
Hashing with Binary Autoencoders

Miguel Á. Carreira-Perpiñán, Ramin Raziperchikolaei
EECS, University of California, Merced.

Introduction. We consider the problem of binary hashing, where given

a high-dimensional vector x ∈ R
D, we want to map it to an L-bit vector

z = h(x) ∈ {0,1}L using a hash function h, while preserving the neighbors

of x in the binary space. Binary hashing has emerged in recent years as an

effective technique for fast search on image (and other) databases. While the

search in the original space would cost O(ND) in both time and space, using

floating point operations, the search in the binary space costs O(NL) where

L ≪D and the constant factor is much smaller. This is because the hardware

can compute binary operations very efficiently and the entire dataset (NL

bits) can fit in the main memory of a workstation.

Many different hashing approaches have been proposed in the last few

years. They formulate an objective function of the hash function h or of the

binary codes that tries to capture some notion of neighborhood preservation.

All these approaches have in common two things: h performs dimension-

ality reduction (L < D) and, as noted, it outputs binary codes (h:RD →
{0,1}L). The latter implies a step function or binarization applied to a real-

valued function of the input x. Optimizing this is difficult. In practice, most

approaches follow a two-step procedure: first they learn a real hash func-

tion ignoring the binary constraints and then the output of the resulting hash

function is binarized. This procedure can be seen as a “filter” approach and

is suboptimal. To obtain the optimal solution, we must optimize the ob-

jective function jointly over mappings and thresholds, respecting the binary

constraints while learning h; this is a “wrapper” approach. In this paper

we show that this joint optimization can actually be carried out reasonably

efficiently.

Our hashing models. We consider a well-known model for continuous

dimensionality reduction, the (continuous) autoencoder, defined in a broad

sense as the composition of an encoder h(x) which maps a real vector x ∈
R

D onto a real code vector z ∈ R
L (with L < D), and a decoder f(z) which

maps z back to R
D in an effort to reconstruct x. For hashing, the encoder

maps continuous inputs onto binary code vectors with L bits, z ∈ {0,1}L ,

and we call it a binary autoencoder (BA). Our desired hash function will

be the encoder h, and it should minimize the following function, given a

dataset of high-dimensional patterns X = (x1, . . . ,xN):

EBA(h, f) =
N

∑
n=1

‖xn − f(h(xn))‖
2

which is the usual least-squares error but where the code layer is binary. We

will also consider a related model:

EBFA(Z, f) =
N

∑
n=1

‖xn − f(zn)‖
2 s.t. zn ∈ {0,1}L

, n = 1, . . . ,N

where f is linear and we optimize over the decoder f and the binary codes

Z = (z1, . . . ,zN) of each input pattern. We call this model (least-squares)

binary factor analysis (BFA). A hash function h can be obtained from BFA

by fitting a binary classifier of the inputs to each of the L code bits. It is a

filter approach, since it first learns Z and then h, while the BA is an optimal

(wrapper) approach, since it optimizes jointly over f and h.

We use the recently proposed method of auxiliary coordinates (MAC)

for optimization of BA and BFA. The idea is to break nested functional rela-

tionships judiciously by introducing variables as equality constraints, turn-

ing them into penalties and applying alternating optimization. We introduce

as auxiliary coordinates the outputs of h, i.e., the codes for each of the N

input patterns, and obtain the following equality-constrained problem:

min
h,f,Z

N

∑
n=1

‖xn − f(zn)‖
2

s.t. zn = h(xn), zn ∈ {0,1}L
, n = 1, . . . ,N.

This is an extended abstract. The full paper is available at the

Computer Vision Foundation webpage.

8 16 24 32
0.6

0.8

1

1.2

1.4

1.6
x 10

5

re
co

n
st

ru
ct

io
n

er
ro

r

number of bits L
8 16 24 32

0

5

10

15

20

p
re

c
is

io
n

 

 

BA
BFA
ITQ
tPCA
sigmoid

number of bits L

Figure 1: Wrapper vs filter optimization. Left: BA objective function. Right:

precision returning k = 50 nearest neighbors.

Note the codes are binary. We now apply the quadratic-penalty method and

minimize the following objective function while progressively increasing µ ,

so the constraints are eventually satisfied:

EQ(h, f,Z; µ) =
N

∑
n=1

(

‖xn − f(zn)‖
2 +µ ‖zn −h(xn)‖

2
)

s.t. zn = h(xn) ∈ {0,1}L n = 1, . . . ,N.

Now we apply alternating optimization over Z and (h, f). This results in the

following two steps:

• Over Z for fixed (h, f), the problem separates for each of the N codes.

The optimal code vector for pattern xn tries to be close to the predic-

tion h(xn) while reconstructing xn well. This binary optimization has

the form of a binary proximal operators over few variables (L), so it

can be solved exactly by enumeration, or approximately by alternat-

ing optimization.

• Over (h, f) for fixed Z, we obtain L + 1 independent problems for

each of the L single-bit hash functions and for f.

We can now see the advantage of the auxiliary coordinates: the individual

steps are (reasonably) easy to solve, and besides they exhibit significant

parallelism. The resulting algorithm alternates a step over the encoder (L

classifications) and decoder (one regression) with a step over the codes (N

binary proximal operators).

Experiments. First, we investigate the speedup that can be achieved in

training of BA. We use the Matlab Parallel Processing Toolbox with up to

12 processors and simply replace “for” with “parfor” loops so each itera-

tion (over points in the Z step, over bits in the h step) is run in a different

processor. We observe a nearly perfect scaling in training of BA.

Second, We focus purely on the BA objective function (reconstruc-

tion error) and study the gain obtained by the MAC optimization, which

respects the binary constraints, over the suboptimal, “filter” approaches.

We compared BA with four relevant methods: tPCA relaxes the constraints

(i.e., PCA) and then binarizes the result by thresholding at 0, ITQ finds

the optimal rotation before truncating the result of PCA, and sigmoid trains

the autoencoder with backpropagation where the sign function is replaced

by sigmoid. We train different methods on the NUS-WIDE-LITE dataset,

which contains N = 27807 images for training and 27808 images for test.

Fig. 1 shows that BA dominates all other methods in reconstruction er-

ror, as expected, and also in precision. This demonstrates that a better op-

timization of the objective significantly improves the hash function learned.

Finally, We compare BA with state-of-the-art methods like ITQ, AGH,

SH, SPH and KLSH on large image datasets using b = 8 to 32 bits. It is

known that the retrieval performance of a given algorithm depends strongly

on the size of the neighbor set used, so we report experiments with small

and large number of points in the ground truth set. Results show that

BA outperforms other methods, often by a large margin.

http://www.cv-foundation.org/openaccess/CVPR2015.py

