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Abstract

The importance of precise homography estimation is often

underestimated even though it plays a crucial role in var-

ious vision applications such as plane or planarity detec-

tion, scene degeneracy tests, camera motion classification,

image stitching, and many more. Ignoring the radial distor-

tion component in homography estimation—even for classi-

cal perspective cameras—may lead to significant errors or

totally wrong estimates. In this paper, we fill the gap among

the homography estimation methods by presenting two al-

gorithms for estimating homography between two cameras

with different radial distortions. Both algorithms can han-

dle planar scenes as well as scenes where the relative mo-

tion between the cameras is a pure rotation. The first al-

gorithm uses the minimal number of five image point cor-

respondences and solves a nonlinear system of polynomial

equations using Gröbner basis method. The second algo-

rithm uses a non-minimal number of six image point corre-

spondences and leads to a simple system of two quadratic

equations in two unknowns and one system of six linear

equations. The proposed algorithms are fast, stable, and

can be efficiently used inside a RANSAC loop.

1. Introduction

The estimation of a homography between two views is a

crucial problem in computer vision with many application,

e.g., in image stitching, structure from motion or camera

calibration. A homography exists between projections of

points on a 3D plane in two views or between projections

of general 3D points in two views when the transformation

between the two views is a pure rotation.

A number of algorithms have been proposed for homog-

raphy estimation in the past. The classical linear algo-

rithm [8] estimates the general homography from 4 point

correspondences. This algorithm is frequently used in

practice, but it assumes perspective projection and thus it

doesn’t provide accurate estimates for image correspon-

dences corrupted by radial distortion.

This is a serious drawback, since virtually all real pro-

jections involve some amount of radial distortion. It was

shown that ignoring the radial distortion, even for standard

consumer cameras, may lead to significant errors in 3D re-

construction [7], metric measurements from images, or in

camera calibration.

One way to deal with radial distortion is to model it in the

final optimization step, i.e., in the bundle adjustment [13].

However, this approach requires a set of correct image

matches which may be difficult to find and thus in many

situations—and especially for larger radial distortions—it is

necessary to consider the distortion already when searching

for image correspondences in a RANSAC loop [6, 4]. By

not providing correct initial radial distortion estimates, the

bundle adjustment is more likely to fall into a local minima

without recovering correct distortion parameters. Radial

distortion modelling proved to be a mathematically chal-

lenging task and algorithms for estimating homography or

epipolar geometry for cameras with radial distortion have

been proposed only recently [7, 1, 9, 2, 3].

In [7], Fitzgibbon proposed a one parameter division

model for modeling radial distortion and, based on this

model, algorithms for fundamental matrix and homography

estimation. The homography estimation algorithm assumes

one common radial distortion parameter and uses five image

point correspondences. It leads to a quadratic eigenvalue

problem yielding up to 18 real solutions.

Two algorithms for estimating homography between

cameras undergoing pure rotation, i.e., the panorama stitch-

ing problem, have also been proposed recently [9, 2]. Both

algorithms use three image point correspondences to esti-

mate homography as well as one radial distortion parameter

and the focal length.

The first algorithm proposed in [9] formulates the

panorama stitching problem as an optimization problem

and employs Levenberg-Marquardt method to solve it. Be-



cause of the local optimization method used, this algorithm

may have problems with convergence to the global minima.

Also, it returns only one of 18 possible solutions depending

on the initialization. The paper also reports poor conver-

gence of the proposed method for larger radial distortions.

A different algorithm has been proposed in [2]. The

authors formulated the panorama stitching problem for a

camera with unknown radial distortion and unknown focal

length as a system of two equations in two unknowns and

solve it using the Gröbner basis method. The final Gröbner

basis solver performs LU decomposition of a 90 × 132 co-

efficient matrix and eigenvalue computation of a 25 × 25

matrix. This leads to 25 solutions from which only 18 are

correct. The final solver is quite slow and not suitable for

real-time applications.

Since the previously mentioned algorithms estimate only

one radial distortion parameter shared by both cameras, they

cannot be used for two cameras with different radial distor-

tions observing a plane.

In [3], an algorithm for estimating fundamental matrix

for cameras with different radial distortions from nine im-

age point correspondences was proposed. Unfortunately,

this algorithm doesn’t work for planar scenes and pure rota-

tions. Moreover, the used Gröbner basis method leads to a

quite complicated and slow solver (LU decomposition of a

330×390 matrix and eigenvalue computations of a 24×24

matrix).

An important application of homography estimation can

be found in the Structure-from-Motion (SfM) problem. Ho-

mography estimation is typically used to validate a qual-

ity of a pairwise reconstruction during a seed searching

phase [12]. The goal is to select a well-conditioned pair,

i.e., a not too planar scene with a rich 3D structure. Omit-

ting the radial distortion estimation in the plane detection,

i.e., homography estimation, may lead to a wrong classifi-

cation of the scene as non-planar, even if it is completely

planar or a panorama. We observed a significant occurrence

of this misclassification even for images with small amounts

radial distortion. Thus it is important to use an algorithm

that can estimate homography as well as different distortion

parameters for each camera.

The main motivation of this paper is to fill the gap among

the homography estimation methods by developing an algo-

rithm that can handle both planar and pure rotation scenes

as well as cameras with different radial distortions. The

goal is to propose an algorithm that uses as low a number of

point correspondences as possible while being sufficiently

fast to be used inside a RANSAC loop [6, 4] in real-time

applications or in the seed detection phase of large SfM

pipelines [12].

We have developed two algorithms—solvers—for esti-

mating unknown homography and radial distortion param-

eters of two cameras. The first solver, H5λ1λ2, uses the
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Reference [3] [8] [2] [7]

Plane ✓ ✓ ✓ ✓

Pure rotation ✓ ✓ ✓ ✓ ✓

Radial distortion ✓ ✓ ✓ ✓ ✓

Different distortions ✓ ✓ ✓

Minimal solution ✓ ✓ (✓) (✓) ✓

Number of points 9 4 3 5 6 5

Number of solutions 24 1 18 (25) 18 2 5

Table 1: Comparison of properties of various solvers.

minimal number of five image point correspondences and

solves a nonlinear system of polynomial equations using the

Gröbner basis method. This solver performs Gauss-Jordan

(G-J) elimination of quite a small 16 × 21 matrix and pro-

vides five solutions from the eigenvalues of a 5 × 5 matrix.

The second solver, H6λ1λ2, uses six image point correspon-

dences and solves a simple system of two quadratic equa-

tions in two unknowns and one system of six linear equa-

tions. This leads to two plausible solutions.

Table 1 presents a comparison of all algorithms related to

the two new proposed solvers, H5λ1λ2 and H6λ1λ2, w.r.t.

the number of point correspondences used, the number of

solutions, and other properties. The table shows that the

only algorithms that work for both planar as well as pure ro-

tation scenes and that can handle different radial distortions

at the same time are the two proposed solvers. Moreover,

the new solvers return less solutions than their competitors

(F9λ1λ2, H3λf, H5λ) while being faster and less compli-

cated. These properties are crucial for solvers that are to be

used in a RANSAC-style loop [6, 4]. The symbol “(✓)”
in “Minimal solution” row for H3λf and H5λ algorithms

means that the number of correspondences used provides

more constraints than needed for the respective problem,

however, these problems cannot be solved from a smaller

number of correspondences.

Next, we formulate the problem of homography estima-

tion between two cameras with different radial distortions.

2. Problem Formulation

Let us assume that a planar object (a plane) is observed from

two different view-points by cameras with the projection

matrices P = [I |0] and P
′ = [A |a]. The corresponding im-

age points xi = [xi, yi, 1]
⊤

in the first and x
′

i = [x′

i, y
′

i, 1]
⊤

in the second view are related as

αi x
′

i = Hxi, (1)

where αi is an unknown scalar value and H ∈ R
3×3 is a

homography between the views, also known as the homog-

raphy induced by a plane [8]. It can be shown that for a



plane defined by π⊤
X = 0 with π = [v, 1]

⊤
, the homogra-

phy H (1) induced by the plane π has the form H = A−av
⊤,

where A ∈ R
3×3 and a ∈ R

3.

A similar homography relation can be formulated for

projections of general 3D points observed in two views

when the transformation between the cameras is a pure rota-

tion. In this case the homography has the form H = K
′
RK

−1,

where K′ and K are 3 × 3 calibration matrices of the respec-

tive cameras and R is the rotation connecting the camera

coordinate frames. The homography H = K
′
RK

−1 can be

also viewed as a homography H∞ induced by the plane at

infinity.

In this paper, we consider general homographies of the

form (1), where H ∈ R
3×3 is a general regular 3 × 3 ma-

trix, making no distinction between homographies induced

by a plane and homographies induced by the plane at in-

finity. This makes both proposed solvers oblivious to the

homography type and performing equally well for either.

Note that the relation (1) holds only for points projected

by an ideal perspective camera. For every real camera,

some amount of radial distortion is always present and for

the relation (1) to hold true, one must first “undistort” the

measured image points x̂i and x̂
′

i. Here, we use the one-

parameter division model for radial distortion modeling [7].

This undistortion model can handle even quite pronounced

radial distortions and has the following form:

fu(x̂i, λ) =
[

x̂i, ŷi, 1 + λ(x̂2

i + ŷ2i )
]⊤

, (2)

where x̂i = [x̂i, ŷi, 1]
⊤

are the homogeneous coordinates

of the measured (and radially distorted) image points and

λ ∈ R is the distortion parameter. Here, we will assume

that the centre of distortion is in the center of the image.

In this work, we consider different radial distortions for

each camera. This means that the proposed solver will be

able to handle images taken by one as well as by two differ-

ent cameras observing a plane or undergoing pure rotation.

By combining the homography relation (1) with two dif-

ferent undistortion models (2) we get an equation relating

image correspondences distorted with different amounts of

radial distortion

αi fu(x̂
′

i, λ
′) = H fu(x̂i, λ). (3)

Next, we will present two algorithms for estimating un-

known homography and two unknown radial distortion pa-

rameters, i.e., algorithms for solving (3), with H, λ, and λ′

being the unknown parameters. The first solver H5λ1λ2

uses a minimal number of five image point correspondences

and solves a nonlinear system of polynomial equations us-

ing Gröbner basis method. The second solver H6λ1λ2 uses

six image point correspondences and results in a simple sys-

tem of two quadratic equations in two unknowns and one

system of six linear equations.

3. Minimal Solver H5λ1λ2

The first of the two solvers proposed in this paper starts by
eliminating the scalar values αi from the equation (3). This
is done by multiplying (3) by the skew symmetric matrix
[fu(x̂

′

i, λ
′)]

×
. Since [fu(ûi)]× fu(ûi) = 0, this leads to the

following matrix equation





0 −ŵ′

i ŷ′

i

ŵ′

i 0 −x̂′
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−ŷ′

i x̂′

i 0









h11 h12 h13

h21 h22 h23

h31 h32 h33









x̂i

ŷi
ŵi



 = 0,

(4)

where ŵi = 1 + λ(x̂2

i + ŷ2i ), ŵ
′

i = 1 + λ′(x̂′2

i + ŷ′2i ), and

hij is the element from the ith row and the jth column of

the homography matrix H.

The matrix equation (4) contains three polynomial equa-

tions from which only two are linearly independent, because

the skew symmetric matrix [fu(ûi)]× has rank two. This

means that we need at least 5 image point correspondences

to estimate the unknown homography H as well as the un-

known radial distortion parameters λ and λ′.

The explicit form of the equation corresponding to the

third row of the matrix equation (4) is

(−ŷ′i h11 + x̂′

i h21) x̂i + (−ŷ′i h12 + x̂′

i h22) ŷi

+ (−ŷ′i h13 + x̂′

i h23) (1 + λ(x̂2

i + ŷ2i )) = 0. (5)

This is a homogeneous equation in eight monomials v1 =

[h11, h12, h13, h21, h22, h23, λ h13, λ h23]
⊤

. Given the min-

imal number of five image point correspondences, we get

five equations of the form (5) which we can stack into a

matrix form as

M1 v1 = 0, (6)

where M1 is a 5 × 8 coefficient matrix. Assuming that M1
has full rank equal to 5, i.e., we have 5 non-degenerate im-

age correspondences, the dimension of null(M1) is 3. This

means that the monomial vector v1 can in general be rewrit-

ten as a linear combination of three null space basis vectors

ni of the matrix M1 as

v1 =
3

∑

i=1

γi ni, (7)

where γi are new unknowns. Without the loss of generality,

we can set γ3 = 1 to fix the scale of the homography and

to bring down the number of unknowns. This way, we ob-

tain a parametrization of the first two rows of the unknown

homography H in two unknowns γ1 and γ2.

Next, let us notice that the elements of the monomial

vector v1 are not independent. We can see that v7 = λ v3
and v8 = λ v6, where vi is the ith element of the vector

v. These two constraints, together with the parametrization



from equation (7), give us two equations in γ1, γ2, and λ

γ1n17 + γ2n27 + n37

−λ(γ1n13 + γ2n23 + n33) = 0, (8)

γ1n18 + γ2n28 + n38

−λ(γ1n16 + γ2n26 + n36) = 0, (9)

where nij is the jth element of the vector ni.

Now, we will use five linearly independent equations

from the first and the second row of the matrix equation (4).

In order to increase the numerical stability of the solver, we

choose the equations corresponding to the first row of (4)

if |x̂′

i| < ϵ and the equations corresponding to the second

row if |ŷ′i| < ϵ, for some small predetermined threshold ϵ.

Otherwise, which is the most common case, we can choose

arbitrarily from these two rows, e.g., the equations corre-

sponding to the second row, which has the form

(ŵ′

i h11 − x̂′

i h31)x̂i + (ŵ′

i h12 − x̂′

i h32)ŷi

+ (ŵ′

i h13 − x̂′

i h33)ŵi = 0. (10)

Note that ŵ′

i and ŵi are functions of λ and λ′ and that

h11, h12, h13, and λh13 are already reparametrized by the

two new unknowns γ1 and γ2.

The five linearly independent equations (10),

i = 1, . . . , 5, together with the two equations (8) and (9)

form a system of seven equations in seven unknowns

(h31, h32, h33, λ, λ
′, γ1, γ2) and 13 monomials v2 =

[h31, h32, h33, λ h33, λ
′ γ1, λ

′ γ2, λ
′, λ γ1, λ γ2, λ, γ1, γ2, 1]

⊤
.

Further, by reordering the elements of

the monomial vector v2 such that v2 =
[h31, h32, h33, λ h33, λ

′ γ1, λ γ1, γ1, λ
′ γ2, λ γ2, λ

′, λ, γ2, 1]
⊤

and by performing G-J elimination of the corresponding

coefficient matrix M2, we obtain the following matrix

M2 =





















h31 h32 h33 λh33 λ′γ1 λγ1 γ1 λ′γ2 λγ2 λ′ λ γ2 1

1 • • • • • •
1 • • • • • •

1 • • • • • •
1 • • • • • •

1 • • • • • •
1 • • • •

1 • • • •





















. (11)

Note that the left 7 × 6 submatrix of the eliminated matrix

M2 contains some zero elements. Also, the elements of this

submatrix are not completely independent. Let mi,j denote

the element of the ith row and the jth column of M2 (11).

Then it holds that

mi,9

mi,11

=
mk,9

mk,11

, (12)

for all i, k ∈ {1, 2, 3, 4, 5, 7} , i ̸= k. These dependencies

will be important later for generating the correct Gröbner

basis solver.

Meanwhile, the eliminated system M2v2 = 0 gives us

seven equations

h31 + f1 (λ
′, λ, γ2) = 0, (13)

h32 + f2 (λ
′, λ, γ2) = 0, (14)

h33 + f3 (λ
′, λ, γ2) = 0, (15)

λh33 + f4 (λ
′, λ, γ2) = 0, (16)

λ′γ1 + f5 (λ
′, λ, γ2) = 0, (17)

λγ1 + f6 (λ
′, λ, γ2) = 0, (18)

γ1 + f7 (λ
′, λ, γ2) = 0, (19)

where f1 (λ
′, λ, γ2) , . . . , f7 (λ

′, λ, γ2) are polynomials in

three variables λ′, λ and γ2. By exploiting dependencies

between these seven equations we get a new system of three

equations in three unknowns of degree three

λ f3 (λ
′, λ, γ2)− f4 (λ

′, λ, γ2) = 0,

λ′ f7 (λ
′, λ, γ2)− f5 (λ

′, λ, γ2) = 0, (20)

λ f7 (λ
′, λ, γ2)− f6 (λ

′, λ, γ2) = 0.

To solve the system of polynomial equations (20), we use

the Gröbner basis method [5]. The Gröbner basis method

has been recently used to create very fast, efficient, and

numerically stable solvers for many difficult problems in

computer vision. The method is based on polynomial ideal

theory and special bases of ideals called Gröbner bases [5].

Gröbner bases can be used to create special multiplication

matrices [5] whose eigenvalues and eigenvectors give solu-

tions to the initial systems of polynomial equations.

In order to implement an efficient Gröbner basis solver

for the system (20), we used the automatic generator of

Gröbner basis solvers proposed in [11]. However, in the

case of equations (20), the coefficients are not fully inde-

pendent. This means that using the default settings for the

automatic generator [11] that initialize the coefficients of

equations (20) by random values from Zp does not lead to a

correct solver. To obtain a working Gröbner basis solver,

one has to create a correct problem instance with values

from Zp for the automatic generator [11] initialization. In

case of system (20), we need to force the elements of the

matrix M2 (11) to fulfill dependencies (12) and to force the

elements m6,8, m6,10, m7,8, and m7,10 to vanish.

By enforcing these dependencies among the coefficients

of the input system (20), we have obtained a Gröbner basis

solver that performs one G-J elimination of a 16 × 21 ma-

trix. This matrix contains coefficients which arise from the

five specific 2D-to-2D point correspondences. Finally, the

solutions to γ2 and the radial distortion parameters λ and λ′

are extracted from the eigenvectors of a 5×5 multiplication

matrix created from the rows of the 16×21 template matrix

after the G-J elimination. This gives us up to 5 real solu-

tions. By substituting these solutions to the equations (10),

the solutions to the homography H can be obtained.



4. Non-minimal Solver H6λ1λ2

In this section, we will describe the second proposed solver,

a non-minimal 6-point solver H6λ1λ2. This solver is faster

and simpler than the 5-point minimal H5λ1λ2 solver pre-

sented in section 3, however, it is slightly more sensitive to

noise.

This solver starts, analogously to H5λ1λ2 solver, with

equations (5), corresponding to the third row of the matrix

equation (4). This time, however, we have six of these equa-

tions: M̄1 v1 = 0, where M̄1 is a 6 × 8 coefficient matrix.

Again, assuming that M̄1 has full rank of 6, i.e., we have

6 non-degenerate image correspondences, the dimension of

null(M1) is 2. Therefore, the monomial vector v1 can be

rewritten as a linear combination of two null space basis

vectors v1 = γ̄1 n̄1 + n̄2, where γ̄1 is the new unknown.

Next, we use the dependencies of the elements of the

monomial vector v1 (7), v7 = λ v3 and v8 = λ v6. These,

combined with the reparameterization of v1, lead to two

quadratic equations in two unknowns γ̄1 and λ

γ̄1n̄17 + n̄27 − λ(γ̄1n̄13 + n̄23) = 0, (21)

γ̄1n̄18 + n̄28 − λ(γ̄1n̄16 + n̄26) = 0, (22)

where n̄ij is the jth element of the vector n̄i. This system

can easily be solved, for example, using the hidden variable

resultant method [5]. Using this method, we can rewrite the

two equations as

[

−γ̄1n̄13 − n̄23 γ̄1n̄17 + n̄27

−γ̄1n̄16 − n̄26 γ̄1n̄18 + n̄28

] [

λ

1

]

= 0. (23)

The matrix equation (23) has a solution if and only if the

determinant of its matrix is equal to zero which gives a

quadratic equation in γ̄1. By solving this quadratic equa-

tion and by substituting the solution to (23), we obtain two

solutions for γ̄1 and λ.

Next, from the equation v1 = γ̄1 n̄1 + n̄2 we obtain two

solutions to the first two rows of the homography matrix H,

e.g., h11, h12, h13, h21, h22, and h23.

Finally, the equations (10) corresponding to the second

row of the matrix equation (4) for the six point correspon-

dences lead to six linear equations in the last four unknowns

h31, h32, h33 and λ′. We can simply solve this overdeter-

mined system using SVD.

5. Experiments

To precisely gauge the stability, precision, and speed of

H5λ1λ2 and H6λ1λ2, we tested the solvers on synthetic

as well as real world data with various amounts of ra-

dial distortions, noise levels, and scene configurations. We

compared the proposed solvers with a comprehensive set

of related algorithms—F9λ1λ2 [3], H4 [8], H3λf [2], and

H5λ [7].
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Figure 1: Comparison of H5λ1λ2 (Blue) and H6λ1λ2 (Red)

with the F9λ1λ2 solver (Green) for two cameras with dif-

ferent radial distortions observing a planar scene. His-

tograms of log10 relative errors of estimated λ1 (Left) and

λ2 (Right).

5.1. Synthetic data

First, we studied the performance of the new solvers on

synthetically generated 3D scenes with known ground-truth

parameters. These scenes consist of 3D points randomly

distributed on a plane or in a 3D cube, depending on the

testing configuration. Each 3D point was projected by two

cameras with random, yet still realistic, focal lengths. The

orientations and positions of the cameras were selected at

random as to look at the scene (in the case of planar scenes)

or so that the transformation between the two cameras was

a pure random rotation (in the case of general 3D scenes).

Next, the image points in both cameras were corrupted by

different or equal amounts of radial distortion following the

one-parameter division model [7]. Finally,the radially dis-

torted image points were corrupted by Gaussian noise with

standard deviation σ, assuming a 1000 × 1000 pixel image.

5.1.1 Numerical stability

In the numerical stability experiment, we studied the be-

havior of H5λ1λ2 and H6λ1λ2 on noise-free data. We com-

pared the results with the numerical stability of the most

relevant solvers (F9λ1λ2 [3], H3λf [2], H5λ [7]), depend-

ing on the testing configuration.

In the experiments, we generated 10000 scenes with 3D

points distributed at random on a plane or in a cube and

cameras with random feasible poses or undergoing pure ro-

tation, depending on the testing configuration. The radial

distortion parameters λ1 and λ2 were drawn at random from

the interval [−0.7, 0] to show the behaviour of the algo-

rithms for large as well as small amounts of radial distor-

tion. For comparison with solvers H3λf [2] and H5λ [7]

estimating one shared radial distortion parameter, the radial

distortion parameters were set to be equal, λ1 = λ2.

Figure 1 shows the results of the solvers H5λ1λ2 (Blue)

and H6λ1λ2 (Red) compared the F9λ1λ2 solver (Green) for

scene configurations with two cameras with different radial

distortions observing a planar scene. The log10 of the rela-
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Figure 2: Comparison of H5λ1λ2 (Blue) and H6λ1λ2 (Red)

with the F9λ1λ2 solver (Green) for two cameras with dif-

ferent radial distortions λ1gt
= −0.2 and λ2gt

= −0.4 ob-

serving a planar scene. Boxplots of estimated λ1 (Left) and

λ2 (Right) for different noise levels.
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Figure 3: Comparison of H5λ1λ2 (Blue) and H6λ1λ2 (Red)

with the H5λ solver (Green) for cameras with one shared

radial distortion and a planar scene. (Left) Histograms of

log10 relative errors of estimated λ’s. (Right) Boxplots of

estimated λ’s for different noise levels and λgt = −0.3.

tive error of the radial distortion parameter λ1 obtained by

selecting the real root closest to the ground truth value is on

the left and the log10 of the relative error of the radial dis-

tortion parameter λ2 on the right. We can see that the nu-

merical stability of both H5λ1λ2 (Blue) and H6λ1λ2 (Red)

is virtually equivalent. The F9λ1λ2 solver for estimating

fundamental matrix and two different radial distortion pa-

rameters fails for perfectly planar scenes. However, as will

be seen from noise and real data experiments in the next,

F9λ1λ2 gives quite precise estimates of radial distortion pa-

rameters in the presence of noise.

We performed an analogous numerical stability experi-

ment for two cameras with one common radial distortion

observing a plane. In time, we have compared the H5λ1λ2

(Blue) and H6λ1λ2 (Red) to the H5λ solver (Green). Fig-

ure 3 (Left) shows the log10 of the relative error of the esti-

mated shared radial distortion parameter λ = λ1 = λ2. All

three tested solvers have comparable numerical stability.

Finally, we tested the numerical stability of the pro-

posed solvers in situations where the relative motion be-

tween cameras was pure rotation. The synthetic scenes

contained random non-planar 3D points and radial distor-

tion parameters were fixed to be equal for both views. In

this experiment, we compared H5λ1λ2 and H6λ1λ2 to the

H3λf [2] solver. As we can see in Figure 4 (Left), H5λ1λ2
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Figure 4: Comparison of H6λ1λ2 (Red) and H5λ1λ2 (Blue)

with the H3λf solver (Green) in the case when the relative

motion between cameras is a pure rotation and both cam-

eras share the same radial distortion. (Left) Histograms of

log10 relative errors of estimated λ’s. (Right) Boxplots of

estimated λ’s for different noise levels and λgt = −0.3.

(Blue) and H6λ1λ2 (Red) are numerically more stable than

the H3λf (Green). This stability issue of H3λf stems from

the fact that quite a large G-J elimination needs to be per-

formed by this solver.

5.1.2 Noise experiment

In the next section, we study the performance of the pro-

posed solvers on the noised image correspondences.

Figure 2 shows the estimated radial distortion parame-

ters for cameras with different radial distortions. In this

case the ground truth radial distortion parameters were set

to k1gt = −0.2 and k2gt = −0.4 and we compared the

proposed solvers to the F9λ1λ2 solver (Green). Results in

Figure 2 are depicted using MATLAB function boxplot

which shows 25% to 75% quantile values as boxes with a

horizontal line for median. The crosses show data beyond

1.5 times the interquartile range. In the presence of noise,

the F9λ1λ2 solver provides quite precise estimates of radial

distortion parameters. However, the estimated epipolar ge-

ometries were invalid for these noisy planar scenes.

We have performed an analogous noise experiments for

cameras with one shared radial distortion parameter λgt =
−0.3 observing a plane (Figure 3 (Right)) and cameras un-

dergoing pure rotation (Figure 4 (Right)). The performance

of the minimal H5λ1λ2 solver is very similar to the perfor-

mance of the competing solvers in the presence of noise.

However, the proposed H5λ1λ2 solver is more general than

both H3λf and H5λ, i.e., it could handle all tested situ-

ations (different distortions, planar scenes, pure rotation).

Further, the new H5λ1λ2 solver has much lower computa-

tional complexity than both F9λ1λ2 and H3λf. The new

non-minimal H6λ1λ2 solver is slightly more sensitive to

noise than H5λ1λ2. This is because H6λ1λ2 first uses all

six correspondences to estimate the first two rows of H to

exactly satisfy these constraints on all six points. Only then

the third row is estimated as a least square fit to these six

correspondences.



(a) H4, 27% inls., incorrect (b) H5λ, 30% inls., incorrect (c) H5λ1λ2, 77% inls., correct

(d) H4, 16% inls., incorrect (e) H5λ, 21% inls., incorrect (f) H6λ1λ2, 71% inls., correct

Figure 5: Image stitching. Stitching of (a–c) images connected by rotation induced homography initialized by H4, H5λ,

and H5λ1λ2, respectively, (d–f) images connected by plane induced homography initialized by H4, H5λ, and H6λ1λ2,

respectively. The percentages show the ratio of the number of inliers found by LO-RANSAC for the respective solver to the

number of tentative matches.

5.2. Real data

In this section, we present several homography estimation

applications to show the superior performance of the pro-

posed solvers in real world situations where radial distortion

is present.

5.2.1 Image Stitching Experiment

Stitching of images connected by a homography transfor-

mation induced either by a plane or camera rotation is a

classical problem of computer vision. Typically, tentative

image correspondences are validated in a RANSAC-style

loop, followed by a local optimization step that can option-

ally include more parameters.

Figures 5(a–c) show an image pair connected by camera

rotation induced homography with different radial distor-

tions λ1, λ2 stitched together using different solvers. The

images were taken by GoPro Hero3 and PowerShot SX260

cameras. In all cases we used LO-RANSAC loop [4] fixed

to 100 iterations, followed by local optimization step where

both λ1, λ2 were optimized. Figures 5(a–c) show the re-

sult of image stitching initialized by H4, H5λ, and H5λ1λ2,

respectively. We can clearly see that in this case H4 and

H5λ solvers did not provide sufficiently close model for lo-

cal optimization step to find a satisfactory result. In the case

of H5λ1λ2, both λ1 and λ2 were correctly recovered.

Figures 5(d–f) show an image pair connected by a plane

induced homography, again, with different radial distortions

λ1, λ2 stitched together using different solvers. The images

were taken by a GoPro Hero3 camera and and a HTC De-

sire 500 mobile phone. This time, we used H4, H5λ, and

H6λ1λ2, respectively. Similarly to the previous case, initial-

izations by neither H4 nor H5λ were good enough to help

the final local optimization to recover the correct solution.

Figure 6 shows a number of gained inliers as a function

of LO-RANSAC cycles for an image pair connected by a

plane induced homography. The algorithm F9λ1λ2 recovers

the maximal number of inliers first. This is not surprising,

since the fundamental matrix F models planar scenes too.

We have observed that if seven out of the nine points lie on

a plane, then the fundamental matrix returned by F9λ1λ2

covers the plane. Interestingly enough, F9λ1λ2 recovers

correct radial distortions even if seven points are on a plane

and the remaining two are mismatches (a rigorous study of

this behavior is out of scope of this paper). Since F9λ1λ2

will classify these mismatches as correct ones, the inlier set

is bigger and the geometry recovered by F9λ1λ2 is invalid.

Hence additional filtration of these mismatches is necessary.

Moreover, F9λ1λ2 is very slow and therefore not useful in

real RANSAC applications. The only two solvers that re-

cover all inliers as well as the correct geometry are H5λ1λ2

and H6λ1λ2.
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Figure 6: No. of inliers as a function of LO-RANSAC cycles.

5.2.2 SfM Seed Score Experiment

Homography estimation also plays an important role in SfM

pipelines [12], where it is used to select a correct image pair

to seed an incremental SfM reconstruction. This is usually

done by finding the epipolar geometry inliers, e.g., using

the F7 algorithm [8] with a loose RANSAC threshold and

by estimating homography inliers among the inliers selected

by F7. The ratio of the homography and the epipolar geom-

etry inliers is sometimes called seed score. If the score is

close to 1, the image pair is unsuitable as a SfM seed, since

it lacks the needed 3D structure. If radial distortion is not

modeled, then a point on the plane may by wrongly clas-

sified as an off-the-plane point due to the distortion. As a

consequence, a completely planar scene can be classified as

a good seed. This is shown in the next table, which shows

seed scores for an image pair similar to the first image pair

from section (5.2.1) connected by a rotation induced ho-

mography. The rows show results for different solvers; the

columns show results for different threshold combinations

(H* thr./F7 thr.). We used LO-RANSAC to recover the re-

spective inlier sets.

10/3 20/3 10/5 20/5

H4 / F7 0.0985 0.2304 0.2868 0.2845

H5λ / F7 0.3815 0.3524 0.4628 0.4477

H5λ1λ2 / F7 0.8620 0.8513 0.9373 0.9299

The table shows that by using H5λ1λ2 we can clearly dis-

tinguish the given image pair as unsuitable for SfM seeding

for wide range of RANSAC thresholds.

The next table shows analogous statistics for an image

pair connected by a plane induced homography. The pair

was captured by a GoPro Hero3 camera with different focal

length settings.

10/3 20/3 10/5 20/5

H4 / F7 0.1674 0.1593 0.2942 0.2210

H5λ / F7 0.4634 0.4181 0.6528 0.5399

H5λ1λ2 / F7 0.9268 0.8884 0.9711 0.9513

Again, H5λ1λ2 correctly classifies as unsuitable seed pair.

5.3. Computational complexity

The significant improvement of the proposed solvers over

the state-of-the-art solvers F9λ1λ2 [3], H3λf [2], and

H5λ [7] is in the speedup. The C++ implementations of the

H5λ1λ2 and H6λ1λ2 solvers run in about 2.6µs and 1.5µs

on an Intel i7-4700MQ 2.4Ghz based laptop, respectively.

This is comparable to the speed of the classical perspective

linear H4 algorithm [8] that computes the null space of a

8 × 9 matrix and runs about 1.8µs on the same machine.

Unfortunately, we only have MATLAB implementa-

tions of the other three related solvers (F9λ1λ2 (9.2 ms),

H3λf (3.3 ms), H5λ (1.2 ms)). It would not be fair to

compare these to the C++ implementation of the proposed

solvers. However, we can at least perform theoretical com-

putational complexity analysis based on the mathematical

operations performed by the solvers.

The H5λ1λ2 solver needs to compute the null space of a

5×8 matrix, to perform G-J elimination of a 16×21 matrix

and to find eigenvalues of a 5×5 matrix. The H6λ1λ2 solver

needs to compute the null space of a 8×8 matrix, the inverse

of a 4 × 4 matrix, and to solve one quadratic equation.

For comparison, F9λ1λ2 performs LU decomposition of

a 393 × 390 matrix and the eigenvalue computations of a

24 × 24 matrix. The panorama stitching H3λf solver per-

forms LU decomposition of a 90×132 matrix and the eigen-

value computations of a 25 × 25 matrix. Finally, the poly-

nomial eigenvalue solver H5λ needs to compute eigenval-

ues and eigenvectors of a 18 × 18 matrix. These operations

make both F9λ1λ2 and H3λf significantly slower than the

proposed solvers.

The G-J (LU) parts of the Gröbner basis solvers

F9λ1λ2 [3] and H3λf [2] can be potentially speeded up us-

ing the recently published SBBD method [10]. However,

the expected speed up of these G-J parts is only 3–5×.

Therefore, the final F9λ1λ2 and H3λf solvers will still be

quite slow compared to H5λ1λ2 and H6λ1λ2.

6. Conclusion

The estimation of a homography connecting two views

is a crucial problem in computer vision with many applica-

tions. Ignoring the radial distortion component in the ho-

mography estimation may lead to significant errors or to-

tally invalid estimates. In this paper, we presented two novel

algorithms for estimating homography between two cam-

eras with different radial distortions. Both algorithms can

handle planar scenes as well as scenes where the relative

motion between the cameras is a pure rotation. The pro-

posed solvers are more general than the related state-of-the-

art H3λf [2] and H5λ [7] solvers and have much lower com-

putational complexity than both F9λ1λ2 [3] and H3λf [2].

The experiments show that the proposed algorithms are sta-

ble, very fast (≈ 2µs), and can be efficiently used inside a

RANSAC loop.
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