8. It can
be seen that SLD2L constantly achieves the best result-
s. For matching rates at rank 1, SLD2L improves at least

8.33%(33.33%− 25.00%).

5.4. Evaluation on the PRID 2011 Dataset

The PRID 2011 dataset [9] consists of person images
recorded from two different cameras. Camera A contains
385 persons and camera B contains 749 persons, with 200
persons appearing in both views. Two scenarios are provid-
ed: single-shot and multi-shot. In the single-shot case, there
are two images per person (one image per camera view). In
the multi-shot case, there are multiple images per person (at
least 5 images per camera view). In this paper, we evaluate
our approach on both scenarios. In both scenarios, we take
images from camera B as HR image set, while images from
camera A are used to generate LR image set by performing
down-sampling and smoothing operations.

In the single-shot case, the total 200 HR and LR image
pairs are randomly divided into a training set of 100 pairs,
and a test set with the other 100 pairs. For the test set, we
further select the 100 images from camera A to construct
the LR probe set, and use all images of camera B except the
100 training samples to construct the gallery set.

Table 3. Top r ranked matching rates (%) on the single-shot PRID
dataset with sampling rate of 1/8.

Method r=1 r=5 r=10 r=20 r=50
RDC 1.80 8.40 15.20 30.40 48.60
SSCDL 4.80 16.00 32.60 48.40 76.80
RPLM 3.90 11.80 23.20 40.40 68.00
KISSME 2.70 12.70 25.90 42.60 74.50
SLD2L 8.80 22.80 39.20 58.60 85.60

Figure 3 (c) and Table 3 report the results on the single-
shot PRID dataset. Compared with RDC, SSCDL, RPLM
and KISSME, our approach achieves better results.

In the multi-shot case, we randomly select 5 images
per person for each camera view. 200 persons appearing in
both views are divided into two sets with equal size, 100
persons for training and the other 100 persons for testing.
We further select 500 images from camera B in the test set to
constitute the HR gallery set, and the remaining 500 images
from camera A are used to construct the LR probe set.



Table 4. Top r ranked matching rates (%) on the multi-shot PRID
dataset with sampling rate of 1/8.

Method r=1 r=5 r=10 r=20 r=50
RDC 3.20 15.60 25.40 40.60 60.80
SSCDL 17.40 36.20 46.70 62.50 82.60
RPLM 10.80 25.90 36.30 50.60 72.20
KISSME 12.80 28.80 40.70 57.60 78.50
SLD2L 22.60 46.60 57.40 70.70 90.80

Figure 3 (d) and Table 4 provide the matching results of
all compared methods at sampling rate of 1/8. It can be
seen that our approach constantly achieves the best result-
s. The results indicate that the proposed approach is also
applicable to multi-shot SR person re-identification.

To evaluate the statistical significance of difference be-
tween SLD2L and compared methods, we conduct the M-
cnemars test [3] on all datasets. The test results show that
SLD2L makes a statistically significant difference in com-
parison with related methods. Due to the limited space, we
do not provide the results in detail.

5.5. Effect of Each Term in the Objective Function

In this experiment, we investigate the effects of
Erepresent, Elowrank and Ediscriminant by performing
SLD2L with/without each term, and evaluate Emapping by
performing SLD2L with each mapping matrix being set
as the identity (i.e., coupled DL version of our approach).
Figure 4 provides the rank 1 matching results of our ap-
proach with/without each term (the coupled DL version for
Emapping) on the VIPeR dataset with sampling rate of 1/8.
We can see that the matching rates are improved by utiliz-
ing these terms, which means that each term in the objective
function plays its due role.
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Figure 4. Results of SLD2L with/without each term (the coupled
DL version for Emapping) on the VIPeR dataset.

5.6. Computational Cost

In this paper, the computational cost of our approach is
proportional to the size of the dictionary, the number of
patches. Our approach is ran on a computer with an Intel I7
quad-core 3.4GHZ CPU and 8GB memory. Figure 5 shows
the convergence effect of SLD2L on VIPeR dataset, which
indicates that SLD2L can converge rapidly. The computa-
tion time of learning dictionaries and mappings on VIPeR
dataset is about 2 hours. However, the testing time for one

probe image is less than 0.6 seconds. On other two datasets,
our approach can also converge with an acceptable time.
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Figure 5. Convergence effect of SLD2L on VIPeR dataset.

5.7. Impact of Down-sampling Rate

In this experiment, we study the impact of down-
sampling rate on each compared method. All compared
methods are executed with different down-sampling rates
including 1 (i.e., without down-sampling), 1/2, 1/4, 1/8
and 1/12. Table 5 gives the corresponding results on the
VIPeR dataset. We can see that the larger the down-
sampling rate is, the lower the re-identification rate is for
every method. At all down-sampling rates, our approach
obtains the highest re-identification rate. With the down-
sampling rate changing from 1 to 1/12, the difference be-
tween the maximal and minimal matching rates of our ap-
proach is 13.27% (i.e., 70.13%−56.86%) for VIPeR, which
shows that our approach is more stable than other methods.
Similar effects exist on other two datasets.

Table 5. Rank 10 results (%) with different down-sampling rates
on the VIPeR dataset.

Methods 1 1/2 1/4 1/8 1/12
RDC 54.37 30.35 28.16 26.58 21.62
SSCDL 68.16 56.58 52.37 48.42 44.78
RPLM 64.31 49.99 46.54 42.72 35.52
KISSME 62.28 51.90 48.42 45.02 40.84
SLD2L 70.13 60.22 59.13 58.06 56.86

6. Conclusion
We propose the SLD2L approach for the SR person

re-identification problem. It can jointly learn a dictionary
pair and a mapping function from HR gallery images and
LR probe images. With the designed discriminant term,
the learned dictionary pair and mapping have favorable dis-
criminative capability. By applying the designed low-rank
regularization on sub-dictionaries, the influence of noises
contained in patches can be effectively reduced. With the
learned dictionary pair and mapping, features of LR images
can be converted into discriminating HR features.

Experimental results on three public datasets demon-
strate the effectiveness of the proposed approach for super-
resolution person re-identification problem.
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