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Abstract

In this paper, we use matting to separate foreground lay-
ers from light fields captured with a plenoptic camera. We
represent the input 4D light field as a 4D background light
field, plus a 2D spatially varying foreground color layer
with alpha. Our method can be used to both pull a fore-
ground matte and estimate an occluded background light
field. Our method assumes that the foreground layer is thin
and fronto-parallel, and is composed of a limited set of col-
ors that are distinct from the background layer colors. Our
method works well for thin, translucent, and blurred fore-
ground occluders. Our representation can be used to ren-
der the light field from novel views, handling disocclusions
while avoiding common artifacts.

1. Introduction
Many photographs of natural scenes have a layered com-

position, where a foreground layer partially occludes back-
ground content. The natural image matting problem ad-
dresses the separation and modeling of these layers. Most
image matting algorithms accept a trimap, which segments
the image into foreground, background, and unknown re-
gions. However, for many common types of layered scenes,
providing a trimap is not practical. For example, consider a
scene photographed through a dusty or dirty window. In this
example, the foreground layer is spatially complex, made of
many small, irregular, translucent occluders.

In this paper, we propose a method for matting such lay-
ers from light fields. Our method assumes that the fore-
ground plane is fronto-parallel. Instead of a trimap, our
method takes as user input two depth parameters: df , which
specifies the depth at which the foreground layer is most
in focus, and d⌧ , a threshold depth that separates the fore-
ground layer from the background layer. To select these
parameters, the user sweeps a synthetic focal plane through
the scene (e.g. with a depth slider) and makes selections by
visual inspection. These parameters are necessary to sig-
nal user intent: what content should be considered part of
the foreground, and what content part of the background?
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Figure 1. We model the input light field as foreground layer com-
posited over a background light field.
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Figure 2. Depth parameters inform the algorithm where to place
the foreground plane, and whether content should be considered
part of the background or the foreground.

We model the input light field as a composite of two lay-
ers: a background light field, plus a foreground layer with
constant depth, spatially varying color, and spatially vary-
ing alpha. Our method recovers the background light field,
foreground color, and foreground alpha automatically.

1.1. Background

We model a light field L, captured by a plenoptic cam-
era, as a composite of a background light field K with a
foreground layer color map F and alpha matte ↵. Our goal
is to estimate K, F , and ↵ given L and some additional
parameters describing the scene.

In this section, we use a two-plane ray parameterization



Figure 3. In this scene, a bird is photographed behind a dusty window. Top: Input light field refocused at three depths. Bottom: Background
light field, with the window dust removed, refocused at the same depths.

to describe the scene. We define (x, y) to be the plane where
the foreground layer is located and (u, v) to be a plane in the
background of the scene. According to our model,

L(x, y, u, v) = ↵(x, y)F (x, y)+(1�↵(x, y))K(x, y, u, v)

(1)

We define image B as the background light field refo-
cused at the foreground plane:

(2)B(x, y) =
1

A

Z

A
K(x, y, u, v) du dv

We define image C as the input light field refocused at
the foreground plane:

(3)C(x, y) =
1

A

Z

A
L(x, y, u, v) du dv

Combining the above equations, we see that

C(x, y) = (4)

=
1

A

Z

A
[↵(x, y)F (x, y) + (1� ↵(x, y))K(x, y, u, v)] du dv

=↵(x, y)F (x, y) + (1� ↵(x, y))
1

A

Z

A
K(x, y, u, v) du dv

=↵(x, y)F (x, y) + (1� ↵(x, y))B(x, y)

Therefore, we can use matting to recover F and ↵ from
B and C.

1.2. Applications

After the layers of the scene have been recovered, they
can be used for a number of applications. If the foreground
layer represents contamination, such as in the dirty window
example described above, the background light field can be
used in place of the input light field for any standard appli-
cation. Like the input the light field, the background light
field can be refocused, and non-Lambertian effects such as
specular reflections are preserved.

The foreground and background layers can also be used
together to render novel views. In this paper, we compute
our results on images from a Lytro camera, and compare our
renderings to those from the Lytro perspective shift feature.
The Lytro feature is fully automatic, with no additional in-
formation about the scene, but it suffers from artifacts on
many types of images that are well suited to our method.

As Wanner and Goldluecke show in [22], light field
depth estimation algorithms that estimate only one depth
layer tend to fail in systematic ways on scenes with multiple
physical layers. These depth estimation algorithms adopt
the assumption proposed in The Lumigraph [6] and Light



Figure 4. In this scene, a wire mesh occludes a rubber duck. We
compare our novel view renderings to the Lytro perspective shift
feature. Top: novel views. Bottom: detail.

Field Rendering [10] that rays reflect off of a single object
and pass through a transparent medium, and therefore, ra-
diance is constant along every ray. This assumption implies
that each ray has one depth and one color. However, in lay-
ered scenes, ray color is often a mixture of foreground and
background colors. Common cases of color mixing occur
when the foreground occluders are translucent or blurry, at
thin occluders, and at the edges of thick occluders. Depth
estimation algorithms that cannot resolve the ambiguity be-
tween the foreground and background at such mixed pixels
are forced to make hard decisions about which depth label
to assign to any given ray (or pixel). The result is a depth
map with hard, jagged object boundaries, and sometimes
inaccurate breaks and tears. Such errors in the depth map
create artifacts when rendering the scene from novel views.

Our method for computing novel views first removes
the foreground layer from the background light field, then
computes the novel view for the background light field,
and finally composites the shifted foreground layer over the
background rendering. This composite rendering appears
smooth as the viewing angle changes. Another benefit of
our approach is that the foreground layer can be compos-
ited over the background light field at any spatial location
or depth. These parameters can be used to enhance the per-
spective shift effect or change the relative depths of the fore-
ground and background layers.

2. Related Work
In this paper, we consider a sub-problem of a more gen-

eral problem:

Given images of an arbitrary scene containing
both occluders and occluded content, cleanly
separate and model the occluders (foreground
layer(s)) as well as the complete occluded content

(background layer). For the foreground layer(s),
estimate color, alpha, and depth. For the back-
ground layer, estimate color and depth.

This general problem is underdetermined. For most ar-
bitrary scenes, many alternative models could be used to
describe the original input images. However, for applica-
tions such as matting and rendering novel views, the user
typically desires only one of these solutions. Therefore,
constraints and priors are typically imposed on the general
problem to define a better-constrained sub-problem. In this
section, we review some of these sub-problems, which have
been analyzed in prior work.

2.1. Natural Image and Light Field Matting

The natural image matting problem is concerned with
estimating foreground and alpha layers from images with
arbitrary backgrounds, but does not typically estimate the
complete background. Techniques such as Bayesian mat-
ting [3] use a single input view as well as a user-supplied
trimap. Cho et al. [1] take as input a light field and a user-
supplied trimap for the central view, and compute consistent
foreground alpha mattes across the views of the light field.

Several techniques use multiple views of the scene to
create a trimap automatically. Wexler et al. [24] assume the
background is already known, or can be easily calculated by
taking the median of all input views. That technique also
uses several priors based on limiting assumptions about the
foreground object. Joshi et al. [8] use multiple synchro-
nized views to create a trimap automatically. McGuire et
al. [14] use synchronized video streams with varying de-
gree of defocus to create a trimap automatically.

2.2. Occluded Surface Reconstruction

The occluded surface reconstruction problem is con-
cerned with reconstructing occluded surfaces, but is not typ-
ically concerned with reconstructing the occluders them-
selves. An analysis by Vaish et al. [21] compares meth-
ods for estimating the depth and color of occluded surfaces
from light fields, using alternative stereo measures such as
entropy and median. While those methods work very well
in cases of light occlusion, they break down once occlu-
sion exceeds 50 percent. Therefore, in this paper, we use
the standard mean and variance methods typically used in
multiview stereo for estimating color and depth of occluded
surfaces. In Eigen et al. [4], small occluders such as dirt
or rain are removed from images taken through windows.
That method uses a single image as input and trains a con-
volutional neural network to detect and remove the occlud-
ers. The system must be trained on each specific type of
occluder. In this paper, we demonstrate our technique on a
similar application. However, we use a light field as input
and do not use any machine learning or external datasets
when computing our results.



The approach of Gu et al. [7] is closely related to our
own. That paper uses multiple input images and defocus to
separate foreground and background layers. Different con-
straints, priors, and input sets are required depending on the
type of scene to be reconstructed. For removing dirt from
camera lenses, the approach leverages either a calibration
step or images of multiple scenes taken through the same
dirty lens, plus priors on the natural image statistics of the
scene. For removing thin occluders, the method requires
knowledge of the PSF of the camera, plus images taken with
the background in focus and the foreground at different lev-
els of defocus. Foreground and background depth informa-
tion is also required if only two of these images are sup-
plied. Like our method, their method reconstructs not only
the occluded surface, but also the occluder. However, their
method of removing thin occluders is limited to occluders
that do not add any of their own radiance to the scene (i.e.
they are dark grey or black in color). Their method is also
limited to static scenes, because multiple exposures must be
captured.

2.3. Layered Image Representations

In Layered Depth Images [17], Shade et al. propose the
Layered Depth Image representation, in which each pixel
is assigned multiple depths and colors. Their representa-
tion can be used for image based rendering to avoid the ap-
pearance of holes where disocclusions occur. In their work
and related subsequent work [19] [25], the foreground is as-
sumed to be opaque (that is, the foreground alpha either 1
or 0). Zitnick et al. [26] use a similar layered representation
for image-based rendering, adding a thin strip of non-binary
foreground alpha (computed with Bayesian matting) to rep-
resent mixed pixels at the foreground-background bound-
ary.

2.4. Layered Light Fields

Layered light field representations have been used in
prior work for rendering synthetic scenes. Lischinski
and Rappoport [12] propose the layered light field as a
collection of layered depth images from different view-
points. They use this representation for image-based
rendering of non-Lambertian effects in synthetic scenes.
Vaidyanathan et al. [20] propose partitioning the samples of
a synthetic light field into depth layers for rendering defo-
cus blur. Wanner and Goldluecke [22] estimate two layered
depth maps for a light field of a layered scene.

2.5. Light Field Depth Estimation and Rendering

The method proposed in this paper builds on prior work
on computing depth maps and digitally refocused images
from light fields. Any light field processing system could
be used to implement the proposed techniques, as long as it
provides the following operations:

1. Given a light field L and a range of hypothesis depths
d0...dn, compute a depth for every ray in a given light
field, the per-ray depth map D. This is equivalent to
having one depth map per view of the scene.

2. A refocusing operation R (L, d,W ), which projects all
rays in light field L into the central view, focused at
depth d. This operation takes an optional weight map
W , which is used to weight each ray in the light field
before refocusing. For standard refocusing, this weight
is 1 for all pixels. If a light field is refocused through
a range of depths, d0...dn, the result is a focal stack
Q = R (L, d0...dn,W ). An all-in-focus image can be
produced by refocusing each ray at its in-focus depth,
as given by depth map D using A (L,D,W ).

3. An interpolation operation L = S (Q,D), which in-
terpolates colors L into the light field domain from a
focal stack of images Q given by a per-ray depth map
D. We assume that both the focal stack and the depth
map sweep through the depths d0...dn.

4. For rendering the scene from novel views, we also re-
quire our rendering system to have a view-shifted re-
focusing operation V (L,D, d, s, t), which refocuses
light field L with depth map D at view (s, t), focused
at depth d.

We capture our input light fields with a Lytro camera [13]
and use the projective splatting-based rendering system de-
veloped for this camera by Fiss et al. [5]. The render-
ing technique used by this system is similar to the pro-
jective system described by Liang and Ramamoorthi [11],
but adjusts splat size based on per-ray depth. This rend-
ing system uses simple winner-take-all variance to com-
pute a depth per ray. A more sophisticated depth estima-
tion method [9] [18] [23] could be used instead; however
each method of depth estimation will introduce its own bi-
ases. For rendering the scene from novel views, we simply
shift the splat location of each ray proportional to its depth.
Again, more sophisticated techniques have been developed
for view-dependent rendering that could be used in place of
the basic algorithm [16] [22] [23] .

3. Methods
As input, our method takes a light field image L, as well

as three depth parameters: a frontmost depth df , a threshold
depth d⌧ , and a backmost depth db. The frontmost depth
df specifies where the foreground layer is in focus. The
threshold depth d⌧ divides the foreground and background
scene content. In general, because the problem is underde-
termined, the solution will differ depending on the supplied
depth parameters. For example, depending on the place-
ment of d⌧ , the algorithm will treat an object in the middle



Figure 5. Multicolor matting: at each iteration, one color and alpha matte is estimated. We show the intermediate composite images.

Figure 6. In this scene, playground equipment is photographed
through a blue fence. Top: B and K for two iterations of our al-
gorithm. The occluder is thick, so it is not completely removed.
Bottom: detail.

of the scene as either an occluder or an occluded object.
The backmost depth is a system parameter, which speci-
fies the farthest depth in the scene that includes background
content. All scene content of interest is assumed to occur
within the depth range db...df . The output of the algorithm
is: (1) a 4D light field K representing the background layer
only, with contamination from the foreground layer largely
removed and (2) a foreground layer represented by a color
layer F and an alpha matte ↵.

We assume that the foreground layer occurs within a nar-
row range of depths and is composed of a limited set of

colors that are distinct from the colors in the background
layer. The more closely the input light field matches these
assumptions, the more cleanly the matting operation will be
able to separate foreground from background.

Our method works iteratively, alternately estimating the
foreground and background layers. We start by estimating
an initial background light field, K0. At each iteration of
the outer loop i, we refocus the background light field Ki

at the foreground plane df , to produce image Bi. If we
compare Bi to image C, the original light field refocused at
the foreground plane, we see that RMSE(Bi, C) measures
the amount of foreground content in C that is not in Bi.
Next, in the matting step, we use Bi and C, to compute ↵i

and Fi.
The matting step is itself iterative. At each iteration of

the matting step j, we estimate one foreground color Fi,j

and one alpha matte ↵i,j . From Bi and C, we compute
↵i,0 and Fi,0. We then compute the composite Ci,1 =
↵i,0 + (1 � ↵i,0)Bi. On the next iteration, we use Ci,1

and C to compute ↵i,1 and Fi,1. Ci,j+1 builds upon Ci,j to
become closer to C, and RMSE(Ci,j , C) decreases with
each iteration of the matting step. We stop iterating when
RMSE(Ci,j , C) < 2 (usually 1-5 iterations). One color is
estimated per iteration j, so the number of color primaries
used to model the foreground is the number of iterations in
the matting step. The final reconstruction Ci is the com-
posite of Bi with the final multicolor foreground layer. Ci

is visually close to C. Fi,j and ↵i,j from all iterations are
combined to produce Fi and ↵i. Figure 5 illustrates this
iterative multicolor matting step.

Finally, we use the estimate of Fi and ↵i to improve our
estimate of the background light field. The entire algorithm
is repeated for several iterations. The outer loop terminates
when RMSE(Bi, Bi�1) stops decreasing past some ep-
silon. Figure 6 illustrates some intermediate iterative results
of our method.

3.1. Initial Foreground and Background Colors

The first step in our method is to compute an initial esti-
mate of the background light field, K0. We sweep a plane
through the range of background depths db...d⌧ , computing
focal stack Q:



(5)Q = R(L, db...d⌧ , 1)

Next, we compute a per-ray depth map Db,0 for the input
light field, where depth values are only allowed in the range
db...d⌧ . This depth map will have accurate depth values
for rays that intersect textured objects or edges in the back-
ground of the scene, but unreliable depth values for rays that
intersect an opaque occluder in the foreground region of the
scene.

We estimate the background color of each ray by inter-
polating colors from the refocused images of the scene Q:

(6)K0 = S(Q,Db,0)

Many high frequency details in the background image
content, such as small specular highlights, are lost when
computing K0. However, these details are unimportant at
this step, because K0 will be rendered out of focus during
the next step.

Next, we estimate the degree to which rays from the orig-
inal light field L are in focus at the foreground plane df . We
compute a per-ray depth map Df for L, where depth values
are only allowed in the range d⌧ ...df . This depth map will
have accurate depth values for rays that intersect textured
objects or edges in the foreground depth range, but unreli-
able depth values for rays that pass through transparent re-
gions of the foreground depth range. We scale Df between
0 and 1 to create weight map wf , which is 0 for rays that are
in focus near df . Finally, to compute B0, we refocus K0 at
df , down-weighting any rays that are found to be in focus
near df :

(7)B0 = R(K0, df , wf )

To compute C, we simply refocus the original light field
at the foreground plane.

(8)C = R(L, df , 1)

3.2. Single Color Matting

Some common types of foreground occluders, such as
window screens and dust on windows, can be adequately
described by a single (spatially uniform) RGB foreground
color F with spatially varying alpha matte ↵ [2] [7]. Given
B and C as computed previously, we compute

(9)(Fi,↵i) = arg min
F 0,↵0

k↵0
F

0 + (1� ↵

0)Bi � C)k22

In this optimization, ↵ is constrained between 0 and 1,
and image colors are constrained between 0 and 255. F is
initialized to medium gray (128, 128, 128), and ↵ is initial-
ized to 0 at all pixels. The optimization is solved using non-
linear least squares in the MATLAB optimization toolbox.
We do not use any regularization or priors when solving for
↵ and F , but these could be added if such information about
the scene is known.

3.3. Multicolor Matting

For scenes with multicolor foregrounds, we would like
to allow F to vary spatially. However, allowing F to be
any color is very susceptible to noise. Therefore, we con-
strain F to be a linear combination of a small subset of col-
ors. Rather than estimating the linear weights directly, we
iteratively estimate color layers Fi,0...m and ↵i,0...m. We
initialize Ci,0 = Bi and solve

(10)(Fi,j ,↵i,j) = arg min
F 0,↵0

k↵0
F

0+(1�↵

0)Ci,j �C)k22

(11)Ci,j+1 = ↵i,jFi,j + (1� ↵i,j)Ci,j

This matting procedure is iterated until the RMSE be-
tween Ci,j and C drops below a threshold (we use thresh-
old=2). Fi,0...m and ↵i,0...m are then simplified into single
layers Fi and ↵i using alpha compositing [15], where Fi is
a spatially varying linear combination of Fi,0...m:

(12)↵i = 1�
mY

j=0

(1� ↵i,j)

(13)

Fi =
1

↵i

2

4
↵i,mFi,m + ↵i,m�1 (1� ↵i,m)Fi,m�1

+ ...+ ↵i,0

mY

j=1

(1� ↵i,j)Fi,0

3

5

3.4. Refining Background Colors

Next, we matte out the foreground layer from the original
light field to produce a decontaminated light field Ji.

(14)Ji =
L� ↵iFi

1� ↵i

Ji will have the influence of the front layer reduced, but
likely not completely removed. Where ↵i is close to 1, Ji
will have amplified noise. Therefore, Ji is replaced with Ki

where ↵i is close to 1 (we use 0.9), and linearly blended
when ↵i exceeds a threshold (0.3).

Next, we use Ji to compute a weighted all-in-focus im-
age Ai = A (Ji, Db,i, 1� ↵i). Ai represents the back-
ground colors with the foreground rays down-weighted or
excluded. We use the value of ↵i for each ray as a measure
of how much it is occluded by the foreground. If ↵i ex-
ceeds a threshold (0.3), then the ray is not used to compute
Ai. Finally, Ji is blended with interpolated values from Ai

(using threshold t = 0.4) to compute the next estimate of
the background light field.



Figure 7. In this scene, colored strings occlude a map. The red string is removed using our method. We compare the input and background
light fields in their raw form, and refocused at two different depths. We also compare to an image of the map used in the background.

Ki+1 =

(�
1� ↵

t

�
Ji +

�
↵
t

�
S(Ai, Db,i), if ↵  t

S(Ai, Db,i), otherwise
(15)

For the next iteration, we compute per-ray depth map
Db,i using Ki. We also compute Bi, using ↵i as a weight.

(16)Bi = R(Ki, df , (1� ↵i))

4. Results
Examples of background estimation (removing the fore-

ground layer) are shown in Figures 3, 6, and 7. In the case
of large foreground occluders, where no rays see any part of

the background, the matting operation will not have enough
information to completely remove the foreground colors
(Figure 6). In Figures 4, 8, and 9, we composite a shifted
foreground layer over a novel view of the background, and
compare to the Lytro perspective shift feature. Note that
the Lytro rendering often has breaks an inaccuracies in the
foreground layer, leading to artifacts. Our method is able
to avoid these kinds of artifacts. Many of our results are
best viewed as animations. Please see our project page for
animations and additional results http://grail.cs.
washington.edu/projects/lflm/.

http://grail.cs.washington.edu/projects/lflm/
http://grail.cs.washington.edu/projects/lflm/


Figure 8. In this scene, playground equipment is photographed
through a blue fence. We compare our novel view renderings to the
Lytro perspective shift feature. We compare our novel view ren-
derings to the Lytro perspective shift feature. Top: novel views.
Bottom: detail.

5. Conclusion, Limitations, and Future Work

In this paper, we have presented a method to use matting
to separate foreground layers from light fields captured with
a plenoptic camera. Our method can be used both to pull a
foreground matte and to estimate an occluded background

Figure 9. In this scene, blue hairs occlude a glass lamp. We com-
pare our novel view renderings to the Lytro perspective shift fea-
ture. Top: novel views. Bottom: detail.

light field. Our method works well for thin, translucent,
and blurred foreground occluders. Our representation can
be used to render the light field from novel views, handling
disocclusions while avoiding common artifacts.

The technique we propose in this paper is limited in sev-
eral ways, but we believe these limitations could be over-
come in future work. Our method assumes that the fore-
ground layer is thin, fronto-parallel, and at a known depth.
In future work, we plan to extend our technique to work on
foreground layers with complex or unknown depth. Also,
in this paper, we consider only the case of a single fore-
ground layer. We plan to extend our technique to work on
light fields with multiple layers of foreground occluders. Fi-
nally, we assume that the foreground layer is composed of a
small set of colors, which are distinct from the background
layer colors. We plan to extend our method to work on more
complex foregrounds.
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