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Abstract

A nested motion descriptor is a spatiotemporal represen-
tation of motion that is invariant to global camera transla-
tion, without requiring an explicit estimate of optical flow
or camera stabilization. This descriptor is a natural spa-
tiotemporal extension of the nested shape descriptor [2]
to the representation of motion. We demonstrate that the
quadrature steerable pyramid can be used to pool phase,
and that pooling phase rather than magnitude provides an
estimate of camera motion. This motion can be removed us-
ing the log-spiral normalization as introduced in the nested
shape descriptor. Furthermore, this structure enables an el-
egant visualization of salient motion using the reconstruc-
tion properties of the steerable pyramid. We compare our
descriptor to local motion descriptors, HOG-3D and HOG-
HOF, and show improvements on three activity recognition
datasets.

1. Introduction
The problem of activity recognition is a central problem

in video understanding. This problem is concerned with
detecting actions in a subsequence of images, and assign-
ing this detected activity a unique semantic label. The core
problem of activity recognition is concerned with the rep-
resentation of motion, such that the motion representation
captures the informative or meaningful properties of the
activity, and discards irrelevant motions due to camera or
background clutter.

A key challenge of activity recognition is motion repre-
sentation in unconstrained video. Classic activity recogni-
tion datasets [21] focused on tens of actions collected with a
static camera of actors performing scripted activities, how-
ever the state-of-the-art has moved to recognition of hun-
dreds of activities captured with moving cameras of ”ac-
tivities in the wild” [12][19][15]. Moving cameras exhibit
unconstrained translation, rotation and zoom, which intro-
duces motion at every pixel in addition to pixel motion due
to the foreground activity. The motion due to camera move-

Figure 1. Nested Motion Descriptors (NMD). (left) Compute rel-
ative magnitude and phase for orientations and scales for a set of
frames, (right) Pool the robust component velocity derived from
relative phase in a set of circular pooling regions all intersecting
at the center interest point. Log-spiral normalization computes
the difference between phases in neighboring scales and positions
along a log-spiral curve. The phase pooling aggregates component
velocities, so this difference computes an acceleration which rep-
resents local motion which is invariant to constant velocity of the
camera.

ment is not informative for the activity, and has been shown
to strongly affect activity representation performance [8].

Recent work has focused on motion descriptors that are
invariant to camera motion [11, 7, 31, 8, 26, 25, 27, 16, 29].
Local spatiotemporal descriptors such as, such as HOG-
HOF [3, 14] or HOG-3D [10], have shown to be a useful
motion representation for activity recognition. However,
these local descriptors are not invariant to dominant camera
motion. Recent work has focused on aggregating these lo-
cal motion descriptors into dense trajectories, where optical
flow techniques are used to provide local tracking of each
pixel. Then, the local motion descriptors are constructed us-
ing differences in the flow field, and then are concatenated
along a trajectory for invariance to global motion. However,
these approaches all rely on estimation of the motion field
using optical flow techniques, which have shown to intro-
duce artifacts into a video stream due to an early commit-
ment to motion or over-regularization of the motion field,
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Figure 2. From nested shape descriptors to nested motion descrip-
tors. Nested shape descriptors pool oriented and scaled gradi-
ents magnitude which captures the contrast of an edge in an im-
age. Nested motion descriptors pool relative phase which captures
translation of an edge. Projecting the spatiotemporal structure of
the nested motion descriptor onto a single image will form the
structure of the nested shape descriptor.

which can corrupts the motion representation.
In this paper, we propose a new family of binary local

motion descriptors called nested motion descriptors. This
descriptor provides a representation of salient motion that
is invariant to global camera motion, without requiring an
explicit optical flow estimate. The key new idea underly-
ing this descriptor is that appropriate sampling of scaled
and oriented gradients in the complex steerable pyramid ex-
hibits a phase shift due to camera motion. This phase shift
can be removed by a technique called a log-spiral normal-
ization, which computes a phase difference in neighboring
scales and positions, resulting in a relative phase where the
absolute global image motion has been removed. This ap-
proach is inspired by phase constancy [5], component ve-
locity [4] and motion without movement [6, 24], which uses
phase shifts as a correction for translation without an ex-
plicit motion field estimate.

2. Related Work

The literature on motion representation can be decom-
posed into approaches focused on local motion descriptors,
mid-level motion descriptors or global activity descriptors.
In this section, we will focus on local motion representa-
tions only, which are most relevant to this paper.

A local motion descriptor is a representation of the lo-
cal movement in a scene centered at a single interest point
in a video. Examples of local motion descriptors include
HOG-HOF [3, 14], cuboid [17], extended SURF [30] and
HOG-3D [10]. These descriptors construct spatiotemporal
oriented gradient histograms over small spatial and tempo-
ral support, typically limited to tens of pixels spatially, and
a few frames temporally. HOG-HOF includes a histogram
of optical flow [3, 14], computed over a similar sized spa-
tiotemporal support. Furthermore, recent evaluations have
shown that activity recognition performance is significantly

improved by considering dense regular sampling of descrip-
tors [28][1], rather than sparse extraction at interest points.

An interesting recent development has been the develop-
ment of local motion descriptors that are invariant to dom-
inant camera motion. A translating, rotating or zooming
camera introduces global pixel motion that is irrelevant to
the motion of the foreground object. Research has observed
that this camera motion introduces a global translation, di-
vergence or curl into the optical flow field [8], and removing
the effect of this global motion significantly improves the
representation of foreground motion for activity recogni-
tion. The motion boundary histogram [3, 26, 25] computes
a global motion field from optical flow, then computes local
histograms of derivatives of the flow field. This representa-
tion is sensitive to local changes in the flow field, and insen-
sitive to global flow. Motion interchange patterns [11, 7, 31]
compute a patch based local correspondence to recover the
motion of a pixel, followed by a trinary representation of
the relative motion of neighboring patches. Finally, dense
trajectories [26, 25, 27] concatenate HOG-HOF and mo-
tion boundary histograms for a tracked sequence of inter-
est points forming a long term trajectory descriptor. The
improved dense trajectories [27] with fisher vector encod-
ing is the current state-of-the-art on large datasets for action
recognition [29].

3. Nested Motion Descriptors
A nested motion descriptor is a representation of salient

motion in a video that is invariant to camera motion. The
nested motion descriptor is an extension of the nested shape
descriptor [2] to the representation of motion. Figure 2
shows that while the nested shape descriptor pools the mag-
nitude of edges, the nested motion descriptor pools phase
gradients which captures translation of edges in a video. In
this section, we describe this construction in detail.

3.1. Overview

Figure 1 provides an overview of the construction of the
nested motion descriptor. This procedure is summarized
as a three step process: bandpass filtering, spatiotemporal
phase pooling and log-spiral normalization. First, bandpass
filtering is performed to decompose each image in a video
into a set of orientation and scale selective subbands us-
ing the complex steerable pyramid [23, 22, 18]. The com-
plex steerable pyramid includes basis filters in quadrature
pairs, which allows for magnitude and phase estimation for
each subband. We compute the relative magnitude and rel-
ative phase for each subband from a current frame to a past
frame. This relative bandpass response is visualized in fig-
ure 1. We compute relative magnitude and phase for scales
following a log scale, so that we compute a large scale band-
pass response for frames further away in time. This encodes
a fixed velocity tuning for a velocity parameter ν. The com-



plex steerable pyramid decomposition is described in detail
in the supplementary material.

Relative magnitude and phase provide measurements of
speed and direction of motion in a video. An example is
shown in figure 1 (middle) of ”kiss” from the human motion
database [12]. In this example, the man on the left tilts his
head and moves in towards the woman on the right. Observe
that there is small scale motion of the man’s sideburns and
ear, medium scale motion of the collar and woman’s eyes,
and large scale motion of the two heads moving towards
each other. The relative magnitude over various scales cap-
tures this motion. Similarly, the relative phase encodes a
spatial translation from frame t to t− k. The relative phase
is shown on the scale [−π, π] where zero phase is green,
negative phase is blue and positive phase is red. The phase
of the mid and large scale motions encode the movement
of the faces. Furthermore, at the largest scale, observe that
there are two motions present, of the two heads moving to-
wards each other.

Second, we perform phase pooling. We derive the rela-
tionship between phase gradients and component velocity,
such that pooling component velocity is equivalent to pool-
ing phase gradients. Furthermore, we derive a robust form
of the component velocity using phase stability, to provide
robust measurements of component velocities in regions of
unstable phase. We define a set of pooling regions to pool
the component velocity in neighboring spatial and temporal
regions, to provide invariance to local geometric transfor-
mations. Each of the pooling regions is centered at an inter-
est point, and the pooling regions are uniformly distributed
in angle around the interest point. Each pooling region is
represented by a single component velocity, and all orien-
tations and scales are concatenated into a single nested mo-
tion descriptor for the interest point. This is visualized in
figure 1 by the ”collapsing” of the descriptor across scales
into a combined descriptor at the bottom of the figure. This
pooling and sampling of subband component velocity is the
primary construction of the nested motion descriptor.

Third, we perform log-spiral normalization. Relative
phase or phase gradients are proportional to the motion in
an image. This motion could be due to the salient motion
of a foreground object, or due to the global motion of the
camera. Observe that the global motion of the camera in-
troduces pixel motion that is a composition of global trans-
lation, rotation and scale. In these cases, the motion field
in a local patch is uniformly offset, so that all vectors in
the motion field in this patch are offset by a fixed bias due
to the camera motion. The relative phase is also offset by a
fixed constant. We can remove this constant by computing a
phase difference with neighbors in position and scale. This
is the goal of the log-spiral normalization, which computes
a phase difference to remove this fixed bias due to camera
motion. The log-spiral normalization procedure is outlined

in figure 1 (bottom right), with the spiral like arrangement
showing the differences to be computed along this spiral.

In this section, we describe each of these stages of pro-
cessing in more detail. The supplementary material pro-
vides additional background material on complex steerable
pyramid and the relationship between component velocities
and phase gradients. The reader is referred to this material
for additional detail.

3.2. Phase Gradients and Component Velocity

The complex steerable pyramid [23, 22, 18] is an over-
complete decomposition of an image into orientation and
scale selective subbands. The orientation subbands exhibit
a steerability property such that the response to an arbitrary
orientation is a linear combination of basis subbands. Fur-
thermore, a complex steerable pyramid includes basis filters
in quadrature pairs, such that each basis filter is further de-
composed into a an oriented filter and it’s Hilbert transform,
forming an in-phase and quadrature component shifted by
90o in phase. From this decomposition, it is straightforward
to compute a phase and magnitude response at many scale
and orientation selective subbands. In this section, we show
the relationship between phase and velocity.

This relationship between phase and motion has been
used in phase based optical flow methods [4, 5] to enforce
the phase constancy constraint [4], such that feasible optical
flow solutions are constraint to lie on contours of constant
phase. This constraint has shown to be more stable than the
more common brightness constancy constraint [9, 5] over
ranges of shape deformation and lighting. The phase con-
stancy constraint is given by

5 φ(x, t) • ~v = 0 (1)

where 5φ(x, t) = [∂φdx ,
∂φ
dy ,

∂φ
dt ]T is the phase gradient

and ~v = [∂x0

dt ,
∂y0
dt , 1]T is the component velocity at point

(x0, y0). Rearranging terms

∂φ

dx
vx +

∂φ

dy
vy = −∂φ

dt
(2)

where we use the shorthand notation ~v = [vx, vy, 1] for
the partial derivatives of component velocity and similarly
5φ(x, t) = [φx, φy, φt]

T for the phase gradient. The
phase constancy constraint states that the projection of the
component velocity onto the spatial phase gradient is equal
to the negative temporal phase gradient. This is identical
to the classic brightness constancy constraint, using local
phase instead of local brightness. The phase constancy con-
straint in (2) shows the explicit relationship between the
phase gradient and velocity.

This method can be used to estimate the component ve-
locity for each tuned orientation and scale Bω,θ. We use
the notation ~φ = [φx, φy]T to denote the spatial phase gra-
dient, then the spatial phase gradient defines a unit vector



n̂ = [φx

|~φ|
,
φy

|~φ|
]T . The unit vector constraints the direction of

the component velocity, due to the dot product in the phase
constancy constraint. The velocity magnitude α can be de-
termined directly from (2):

α =
−φt
|~φ|

(3)

where ~φ = [φx, φy] is the spatial phase gradient. This is a
single equation in a single unknown for the velocity scale α.
Given the observed phase gradient, the component velocity
is estimated ~v = αn̂.

The component velocity (3) is a function of only phase
gradients which can be computed efficiently from the com-
plex steerable pyramid. The bandpass response in the com-
plex steerable pyramid for a given tuned orientation and
scale at time t is denoted Btω,θ. To simplify notation, when
the bandpass orientation and scale (ω, θ) is implied, let this
bandpass response be written as Btω,θ = Bt. The phase
gradient is given by

5 φ =
Im(B∗∆B)

|B|2
(4)

where Im(z) is the imaginary component of the complex
number z, and B∗ is the complex conjugate of the complex
valued bandpass response [4].

3.3. Robust Component Velocity

It is important to discuss the stability of phase based
component velocity estimation. Fleet and Jepson [9, 5] sug-
gest a threshold on a function of the magnitude response to
discard regions with poor phase stability. They show that
a sufficient statistic for a robust phase estimate is the ratio
between the spatial derivative of magnitude and the abso-
lute magnitude. In other words, we require a small change
in magnitude relative to the absolute magnitude in order to
have stable phase estimate.

P = {q | |ρx(q)|
ρ(q)

< τ, q ∈ I} (5)

The set P is a set of interest points in an image I such that
each interest point satisfies the constraint for phase stabil-
ity. A feasible interest point is one that has a small spatial
change in magnitude (e.g. a local maxima of magnitude,
at the phase zero crossing) and has a large edge magni-
tude. This constraint discards regions of low contrast (small
denominator) and non-maximum edges (large numerator),
leaving interest points that have sufficiently stable phase
characteristics for computing component velocity.

The stability constraint in (5) be combined with the
phase gradient (4) into a single measurement of robust

phase gradient5φ̂

f(ρ, τ, β) =
1

1 + exp(−β(τ − |ρx|ρ ))
(6)

5φ̂ = f(ρ, τ, β)5 φ =
5φ

1 + exp(−β(τ − |ρx|ρ ))
(7)

The logistic function in (6) provides a soft threshold for the
stability constraint. The robust phase gradient is equal to
5φ when |ρx|ρ � τ , and smoothly transitions to zero as
|ρx|
ρ � τ . The parameter β encodes the sharpness of the

transition of the logistic function from zero to one.
This estimate of robust phase gradient can be used to de-

fine a robust component velocity. Following the definition
of component velocity in (3), and replacing the phase gra-
dients with the robust phase gradients in (7), we define the
robust component velocity as

α̂ =
−φ̂t
|~̂φ|

(8)

Intuitively, this function provides a measurement of com-
ponent velocity that is equal to the observed velocity if the
magnitude is sufficient. However, if the magnitude is not
sufficient and the phase is unstable, such as a region of low
contrast, then the function will provide a measurement of
zero velocity. This formulation of robust component veloc-
ity is a new contribution of this work.

Figure 3 shows and example of the phase stability and ro-
bust phase gradient. In this example, a golfer is in the mid-
dle of the backswing and the camera is panning from left to
right to begin following the ball. We show the magnitude
and phase for an oriented bandpass response tuned to two
octave scales and 0o orientation. The observed temporal
phase gradient is very noisy due to regions of poor stability
where the magnitude is small or non-maximum. The phase
stability in (5) can be used to identify the regions in the im-
agery with stable phase, which is shown in the grayscale
image such that white pixels are stable, and black are un-
stable. Finally, the robust phase gradient is computed using
this stability constraint as in (7) resulting in stable phase
measurements. The figure shows that the stable phase gra-
dient is much less noisy and clearly reflects the true motion
of the background and the swing of the golfer.

3.4. Robust Phase Pooling

Spatiotemporal phase pooling refers to the aggregation
or accumulation of phase gradients over neighboring posi-
tions and times. The pooling regions over which the ac-
cumulation occurs are represented as spheres in a 3D spa-
tiotemporal volumes (x, y, t) where (x, y) are spatial image
support in pixels and t is the temporal support in frames of
a video. The radius of the sphere defines the spatial and



Figure 3. Robust Phase Pooling. The temporal phase gradient is noisy due to the measurement of phase in regions where phase is unstable,
such as the region on the grass and in the crowd. The phase stability measure provides an estimate of locations of stable phase. Only the
stable phase is used for pooling, resulting in pooled phase that captures the motion of the background and foreground of the golfer in the
scene. This pooled phase is used to construct the nested motion descriptor.

temporal support of the aggregation. Figure 2 shows per-
spective views of the spatiotemporal pooling regions for the
nested motion descriptor.

Spatiotemporal pooling in the nested motion descriptor
is constrained such that the temporal projection of pooling
regions is equivalent to the nested shape descriptor [2]. For-
mally, the spatiotemporal nested pooling is defined as fol-
lows. We will use the notation and conventions defined in
[2], where sets of spheres are grouped into lobes forming
an Hawaiian earring when projected onto the (x,y) plane.
The descriptor exhibits n-fold rotational symmetry so that
there are n lobes equally spaced in angle. The notation
Kn(i, j) refers to the sphere in the ith lobe at jth scale,
with center cij = [2jcos(i 2πn ), 2jsin(i 2πn ), 2jν]T and ra-
dius rij = [2i, 2i, 2iν]T in (x, y, t) spatiotemporal vol-
ume. The parameter ν is the velocity tuning of the NMD,
which ”squashes” the descriptor temporally to tune to faster
or slower motion.

Finally, we perform pooling of robust phase gradients
within these spherical pooling regions. Recall that the defi-
nition of the robust phase gradients uses the fact that some
regions of the image are unstable, and do not provide reli-
able phase estimates. So, phase cannot just be accumulated
over each pooling region, as there may be different number
of stable phase estimates in each region. To compensate, we
pool robust phase gradients, but normalize by the total phase
stability measure in the pooling region. This phase pooling
is equivalent to the mean robust phase gradient within the
pooling region. Figure 3 shows an example of this pooling
in the final column. This phase pooling is used to construct
the robust component velocity and the nested motion de-
scriptor.

3.5. Construction of the Nested Motion Descriptor

Finally, we can pull together the results from the previ-
ous sections to construct a nested motion descriptor at an
interest point as follows. Let Btω,θ be a bandpass response

at scale ω and orientation θ at time t, for each frame in a
video clip as computed from the complex steerable pyra-
mid. Next, compute the phase gradients for each bandpass
response following (4), and compute the robust phase gradi-
ent following (7). This stable phase is pooled using the spa-
tiotemporal pooling in section 3.4 for a given spatiotempo-
ral pooling support Kn. Finally, the robust component ve-
locity is computed as in (8) for the pooled phase gradients.
Let the robust component velocity be indexed α̂tij(q) for
orientation i and scale j at pixel q, where the phase gradi-
ent is computed using the current frame and frame t. Then,
the nested motion descriptor is constructed from pooled ro-
bust component velocities, normalized by the stability con-
straint:

d(i, j, k, t) =
Σq∈Kn(j,k) α̂

t
ik(q)

Σq∈Kn(j,k) f(q)
(9)

d̂(i, j, k) = d(i, j, k, t− 2kν)− d(i, j−1, k−1, t− 2kν)
(10)

D(i, j, k) =

{
1 if d̂(i, j, k) > 0

0 otherwise
(11)

Equation (9) is robust component velocity pooling. The
descriptor d(i, j, k, t) is the pooled component velocity for
orientation subband i, lobe j and lobe scale k at frame t.
Observe that the bandpass scale k is equal to the pooling
support radius k. In other words, support regions with ra-
dius 2k pool orientation subbands over octave scales k, so
we pool coarser gradients over larger supports. Further-
more, the normalization constant is the pooled phase stabil-
ity constraint in (6). This provides a weighted mean com-
ponent velocity within the pooling region, where the weight
is provided by the phase stability.

Equation (10) is logarithmic spiral normalization. This
log-spiral normalization computes the difference between
component velocities at neighboring scales and positions
within the same frame. Observe that there is a coupling
between the frame offset, pooling scale and bandpass scale,



Figure 4. The nested motion descriptor is invariant to global camera motion. (top) A video sequence of a rock climber where the camera
is following the climber up the rock face. For a given fixed interest point on the background, we compute the nested motion descriptor.
Observe that the robust component velocities for this interest points are the same. (bottom) When computing the log-spiral difference, the
constant velocity due to the camera motion is removed, leaving only acceleration.

since all depend on k. This results in pooling coarser ve-
locities over larger supports. We discuss in the next section
how this normalization provides invariance to camera mo-
tion. This log-spiral normalization is also discussed in more
detail in the supplementary material.

Finally, equation (11) is binarization. A nested motion
descriptor can be binarized by computing the sign of (10).
This constructs a nested motion descriptor with binary en-
tries. This is an optional step which can be used to provide
compact representation.

The final nested motion descriptor D from (11) is a bi-
nary vector of length (R × |K| × |K|) for R orientation
bands over |K| lobes and |K| supports per lobe. For ex-
ample, for eight orientation subbands, five nested supports,
and six lobes has dimensionality (8 × 6 × 5) = 240. The
nested motion descriptor can also be real valued using (10),
without the final binarization step.

3.6. Invariance to Camera Motion

In this section, we describe how the log-spiral normal-
ization of the nested motion descriptor provides invariance
to global camera motion. The key intuition for this proce-
dure is that each dimension of the NMD encodes the robust
component velocity of estimated at a specific orientation
and scale. The log-spiral normalization computes a differ-
ence between neighboring scales and positions in the NMD,
within the same frame. If both of these dimensions are mov-
ing with the same velocity, due to the global camera mo-
tion, then the difference will remove this effect. Basically,
the log-spiral difference is computing an local acceleration

or second order derivative between neighboring velocities
pooled in the nested motion descriptor. Acceleration is in-
variant to constant velocity, so if the camera is translating
with a constant velocity, the descriptor will be invariant to
this motion.

Figure 4 shows an example of the invariance to the dom-
inant camera motion. This figure shows a video sequence
of a rock climber where the camera is following the climber
up the rock face. This introduces constant velocity motion
in the background due to the camera motion. We show a
single interest point on the background to show that this ef-
fect of the motion from the camera is removed. We compute
the robust component velocities using the nested motion de-
scriptor construction in the previous section. Observe that
each pooling region on this background interest point re-
sult in the same component velocity. This is the same due
to the global motion of the camera. When we compute the
log-spiral difference, this constant velocity is removed, re-
sulting in robust component velocities of zero.

3.7. Motion Visualization

We can visualize motion representation of the NMD as
a saliency map using the steerable pyramid reconstruction.
A saliency map is a real valued scalar field that encodes the
salience of regions in an image or video. The nested mo-
tion descriptor can be used to compute a saliency map in
a very simple manner. Recall that the nested motion de-
scriptor requires the construction of a quadrature steerable
pyramid to compute multiscale oriented gradients. Given
this pyramid, replace the orientation and scale bands with



the clipped mean square response of the NMD for each ori-
entation and lobe. Then, replace the low pass response of
the steerable pyramid with the squared Laplacian filter re-
sponse, to implement a center surround difference. Finally,
reconstruct the image from this saliency pyramid. In short,
a motion saliency map is the image reconstructed from the
squared response of the nested motion descriptor.

Formally, let a steerable pyramid B = {I0, Bij ; i ≤
R, j ≤ S} for orientation bands Bij over R orientations i
and S scales j and lowpass residual image I0. Each band
Bij encodes the oriented gradient response at orientation i
and scale j. Furthermore, let d̂ be a log-spiral normalized
nested motion descriptor constructed following eq. 9 and
10, computed densely at each pixel. Then, let

B̂ij = max(
∑
j

d̂(i, j, k)2, τ) (12)

Î0 = (I0 ∗ L)2 (13)

where L is a 3x3 Laplacian kernel, ∗ is the convolution
operation, and τ is a clipping threshold for the maximum
squared difference. These are collected as subbands in a
steerable pyramid B̂ = {Î0, B̂ij}, and these bands are used
to reconstruct an image using the standard steerable pyra-
mid reconstruction algorithm, where the filters used for re-
construction are the magnitude of the quadrature pair. This
reconstructed image is a saliency map. Finally, a saliency
video is encoded from the set of saliency maps computed
from the video, and rescaled so that the maximum saliency
response is encoded as red.

4. Experimental Results

In this section, we show results for applying nested mo-
tion descriptor to the task of activity recognition. We fo-
cus on three datasets, and compare results for a simple bag-
of-words classification framework, to highlight the perfor-
mance differences due to motion descriptors only.

We compare performance of the nested motion descrip-
tors to HOG-HOF [13] and HOG-3D [10]. The evaluation
in [28] showed that HOG-HOF and HOG-3D outperformed
cuboid and dense SURF, so we limit our evaluation to these
two descriptors. Furthermore, the improved dense trajecto-
ries consider HOG-HOF as the local motion descriptor ex-
tracted along the trajectory, so we use this as our baseline.

The datasets chosen for this evaluation span the com-
plexity representative of classic and modern activity recog-
nition problems: KTH actions dataset [21] (2004) is a clas-
sic dataset, UCF sports actions dataset [20] (2008) has
nine activity classes, but these videos are collected in un-
constrained television footage, and human motion database
(HMDB) [12] (2011) is representative of a modern dataset
with over fifty actions in unconstrained video.

Descriptor KTH Actions UCF Sports HMDB
HOG-HOF 0.81 0.62 0.23
HOG-3D 0.86 0.75 0.24

NMD 0.87 0.77 0.25
Table 1. Mean average precision (mAP) results for activity recog-
nition. Results show that the nested motion descriptor (NMD) out-
performs the baseline on all classes.

Figure 5. (top) Activity recognition results on UCF sports
actions. The class index for each result: ’Diving-Side’, ’Golf-
Swing-Back’,’Golf-Swing-Front’, ’Golf-Swing-Side’, ’Kicking-
Front’, ’Kicking-Side’ , ’Lifting’, ’Riding-Horse’, ’Run-Side’,
’SkateBoarding-Front’, ’Swing-Bench’, ’Swing-SideAngle’
,’Walk-Front’. (bottom) KTH actions

4.1. Activity Recognition

The overall results are shown in table 1. We report mean
classification rate results over all activity classes for activity
recognition using the experimental framework is described
in detail in the supplementary material.

Results show that the nested motion descriptor (NMD)
outperforms the baseline on all datasets. These results are
consistent with reported results in the literature using bag-
of-words framework, albeit at a lower overall classification
rate. We believe this is due to the smaller total vocabulary
size (600 vs. 4000 in [28]), however the relative perfor-
mance change across the dataset is consistent. The best per-
formance is on the KTH actions dataset which does not con-
tain any global camera motion, the second best is on UCF
sports which contains camera motion but a limited number
of object classes. The worst performance is on unstabilized
HMDB, due to the large number of classes. However, we
observe that the NMD does still provide improved perfor-
mance over the baseline descriptors.

Figure 5 shows confusion matrices for UCF sports and
KTH actions. Recall that this dataset requires leave one out
cross validation results due to the limited number of training
examples per class. We observed that this dataset includes
a significant background context that affects the results for
comparing motion descriptor. Specifically, the ”Kicking-
Front” and ”Kicking-Side” classes contains wide open grass
fields with strong field line markers. Observe that the HOG-



Figure 6. The nested motion descriptor represents salient motion in video. We show a semitransparent saliency map for motion overlayed
on each frame of video. This saliency map shows salient responses in red and non-salient in blue. (top left) Salient motion for HMDB
”basketball dribbling” using NMD with log spiral normalization. (bottom left) NMD without log-spiral normalization includes motion of
the camera. (top right) Motion saliency for HMDB ”rock climbing”. (bottom right) NMD without log-spiral normalization. The log-spiral
normalization suppresses the significant camera motion in the scene focusing on the salient motion of the rock climbers.

3D descriptor confuses only kicking-front and kicking-side,
while the NMD performs poorly on this class but better on
all other classes. We hypothesize that this is due to the con-
text of the large football fields on which this action takes
place, rather than the motion of the foreground itself. The
NMD suppresses the motion on the ground due to the dom-
inant camera motion, while the HOG-3D descriptor lever-
ages this context that is unique to these two classes. If we
remove these biased classes from the aggregate scores, we
see that the NMD outperforms the HOG-3D using motion
only on the remaining classes, and these are the score re-
ported. However, this result does highlight the need for a
composite descriptor that can leverage features from many
different sources, including the surrounding context of the
background.

4.2. Motion Visualization Results

In this section, we show qualitative results applying the
visualization of salient motion captured by the NMD as
described in section 3.7. We show results for a sampling
of videos from the KTH actions and HMDB datasets, and
compare qualitative results with and without the log-spiral
normalization. These results demonstrate the effectiveness
of the log-spiral normalization in representation of salient
motion and suppressing the effect of camera motion. Addi-
tional video results are provided in the supplementary ma-
terial.

Figure 6 shows an example of four frames of basketball
dribbling from HMDB. The top row shows the output of
the motion saliency using the NMD, and the bottom row
shows the same output using the NMD without the log spi-
ral normalization. This clip contains large scale and small
scale motion of the body and hands of the player, as well
as global camera motion down and to the left. The colors
encode the saliency map such that red is salient and blue is
not-salient. Observe that the salient motion extracted using
this technique highlight the small motions of dribbling the
basketball and not the large motions due to the camera.

Figure 6 (right) shows an example of rock climbing from
the HMDB. In this example, two rock climbers are racing to

the top of an indoor rock climbing wall and the camera fol-
lows the climbers up the wall introducing large camera mo-
tion up and to the right. The bottom row shows that without
the log-spiral normalization, the background motion tends
to dominate the motion representation which manifests as
motion everywhere in the scene. The top row shows that
the log-spiral normalization is able to suppress this dom-
inant motion so that the motion of the climbers pops out
from the background.

5. Summary
In this paper, we introduced the nested motion descrip-

tor for representation of salient motion. We motivated the
construction of this descriptor using phase based optical
flow, we described the construction of the descriptor and
showed that the log-spiral normalization provides invari-
ance to dominant camera motion. Furthermore, we showed
visualization of this motion representation for videos with
large camera motions, to show that the descriptor is remov-
ing the dominant camera motion. Finally, we showed im-
proved performance over the state of the art in local motion
descriptors for activity recognition, showing the representa-
tional capabilities of this descriptor.
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