
Hashing with Binary Autoencoders

Miguel Á. Carreira-Perpiñán

EECS, University of California, Merced

http://eecs.ucmerced.edu

Ramin Raziperchikolaei

EECS, University of California, Merced

http://eecs.ucmerced.edu

Abstract

An attractive approach for fast search in image

databases is binary hashing, where each high-dimensional,

real-valued image is mapped onto a low-dimensional, bi-

nary vector and the search is done in this binary space.

Finding the optimal hash function is difficult because it in-

volves binary constraints, and most approaches approxi-

mate the optimization by relaxing the constraints and then

binarizing the result. Here, we focus on the binary autoen-

coder model, which seeks to reconstruct an image from the

binary code produced by the hash function. We show that

the optimization can be simplified with the method of aux-

iliary coordinates. This reformulates the optimization as

alternating two easier steps: one that learns the encoder

and decoder separately, and one that optimizes the code for

each image. Image retrieval experiments show the resulting

hash function outperforms or is competitive with state-of-

the-art methods for binary hashing.

1. Introduction

We consider the problem of binary hashing, where given

a high-dimensional vector x ∈ R
D, we want to map it to

an L-bit vector z = h(x) ∈ {0, 1}L using a hash function

h, while preserving the neighbors of x in the binary space.

Binary hashing has emerged in recent years as an effective

technique for fast search on image (and other) databases.

While the search in the original space would cost O(ND)
in both time and space, using floating point operations, the

search in the binary space costs O(NL) where L ≪ D
and the constant factor is much smaller. This is because

the hardware can compute binary operations very efficiently

and the entire dataset (NL bits) can fit in the main memory

of a workstation. And while the search in the binary space

will produce some false positives and negatives, one can

retrieve a larger set of neighbors and then verify these with

the ground-truth distance, while still being efficient.

Many different hashing approaches have been proposed

in the last few years. They formulate an objective function

of the hash function h or of the binary codes that tries to

capture some notion of neighborhood preservation. Most

of these approaches have two things in common: h typi-

cally performs dimensionality reduction (L < D) and, as

noted, it outputs binary codes (h:RD → {0, 1}L). The lat-

ter implies a step function or binarization applied to a real-

valued function of the input x. Optimizing this is difficult.

In practice, most approaches follow a two-step procedure:

first they learn a real hash function ignoring the binary con-

straints and then the output of the resulting hash function

is binarized (e.g. by thresholding or with an optimal rota-

tion). For example, one can run a continuous dimensionality

reduction algorithm (by optimizing its objective function)

such as PCA and then apply a step function. This procedure

can be seen as a “filter” approach [14] and is suboptimal:

in the example, the thresholded PCA projection is not nec-

essarily the best thresholded linear projection (i.e., the one

that minimizes the objective function under all thresholded

linear projections). To obtain the latter, we must optimize

the objective jointly over linear mappings and thresholds,

respecting the binary constraints while learning h; this is a

“wrapper” approach [14]. In other words, optimizing real

codes and then projecting them onto the binary space is not

the same as optimizing the codes in the binary space.

In this paper we show this joint optimization, respecting

the binary constraints during training, can actually be done

reasonably efficiently. The idea is to use the recently pro-

posed method of auxiliary coordinates (MAC) [5, 6]. This

is a general strategy to transform an original problem in-

volving a nested function into separate problems without

nesting, each of which can be solved more easily. In our

case, this allows us to reduce drastically the complexity due

to the binary constraints. We focus on binary autoencoders,

i.e., where the code layer is binary. Section 2 describes the

binary autoencoder model and objective function. Section 3

derives a training algorithm using MAC and explains how,

with carefully implemented steps, the optimization in the

binary space can be carried out efficiently. Our hypothesis

is that constraining the optimization to the binary space re-

sults in better hash functions and we test this in experiments

(section 4). These show that our resulting hash function is

consistently competitive with the state-of-the-art.

1

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu


Related work The most basic hashing approaches are

data-independent, such as Locality-Sensitive Hashing

(LSH) [1], which is based on random projections and

thresholding, and kernelized LSH [17]. Generally, they are

outperformed by data-dependent methods, which learn a

specific hash function for a given dataset in an unsupervised

or supervised way. We focus here on unsupervised, data-

dependent approaches. These are typically based on defin-

ing an objective function (usually based on dimensionality

reduction) either of the hash function or the binary codes,

and optimizing it. However, this is usually achieved by re-

laxing the binary codes to a continuous space and threshold-

ing the resulting continuous solution. For example, spec-

tral hashing [28] is essentially a version of Laplacian eigen-

maps where the binary constraints are relaxed and approxi-

mate eigenfunctions are computed that are then thresholded

to provide binary codes. Variations of this include using

AnchorGraphs [20] to define the eigenfunctions, or obtain-

ing the hash function directly as a binary classifier using

the codes from spectral hashing as labels [31]. Other ap-

proaches optimize instead a nonlinear embedding objective

that depends on a continuous, parametric hash function,

which is then thresholded to define a binary hash function

[27, 26]; or an objective that depends on a thresholded hash

function, but the threshold is relaxed during the optimiza-

tion [23]. Some recent work has tried to respect the binary

nature of the codes or thresholds by using alternating opti-

mization directly on an objective function, over one entry or

one row of the weight matrix in the hash function [16, 21],

or over a subset of the binary codes [19, 18]. Since the ob-

jective function involves a large number of terms and all

the binary codes or weights are coupled, the optimization

is very slow. Also, in [19, 18] the hash function is learned

after the codes have been fixed, which is suboptimal.

The closest model to our binary autoencoder is Itera-

tive Quantization (ITQ) [10], a fast and competitive hash-

ing method. ITQ first obtains continuous low-dimensional

codes by applying PCA to the data and then seeks a rotation

that makes the codes as close as possible to binary. The lat-

ter is based on the optimal discretization algorithm of [30],

which finds a rotation of the continuous eigenvectors of a

graph Laplacian that makes them as close as possible to a

discrete solution, as a postprocessing for spectral clustering.

The ITQ objective function is

min
B,R
‖B−VR‖

2
s.t. B ∈ {−1,+1}NL, R orthogonal (1)

where V of N × L are the continuous codes obtained

by PCA. This is an NP-complete problem, and a local

minimum is found using alternating optimization over B,

with solution B = sgn (VR) elementwise, and over R,

which is a Procrustes alignment problem with a closed-

form solution based on a SVD. The final hash function is

h(x) = sgn (Wx), which has the form of a thresholded lin-

ear projection. Hence, ITQ is a postprocessing of the PCA

codes, and it can be seen as a suboptimal approach to opti-

mizing a binary autoencoder, where the binary constraints

are relaxed during the optimization (resulting in PCA), and

then one “projects” the continuous codes back to the binary

space. Semantic hashing [26] also uses an autoencoder ob-

jective with a deep encoder (consisting of stacked RBMs),

but again its optimization trains it as a continuous problem

and then a threshold is applied to the encoder.

2. Our hashing models: binary autoencoder

and binary factor analysis

We consider a well-known model for continuous dimen-

sionality reduction, the (continuous) autoencoder, defined

in a broad sense as the composition of an encoder h(x)
which maps a real vector x ∈ R

D onto a real code vec-

tor z ∈ R
L (with L < D), and a decoder f(z) which maps

z back to R
D in an effort to reconstruct x. Although our

ideas apply more generally to other encoders, decoders and

objective functions, in this paper we mostly focus on the

least-squares error with a linear encoder and decoder. As is

well known, the optimal solution is PCA.

For hashing, the encoder maps continuous inputs onto

binary code vectors with L bits, z ∈ {0, 1}L. Let us write

h(x) = σ(Wx) (W includes a bias by having an extra di-

mension x0 = 1 for each x) where W ∈ R
L×(D+1) and

σ(t) is a step function applied elementwise, i.e., σ(t) = 1
if t ≥ 0 and σ(t) = 0 otherwise (we can fix the thresh-

old at 0 because the bias acts as a threshold for each bit).

Our desired hash function will be h, and it should minimize

the following problem, given a dataset of high-dimensional

patterns X = (x1, . . . ,xN ):

EBA(h, f) =
N
∑

n=1

‖xn − f(h(xn))‖
2

(2)

which is the usual least-squares error but where the code

layer is binary. Optimizing this nonsmooth function is dif-

ficult and NP-complete. Where the gradients do exist wrt

W they are zero nearly everywhere. We call this a binary

autoencoder (BA).

We will also consider a related model (see later):

EBFA(Z, f) =

N
∑

n=1

‖xn − f(zn)‖
2

s.t.
zn ∈ {0, 1}

L

n = 1, . . . , N
(3)

where f is linear and we optimize over the decoder f and the

binary codes Z = (z1, . . . , zN ) of each input pattern. With-

out the binary constraint, i.e., Z ∈ R
L×N , this model dates

back to the 50s and is sometimes called least-squares factor

analysis [29], and its solution is PCA. With the binary con-

straints, the problem is NP-complete because it includes as

particular case solving a linear system over {0, 1}L, which



is an integer LP feasibility problem. We call this model

(least-squares) binary factor analysis (BFA). We believe this

model has not been studied before, at least in hashing. A

hash function h can be obtained from BFA by fitting a bi-

nary classifier of the inputs to each of the L code bits. It

is a filter approach, while the BA is the optimal (wrapper)

approach, since it optimizes (2) jointly over f and h.

Let us compare BFA (without bias term in f ) with ITQ in

eq. (1). BFA takes the form minZ,A ‖X−AZ‖
2

s.t. Z ∈
{0, 1}NL. The main difference is that in BFA the binary

variables do not appear in separable form and so the step

over them cannot be solved easily.

3. Optimization of BA and BFA using the

method of auxiliary coordinates (MAC)

We use the recently proposed method of auxiliary co-

ordinates (MAC) [5, 6]. The idea is to break nested func-

tional relationships judiciously by introducing variables as

equality constraints. These are then solved by optimizing

a penalized function using alternating optimization over the

original parameters and the coordinates, which results in a

coordination-minimization (CM) algorithm. Recall eq. (2),

this is our nested problem, where the model is y = f(h(x)).
We introduce as auxiliary coordinates the outputs of h, i.e.,

the codes for each of the N input patterns, and obtain the

following equality-constrained problem:

min
h,f ,Z

N
∑

n=1

‖xn − f(zn)‖
2

s.t.
zn = h(xn) ∈ {0, 1}

L

n = 1, . . . , N.
(4)

Note the codes are binary. We now apply the quadratic-

penalty method (it is also possible to apply the augmented

Lagrangian method instead; [22]) and minimize the follow-

ing objective function while progressively increasing µ, so

the constraints are eventually satisfied:

EQ(h, f ,Z;µ) =

N
∑

n=1

(

‖xn − f(zn)‖
2
+ µ ‖zn − h(xn)‖

2
)

s.t. zn ∈ {0, 1}
L, n = 1, . . . , N. (5)

Now we apply alternating optimization over Z and (h, f).
This results in the following two steps:

• Over Z for fixed (h, f), the problem separates for each

of the N codes. The optimal code vector for pattern

xn tries to be close to the prediction h(xn) while

reconstructing xn well.

• Over (h, f) for fixed Z, we obtain L + 1 independent

problems for each of the L single-bit hash functions

(which try to predict Z optimally from X), and for f

(which tries to reconstruct X optimally from Z).

We can now see the advantage of the auxiliary coordinates:

the individual steps are (reasonably) easy to solve (although

some work is still needed, particularly for the Z step), and

input XD×N = (x1, . . . ,xN ), L ∈ N

Initialize ZL×N = (z1, . . . , zN ) ∈ {0, 1}LN

for µ = 0 < µ1 < · · · < µ∞

for l = 1, . . . , L h step

hl ← fit SVM to (X,Z·l)
f ← least-squares fit to (Z,X) f step

for n = 1, . . . , N Z step

zn ← argmin
zn∈{0,1}L

‖xn − f(zn)‖
2
+ µ ‖zn − h(xn)‖

2

if no change in Z and Z = h(X) then stop

return h, Z = h(X)

Figure 1. Binary autoencoder MAC algorithm.

besides they exhibit significant parallelism. We describe

the steps in detail below. The resulting algorithm alternates

steps over the encoder (L classifications) and decoder (one

regression) and over the codes (N binary proximal opera-

tors; [25, 8]). During the iterations, we allow the encoder

and decoder to be mismatched, since the encoder output

does not equal the decoder input, but they are coordinated

by Z and as µ increases the mismatch is reduced. The over-

all MAC algorithm to optimize a BA is in fig. 1.

Although a MAC algorithm can be shown to produce

convergent algorithms as µ → ∞ with a differentiable ob-

jective function, we cannot apply the theorem in [5] because

of the binary nature of the problem. Instead, we show that

our algorithm converges to a local minimum for a finite µ,

where “local minimum” is understood as in k-means: a

point where Z is globally minimum given (h, f) and vice

versa. The following theorem is valid for any choice of h

and f , not just linear.

Theorem 3.1. Assume the steps over h, f are solved exactly

by finding their unique global minimum1. Then the MAC

algorithm for the binary autoencoder stops at a finite µ.

Proof. µ appears only in the Z step. If Z does not change

there, f and h will not change either, since the h and f steps

are exact. The Z step over zn minimizes ‖xn − f(zn)‖
2
+

µ‖zn − h(xn)‖
2
, and from theorem 3.3 we have thath(xn)

is a global minimizer if µ > ‖xn − f(h(xn))‖
2
. The state-

ment follows from the fact that ‖xn − f(z)‖
2

is bounded

over all n, z and f . Let us prove this fact. Clearly this

holds for fixed f because (n, zn) take values on a finite set,

namely {1, . . . , N}×{0, . . . , 2L− 1}. As for f , even if the

set of functions f is infinite, the number of different func-

tions f that are possible is finite, because f results from an

exact fit to (Z,X), where X is fixed and the set of possible

Z is finite (since each znl is binary).

The minimizers of EQ(h, f ,Z;µ) trace a path as a func-

tion of µ ≥ 0 in the (h, f ,Z) space. BA and BFA can be

seen as the limiting cases of EQ(h, f ,Z;µ) when µ → ∞

1This technical condition can always be guaranteed for linear h or f by

adding a quadratic term with vanishing weight, for example.



and µ → 0+, respectively (for BFA, f and Z can be opti-

mized independently from h, but h must optimally fit the

resulting Z). In practice, to learn the BFA model we set µ
to a small value and keep it constant while running the BA

algorithm. As for BA itself, we increase µ (times a constant

factor, e.g. 2) and iterate the Z and (h, f) steps for each µ
value. Usually the algorithm stops in 10 to 20 iterations,

when no further changes to the parameters occur.

3.1. f step

With a linear decoder this is a simple linear regres-

sion minA,b

∑N
n=1 ‖xn −Azn − b‖

2
with data (Z,X),

whose solution is (ignoring the bias for simplicity) A =
XZT (ZZT )−1 and can be computed in O(NDL). Note

the constant factor in the O-notation is small because Z is

binary, e.g. XZT involves only sums, not multiplications.

3.2. h step

This has the following form:

min
h

N
∑

n=1

‖zn − h(xn)‖
2
= min

W

N
∑

n=1

‖zn − σ(Wxn)‖
2

=

L
∑

l=1

min
wl

N
∑

n=1

(znl − σ(wT
l xn))

2. (6)

Since Z and σ(·) are binary, ‖·‖
2

is the Hamming distance

and the objective function is the number of misclassified

patterns, so it separates for each bit. So it is a classifi-

cation problem for each bit, using as labels the auxiliary

coordinates, where hl is a linear classifier (a perceptron).

However, rather than minimizing this, we will solve an eas-

ier, closely related problem: fit a linear SVM hl to (X,Z·l)
where we use a high penalty for misclassified patterns but

optimize the margin plus the slack. Besides being easier

(by reusing well-developed codes for SVMs), this surrogate

loss has the advantage of making the solution unique (no

local optima) and generalizing better to test data (maximum

margin). Also, although we used a quadratic penalty, the

spirit of penalty methods is to penalize constraint violations

(zn − h(xn)) increasingly. Since in the limit µ → ∞ the

constraints are satisfied exactly, the classification error us-

ing h is zero, hence the linear SVM will find an optimum of

the nested problem anyway. We use LIBLINEAR [9] with

warm start (i.e., the SVM optimization is initialized from

the previous iteration’s SVM). Note the L SVMs and the

decoder function f can be trained in parallel.

3.3. Z step

From eq. (5), this is a binary optimization on NL vari-

ables, but it separates into N independent optimizations

each on only L variables, with the form of a binary prox-

imal operator [25, 8] (where we omit the index n):

minz e(z) = ‖x− f(z)‖
2
+ µ‖z− h(x)‖

2
s.t. z ∈ {0, 1}L.

Thus, although the problem over each zn is binary and NP-

complete, a good or even exact solution may be obtained,

because practical values of L are small (typically 8 to 32

bits). Further, because of the intensive computation and

large number of independent problems, this step can take

much advantage of parallel processing.

We have spent significant effort into making this step ef-

ficient while yielding good, if not exact, solutions. Before

proceeding, let us show how to reduce the problem, which

as stated uses a matrix of D × L, to an equivalent problem

using a matrix of L× L.

Theorem 3.2. Let x ∈ R
D and A ∈ R

D×L, with QR fac-

torisation A = QR, where Q is of D × L with QTQ = I

and R is upper triangular of L × L, and y = QTx ∈ R
L.

The following two problems have the same minima over z:

minz∈{0,1}L ‖x−Az‖2 minz∈{0,1}L ‖y −Rz‖2. (7)

Proof. Let (Q Q⊥) of D × D be orthogonal, where the

columns of Q⊥ are an orthonormal basis of the nullspace

of QT . Then, since orthogonal matrices preserve Euclidean

distances, we have: ‖x−Az‖2 =
∥

∥(Q Q⊥)
T (x−Az)

∥

∥

2

=
∥

∥QT (x−Az)
∥

∥

2 +
∥

∥QT
⊥(x−Az)

∥

∥

2 = ‖y −Rz‖2+
∥

∥QT
⊥x

∥

∥

2, where the term
∥

∥QT
⊥x

∥

∥

2 does not depend on z.

This achieves a speedup of 2D/L (where the 2 factor

comes from the fact that the new matrix is triangular), e.g.

this is 40× if using 16 bits with D = 320 GIST features

in our experiments. Henceforth, we redefine the z step as

min e(z) = ‖y −Rz‖
2
+ µ‖z− h(x)‖

2
s.t. z ∈ {0, 1}L.

Enumeration For small L, this can be solved exactly by

enumeration, at a worst-case runtime cost O(L22L), but

with small constant factors in practice (see accelerations be-

low). L = 16 is perfectly practical in a workstation without

parallel processing for the datasets in our experiments.

Alternating optimization For larger L, we use alternat-

ing optimization over groups of g bits (where the optimiza-

tion over a g-bit group is done by enumeration and uses the

same accelerations). This converges to a local minimum

of the Z step, although we find in our experiments that it

finds near-global optima if using a good initialization. In-

tuitively, it makes sense to warm-start this, i.e., to initial-

ize z to the code found in the previous iteration’s Z step,

since this should be close to the new optimum as we con-

verge. However, empirically we find that the codes change

a lot in the first few iterations, and that the following initial-

ization works better (in leading to a lower objective value)

in early iterations: we solve the relaxed problem on z s.t.

z ∈ [0, 1]L rather than {0, 1}L. This is a strongly convex

bound-constrained quadratic program (QP) in L variables

for µ > 0 and its unique minimizer can be found efficiently.

We can further speed up the solution by noting that we

have N QPs with some common, special structure. The ob-

jective is the sum of a term having the same matrix R for all



QPs, and a term that is separable in z. We have developed

an ADMM algorithm [4] that is very simple, parallelizes or

vectorizes very well, and reuses matrix factorizations over

all N QPs. It is 10–100× faster than Matlab’s quadprog.

We warm-start it from the continuous solution of the QP in

the previous Z step.

In order to binarize the continuous minimizer for zn we

could simply round its L elements, but instead we apply

a greedy procedure that is efficient and better (though still

suboptimal). We optimally binarize from bit 1 to bit L by

evaluating the objective function for bit l in {0, 1} with all

remaining elements fixed (elements 1 to l − 1 are already

binary and l + 1 to L are still continuous) and picking the

best. Essentially, this is one pass of alternating optimization

but having continuous values for some of the bits.

Finally, we pick the best of the binarized relaxed solu-

tion or the warm-start value and run alternating optimiza-

tion. This ensures that the quadratic-penalty function (5)

decreases monotonically at each iteration.

Accelerations Naively, the enumeration involves evaluat-

ing e(z) for 2L (or 2g) vectors, where evaluating e(z) for

one z costs on average roughly L + 1 multiplications and
1
4L

2 sums. This enumeration can be sped up or pruned

while still finding a global minimum by using upper bounds

on e, incremental computation of e, and necessary and suf-

ficient conditions for the solution. Essentially, we need not

evaluate every code vector, or every bit of every code vec-

tors; we know the solution will be “near” h(x); and we can

recognize the solution when we find it.

Call z∗ a global minimizer of e(z). An initial, good up-

per bound is e(h(x)) = ‖y −Rh(x)‖
2
. In fact, we have

the following sufficient condition for h(x) to be a global

minimizer. (We give it generally for any decoder f .)

Theorem 3.3. Let e(z) = ‖x− f(z)‖2 + µ‖z− h(x)‖2.

Then: (1) A global minimizer z∗ of e(z) is at a Hamming

distance from h(x) of 1
µ
‖x− f(h(x))‖

2
or less. (2) If µ >

‖x− f(h(x))‖
2

then h(x) is a global minimizer.

Proof. e(z∗) = ‖x− f(z∗)‖
2
+µ‖z∗ − h(x)‖

2
≤ e(h(x)) =

‖x− f(h(x))‖2 ⇒ ‖z∗ − h(x)‖2 ≤ 1
µ
‖x− f(h(x))‖2.

(2) follows because the Hamming distance is integer.
As µ increases and h improves, this bound becomes

more effective and more of the N patterns are pruned. Upon

convergence, the Z step costs only O(NL2). If we do have

to search for a given zn, we keep a running bound (current

best minimum) ē = ‖yn −Rz̄‖
2
+ µ‖z̄− h(xn)‖

2
, and

we scan codes in increasing Hamming distance to h(xn) up

to a distance of ē/µ. Thus, we try first the codes that are

more likely to be optimal, and keep refining the bound as

we find better codes.

Second, since ‖y −Rz‖
2

separates over dimensions

1, . . . , L, we evaluate it incrementally (dimension by di-

mension) and stop as soon as we exceed the running bound.

Finally, there exist global optimality necessary and suffi-

cient conditions for binary quadratic problems that are easy

to evaluate [2, 13]. This allows us to recognize the solution

as soon as we reach it and stop the search (rather than do a

linear search of all values, keeping track of the minimum).

These conditions can also determine whether the continu-

ous solution to the relaxed QP is a global minimizer of the

binary QP.

3.4. Schedule for the penalty parameter µ

The only user parameters in our method are the initializa-

tion for the binary codes Z and the schedule for the penalty

parameter µ (sequence of values 0 < µ1 < · · · <∞), since

we use a penalty or augmented Lagrangian method. In gen-

eral with these methods, setting the schedule requires some

tuning in practice. Fortunately, this is simplified in our case

for two reasons. 1) We need not drive µ → ∞ because

termination occurs at a finite µ and can be easily detected:

whenever Z does not change compared to the previous Z

step, no further changes to the parameters can occur. This

gives a practical stopping criterion. 2) In order to generalize

well to unseen data, we stop iterating not when we (suffi-

ciently) optimize EQ(h, f ,Z;µ), but when the precision in

a validation set decreases. This is a form of early stopping

that guarantees that we improve (or leave unchanged) the

initial Z, and besides is faster. The initialization for Z and

further details about the schedule for µ appear in section 4.

4. Experiments

We used three datasets in our experiments, commonly

used as benchmarks for image retrieval. (1) CIFAR [15]

contains 60 000 32× 32 color images in 10 classes. We ig-

nore the labels in this paper and use N = 50 000 images

as training set and 10 000 images as test set. We extract

D = 320 GIST features [24] from each image. (2) NUS-

WIDE [7] contains N = 269 648 high-resolution color im-

ages and use N = 161 789 for training and 107 859 for test.

We extract D = 128 wavelet features [24] from each im-

age. (3) SIFT-1M [12] contains N = 1 000 000 training

high-resolution color images and 10 000 test images, each

represented by D = 128 SIFT features.

We report precision and recall (%) in the test set using as

true neighbors the K nearest images in Euclidean distance

in the original space, and as retrieved neighbors in the bi-

nary space we either use the k nearest images in Hamming

distance, or the images within a Hamming distance r (if no

images satisfy the latter, we report zero precision).

Our experiments evaluate the effectiveness of our algo-

rithm to minimize the BA objective and whether this trans-

lates into better hash functions (i.e., better image retrieval);

its runtime and parallel speedup; and its precision and recall

compared to representative state-of-the-art algorithms.



8 16 24 32
0.6

0.8

1

1.2

1.4

1.6
x 10

5

re
co

n
st

ru
ct

io
n

er
ro

r

L
8 16 24 32

0

10

20

30

 

 

BA
BFA
ITQ
tPCA
sigmoid

L

p
re

ci
si

o
n

8 16 24 32
0

5

10

15

20

L

p
re

ci
si

o
n

Figure 2. Wrapper vs filter optimization: BA objective function (left) and precision using neighbors within Hamming distance r = 2
(middle) and using k = 50 nearest neighbors (right).

How much does respecting the binary constraints help?

We focus purely on the BA objective function (reconstruc-

tion error) and study the gain obtained by the MAC opti-

mization, which respects the binary constraints, over the

suboptimal, “filter” approach of relaxing the constraints

(i.e., PCA) and then binarizing the result by thresholding at

0 (tPCA) or by optimal rotation (ITQ). We also try relaxing

the step function to a sigmoid during training (with back-

propagation using minibatches of 500 points) as in [26]. To

compute the reconstruction error for tPCA and ITQ we find

the optimal mapping f given their binary codes. We use the

NUS-WIDE-LITE subset of the NUS-WIDE dataset, con-

taining N = 27 807 NUS-WIDE images for training and

27 807 images for test. We initialize BA from AGH [20]

and BFA from tPCA and use alternating optimization in the

Z steps. We search for K = 50 true neighbors and re-

port results over a range of L = 8 to 32 bits in fig. 2. We

can see that BA dominates all other methods in reconstruc-

tion error, as expected, and also in precision, as one might

expect. tPCA is consistently the worst method by a signif-

icant margin, while ITQ (very similar to the sigmoid) and

BFA are intermediate. Hence, the more we respect the bi-

nary constraints during the optimization, the better the hash

function. Further experiments below consistently show that

the BA precision significantly increases over the (AGH) ini-

tialization and is leading or competitive over other methods.

Z-step: alternating optimization and initialization We

study the MAC optimization if doing an inexact Z step by

using alternating optimization over groups of g bits. Specif-

ically, we study the effect on the number of iterations and

runtime of the group size g and of the initialization (warm-

start vs relaxed QP). Fig. 3 shows the results in the CIFAR

dataset using L = 16 bits (so using g = 16 gives an ex-

act optimization), without using a validation-based stopping

criterion (so we do optimize the training objective).

Surprisingly, the warm-start initialization leads to worse

BA objective function values than the binarized relaxed one.

Fig. 3(left) shows the dashed lines (warm-start for different

g) are all above the solid lines (relaxed for different g). The

reason is that, early during the optimization, the codes Z

5 20 40 55
1.66

1.68

1.7

1.72

1.74
x 10

4

 

 

re
co

n
st

ru
ct

io
n

er
ro

r
number of iterations

exact

warm

start

relaxed

g = 1
g = 2
g = 4
g = 8
g = 16

0 50 100 150 200 250

runtime (minutes)
Figure 3. Iterations (left) and runtime (right) of the MAC optimiza-

tion of the BA objective function (at each iteration, we run one Z

and (f ,h) step). In the Z step, we use alternating optimization in

g-bit groups (g = 16 means exact optimization), and a warm-start

vs relaxed initialization of Z.

undergo drastic changes from one iteration to the next, so

the warm-start initialization is farther from a good optimum

than the relaxed one. Late in the optimization, when the

codes change slowly, the warm-start does perform well. The

relaxed initialization resulting optima are almost the same

as using the exact binary optimization.

Also surprisingly, different group sizes g eventually con-

verge to almost the same result as using the exact binary op-

timization if using the relaxed initialization. (If using warm-

start, the larger g the better the result, as one would expect.)

Likewise, in fig. 2, if using alternating optimization in the

Z step rather than enumeration, the curves for BA and BFA

(not shown) barely vary. But, of course, the runtime per

iteration grows exponentially on g (middle panel).

Hence, it appears that using faster, inexact Z steps does

not impair the model learnt, and we settle on g = 1 with

relaxed initialization as default for all our remaining exper-

iments (unless we use L < 16 bits, in which case we simply

use enumeration).

Parallel processing Fig. 4 shows the BA training time

speedup achieved with parallel processing, in CIFAR with

L = 16 bits. We use the Matlab Parallel Processing Tool-

box with up to 12 processors and simply replace “for” with

“parfor” loops so each iteration (over points in the Z step,

over bits in the h step) is run in a different processor. We



2 4 6 8 10 12

2

4

6

8

10

sp
ee

d
u

p

number of processors
Figure 4. Parallel processing.

observe a nearly per-

fect scaling for this

particular problem.

As a rough indication

of runtimes for BA,

training the 50 000
CIFAR images and

161 789 NUS-WIDE

images using L = 32
bits with alternating

optimization in the Z step takes 20’ and 50’, respectively

(in a 4-core laptop).

Schedule of µ and initial Z Since the objective is non-

convex, our result does depend on the initial codes Z (in the

first iteration of the MAC algorithm), but we are guaranteed

to improve or leave unchanged the precision (in the valida-

tion set) of the codes produced by any algorithm. We have

observed that initializing from AGH [20] tends to produce

best results overall, so we use this in all the experiments.

Using ITQ [10] produces also good results (occasionally

better but generally somewhat worse than AGH), and is a

simpler and faster option if so desired. We initialize BFA

from tPCA, since this seems to work best.

In order to be able to use a fixed schedule, we make the

data zero-mean and rescale it so the largest feature range

is 1. This does not alter the ordering of the Euclidean dis-

tances and normalizes the scale; it is also recommended by

LIBLINEAR to train the SVM faster [9]. We start with

µ1 = 10−5 and double it after each iteration (one Z and

(f ,h) step). As noted in section 3, the algorithm will skip

µ values that do not improve the precision in the validation

set, and will stop at a finite µ value (past which no further

changes occur).

It is of course possible to tweak all these settings (µ
schedule and initial Z) and obtain better results, but these

defaults seem robust.

Comparison with other algorithms in image retrieval

We compare BA and BFA with the following algorithms:

thresholded PCA (tPCA), Iterative Quantization (ITQ) [10],

Spectral Hashing (SH) [28], Kernelized Locality-Sensitive

Hashing (KLSH) [17], AnchorGraph Hashing (AGH) [20],

and Spherical Hashing (SPH) [11]. Note several of these

learn nonlinear hash functions and use more sophisticated

error functions (that better approximate the nearest neigh-

bor ideal), while our BA uses a linear hash function and

simply minimizes the reconstruction error. All experiments

use the output of AGH and tPCA to initialize BA and BFA,

respectively.

It is known that the retrieval performance of a given al-

gorithm depends strongly on the size of the neighbor set

used, so we report experiments with small and large num-

ber of points in the ground truth set. For NUS-WIDE, we

considered as ground truth K = 100 and K = 1 500 neigh-

bors of the query point, and as set of retrieved neighbors,

we retrieve either k nearest neighbors (k = 100, 1500) or

neighbors within Hamming distance r (r = 1, 2). Figs. 5

and 6 show the results. For ANNSIFT-1M, we considered

ground truth K = 10 000 neighbors and set of retrieved

neighbors for k = 10 000 or r = 1 to 3. Fig. 7 shows the

results. All curves are the average over the test set.

Although the relative performance of the different meth-

ods varies depending on the reported set size, some trends

are clear. Generally (though not always) BA beats all other

methods, sometime by a significant margin. ITQ and SPH

become close (sometimes comparable) to BA in CIFAR (not

shown) and NUS-WIDE dataset, respectively. BFA is also

quite competitive, but consistently worse than BA. The only

situation when the precision of BA and BFA appears to de-

crease is when L is large and r is small. The reason is that

many test images have no neighbors at a Hamming distance

of r or less and we report zero precision for them. This

suggests the hash function finds a way to avoid collisions

as more bits are available. In practice, one would simply

increase r to retrieve sufficient neighbors.

Finally, we repeated our experiments using centered and

normalized data, i.e., cosine similarity instead of Euclidean

distance to determine ground-truth neighbors. The only im-

portant change is that all methods see a small, consistent

increase in precision compared to the Euclidean distance

precision. Although the increase varies for each method,

the method ranking remains nearly identical, with BA be-

ing competitive as in Euclidean distance. Fig. 7 shows this

for ANNSIFT-1M. This is consistent with the fact that the

BA objective does not directly measure neighbor preserva-

tion (in Euclidean or cosine distance), but instead preserves

manifold structure in some sense (see section 5).

5. Discussion

One contribution of this paper is to reveal a connection

between ITQ [10] (a popular, effective hashing algorithm)

and binary autoencoders. ITQ can be seen as a fast, ap-

proximate optimization of the BA objective function, using

a “filter” approach (relax the problem to obtain continuous

codes, iteratively quantize the codes, then fit the hash func-

tion). Our BA algorithm is a corrected version of ITQ.

Admittedly, there are objective functions that are more

suited for information retrieval than the autoencoder, by

explicitly encouraging distances in the original and Ham-

ming space to match in order to preserve nearest neighbors

[28, 3, 20, 17, 19, 18]. However, autoencoders do result in

good hash functions, as evidenced by the good performance

of ITQ and our method (or of semantic hashing [26], using

neural nets). The reason is that, with continuous codes, au-

toencoders can capture the data manifold in a smooth way

and indirectly preserve distances, encouraging (dis)similar



L = 8 L = 16 L = 24 L = 32

p
re

ci
si

o
n

0 20 40 60 80 100
0

1

2

3

recall
0 20 40 60 80 100

0

5

10

 

 

BA
BFA
ITQ
tPCA
SPH
KLSH
SH
AGH

recall
0 20 40 60 80 100

0

10

20

30

recall
0 20 40 60 80 100

0

10

20

30

recall
Figure 5. Precision/recall in NUS-WIDE using L = 8 to 32 bits. Ground truth: K = 100 nearest images to the query image in the training

set. Retrieved neighbors: training images at Hamming distance ≤ r of the query in binary space.

k = 10 000 neighbors Hamming distance ≤ 1 Hamming distance ≤ 2 Hamming distance ≤ 3

8 16 24 32

10

15

20

25

30

35

p
re

ci
si

o
n

L
8 16 24 32

0

20

40

60

80

L
8 16 24 32

0

20

40

60

80

 

 

BA
BFA
ITQ
tPCA
SPH
KLSH
SH
AGH

L
8 16 24 32

0

20

40

60

80

L
Figure 7. Precision in ANNSIFT-1M using L = 8 to 32 bits. Like fig. 6 but with ground truth K = 10 000 and retrieved neighbors

k = 10 000 or Hamming distance ≤ r = 1 to 3. In this figure we used the cosine similarity instead of Euclidean distance as ground truth.

K = 100 K = 1 500

k
n

ei
g

h
b

o
rs

8 16 24 32
0

5

10

8 16 24 32
0

10

20

30

H
am

m
in

g
d

is
t.
≤

1

8 16 24 32
0

5

10

15

20

25

8 16 24 32
0

20

40

60

H
am

m
in

g
d

is
t.
≤

2

8 16 24 32
0

5

10

15

20

 

 

BA
BFA
ITQ
tPCA
SPH
KLSH
SH
AGH

L
8 16 24 32

0

20

40

60

 

 

BA
BFA
ITQ
tPCA
SPH
KLSH
SH
AGH

L
Figure 6. Precision in NUS-WIDE using L = 8 to 32 bits. Ground

truth: K = 100 (left) and 1 500 (right column) nearest images to

the query image in the training set. Retrieved neighbors: k = 100
and 1 500 nearest images to, or images at Hamming distance ≤

r = 1 and 2 of the query, searching the training set binary codes.

images to have (dis)similar codes—even if this is worsened

to some extent because of the quantization introduced with

discrete codes. Autoencoders are also faster and easier to

optimize and scale up better to large datasets.

6. Conclusion and future work

Up to now, many hashing approaches have essentially

ignored the binary nature of the problem and have approx-

imated it through relaxation and truncation, possibly disre-

garding the hash function when learning the binary codes.

The inspiration for this work was to capitalize on the decou-

pling introduced by the method of auxiliary coordinates to

be able to break the combinatorial complexity of optimizing

with binary constraints, and to introduce parallelism into the

problem. Armed with this algorithm, we have shown that

respecting the binary nature of the problem during the op-

timization is possible in an efficient way and that it leads

to better hash functions, competitive with the state-of-the-

art. This was particularly encouraging given that the au-

toencoder objective is not the best for retrieval, and that we

focused on linear hash functions.

The algorithm has an intuitive form (alternating classi-

fication, regression and binarization steps) that can reuse

existing, well-developed code. The extension to nonlinear

hash and reconstruction mappings is straightforward and it

will be interesting to see how much these can improve over

the linear case. This paper is a step towards constructing

better hash functions using the MAC framework. We be-

lieve it may apply more widely to other objective functions.



Acknowledgments

Work supported by NSF award IIS–1423515. We thank

Ming-Hsuan Yang, Yi-Hsuan Tsai and Mehdi Alizadeh (UC

Merced) for useful discussions.

References

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Comm.

ACM, 51(1):117–122, Jan. 2008. 2

[2] A. Beck and M. Teboulle. Global optimality conditions

for quadratic optimization problems with binary constraints.

SIAM Journal on Optimization, 11(1):179–188, 2000. 5

[3] M. Á. Carreira-Perpiñán. The elastic embedding algo-

rithm for dimensionality reduction. In J. Fürnkranz and

T. Joachims, editors, Proc. of the 27th Int. Conf. Ma-

chine Learning (ICML 2010), pages 167–174, Haifa, Israel,

June 21–25 2010. 7

[4] M. Á. Carreira-Perpiñán. An ADMM algorithm for

solving a proximal bound-constrained quadratic program.

arXiv:1412.8493 [math.OC], Dec. 29 2014. 5

[5] M. Á. Carreira-Perpiñán and W. Wang. Distributed optimiza-

tion of deeply nested systems. arXiv:1212.5921 [cs.LG],

Dec. 24 2012. 1, 3

[6] M. Á. Carreira-Perpiñán and W. Wang. Distributed optimiza-

tion of deeply nested systems. In S. Kaski and J. Corander,

editors, Proc. of the 17th Int. Conf. Artificial Intelligence and

Statistics (AISTATS 2014), pages 10–19, Reykjavik, Iceland,

Apr. 22–25 2014. 1, 3

[7] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng.

NUS-WIDE: A real-world web image database from Na-

tional University of Singapore. In Proc. ACM Conf. Image

and Video Retrieval (CIVR’09), Santorini, Greece, July 8–10

2009. 5

[8] P. L. Combettes and J.-C. Pesquet. Proximal splitting meth-

ods in signal processing. In H. H. Bauschke, R. S. Burachik,

P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz,

editors, Fixed-Point Algorithms for Inverse Problems in Sci-

ence and Engineering, Springer Series in Optimization and

Its Applications, pages 185–212. Springer-Verlag, 2011. 3,

4

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin. LIBLINEAR: A library for large linear classification. J.

Machine Learning Research, 9:1871–1874, Aug. 2008. 4, 7

[10] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-

tive quantization: A Procrustean approach to learning binary

codes for large-scale image retrieval. IEEE Trans. Pattern

Analysis and Machine Intelligence, 35(12):2916–2929, Dec.

2013. 2, 7

[11] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spher-

ical hashing. In Proc. of the 2012 IEEE Computer Society

Conf. Computer Vision and Pattern Recognition (CVPR’12),

pages 2957–2964, Providence, RI, June 16–21 2012. 7

[12] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. IEEE Trans. Pattern Analysis

and Machine Intelligence, 33(1):117–128, Jan. 2011. 5

[13] V. Jeyakumar, A. M. Rubinov, and Z. Y. Wu. Non-convex

quadratic minimization problems with quadratic constraints:

Global optimality conditions. Math. Prog., 110(3):521–541,

Sept. 2007. 5

[14] R. Kohavi and G. H. John. The wrapper approach. In H. Liu

and H. Motoda, editors, Feature Extraction, Construction

and Selection. A Data Mining Perspective. Springer-Verlag,

1998. 1

[15] A. Krizhevsky. Learning multiple layers of features from

tiny images. Master’s thesis, Dept. of Computer Science,

University of Toronto, Apr. 8 2009. 5

[16] B. Kulis and T. Darrell. Learning to hash with binary recon-

structive embeddings. In Y. Bengio, D. Schuurmans, J. Laf-

ferty, C. K. I. Williams, and A. Culotta, editors, Advances in

Neural Information Processing Systems (NIPS), volume 22,

pages 1042–1050. MIT Press, Cambridge, MA, 2009. 2

[17] B. Kulis and K. Grauman. Kernelized locality-sensitive

hashing. IEEE Trans. Pattern Analysis and Machine Intel-

ligence, 34(6):1092–1104, June 2012. 2, 7

[18] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and

D. Suter. Fast supervised hashing with decision trees for

high-dimensional data. In Proc. of the 2014 IEEE Com-

puter Society Conf. Computer Vision and Pattern Recogni-

tion (CVPR’14), pages 1971–1978, Columbus, OH, June 23–

28 2014. 2, 7

[19] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general

two-step approach to learning-based hashing. In Proc. 14th

Int. Conf. Computer Vision (ICCV’13), pages 2552–2559,

Sydney, Australia, Dec. 1–8 2013. 2, 7

[20] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with

graphs. In L. Getoor and T. Scheffer, editors, Proc. of the

28th Int. Conf. Machine Learning (ICML 2011), pages 1–8,

Bellevue, WA, June 28 – July 2 2011. 2, 6, 7

[21] B. Neyshabur, N. Srebro, R. Salakhutdinov, Y. Makarychev,

and P. Yadollahpour. The power of asymmetry in bi-

nary hashing. In C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger, editors, Advances in

Neural Information Processing Systems (NIPS), volume 26,

pages 2823–2831. MIT Press, Cambridge, MA, 2013. 2

[22] J. Nocedal and S. J. Wright. Numerical Optimization.

Springer Series in Operations Research and Financial Engi-

neering. Springer-Verlag, New York, second edition, 2006.

3

[23] M. Norouzi and D. Fleet. Minimal loss hashing for compact

binary codes. In L. Getoor and T. Scheffer, editors, Proc. of

the 28th Int. Conf. Machine Learning (ICML 2011), Belle-

vue, WA, June 28 – July 2 2011. 2

[24] A. Oliva and A. Torralba. Modeling the shape of the scene:

A holistic representation of the spatial envelope. Int. J. Com-

puter Vision, 42(3):145–175, May 2001. 5

[25] R. T. Rockafellar. Monotone operators and the proximal

point algorithm. SIAM J. Control and Optim., 14(5):877–

898, 1976. 3, 4

[26] R. Salakhutdinov and G. Hinton. Semantic hashing. Int. J.

Approximate Reasoning, 50(7):969–978, July 2009. 2, 6, 7

[27] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large

image databases for recognition. In Proc. of the 2008 IEEE



Computer Society Conf. Computer Vision and Pattern Recog-

nition (CVPR’08), Anchorage, AK, June 23–28 2008. 2

[28] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

D. Koller, Y. Bengio, D. Schuurmans, L. Bottou, and A. Cu-

lotta, editors, Advances in Neural Information Processing

Systems (NIPS), volume 21, pages 1753–1760. MIT Press,

Cambridge, MA, 2009. 2, 7

[29] P. Whittle. On principal components and least square meth-

ods of factor analysis. Skand. Aktur. Tidskr., 36:223–239,

1952. 2

[30] S. X. Yu and J. Shi. Multiclass spectral clustering. In Proc.

9th Int. Conf. Computer Vision (ICCV’03), pages 313–319,

Nice, France, Oct. 14–17 2003. 2

[31] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing

for fast similarity search. In Proc. of the 33rd ACM Conf.

Research and Development in Information Retrieval (SIGIR

2010), pages 18–25, Geneva, Switzerland, July 19–23 2010.

2


