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Abstract

This paper proposes a new image denoising ap-
proach using adaptive signal modeling and adaptive soft-
thresholding. It improves the image quality by regularizing
all the patches in image based on distribution modeling in
transform domain. Instead of using a global model for all
patches, it employs content adaptive models to address the
non-stationarity of image signals. The distribution model
of each patch is estimated individually and can vary for dif-
ferent transform bands and for different patch locations. In
particular, we allow the distribution model for each individ-
ual patch to have non-zero expectation. To estimate the ex-
pectation and variance parameters for the transform bands
of a particular patch, we exploit the non-local correlation of
image and collect a set of similar patches as data samples
to form the distribution. Irrelevant patches are excluded so
that this non-local based modeling is more accurate than
global modeling. Adaptive soft-thresholding is employed s-
ince we observed that the distribution of non-local samples
can be approximated by Laplacian distribution. Experimen-
tal results show that the proposed scheme outperforms the
state-of-the-art denoising methods such as BM3D and CSR
in both the PSNR and the perceptual quality.

1. Introduction
Image denoising is an important problem in many image

processing tasks. It has attracted a lot of research interest in

the past few decades [1–22]. It aims to recover the original

image signal from its observed noisy version, which can be

formulated as

y = x+ n, (1)

where x is the desired original image, n represents the addi-

tive noise, and y is the corrupted observation. To solve such
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ill-posed problem, it is critical to exploit the prior knowl-

edge that characterizes the statistical features of the images.

Early regularization techniques mainly utilize the local

correlation among image pixels. A typical example of this

kind is the total variation (TV) regularization [9, 11]. It de-

picts the feature that natural images are smooth in most re-

gions, and can be seen as a kind of sparsity regularization

in gradient domain. Typical sparsity regularization model-

s are based on the assumption that images can be sparsely

presented in transform domain, e.g. discrete cosine trans-

form (DCT) domain or discrete wavelet transform (DWT)

domain [4,5,10,14,15]. These transforms are orthogonal or

nearly orthogonal, and use fixed transform basis. However,

it is impossible to efficiently present all kinds of patterns in

images using a fixed basis. Therefore, [6] advocates to use

content adaptive basis with the assistance of principal com-

ponent analysis (PCA). Some later works use over-complete

dictionary to represent the image signal and try to learn an

optimal dictionary so that the sparsity of the signal is maxi-

mized [3, 23].

Since the invention of non-local means (NLM) denois-

ing [7] which exploits the repetitiveness of patch patterns

in image signals, extensive research works are motivated to

take advantage of non-local similarity for image restoration

tasks, and achieve superior performance over local regular-

ization [2, 8, 12, 18–20, 22, 24–26]. Among these non-local

similarity based schemes, the famous benchmark BM3D [2]

is basically a combination of DCT coefficient threshold-

ing and nonlocal block matching. It stacks similar blocks

of a reference patch into a three dimensional (3D) block,

on which 3D transform is applied, and hard thresholding

(in the first step) or Wiener filtering (in the second step) is

performed. Dong et al. [13] also proposed a two-stage de-

noising scheme but adopts PCA instead of DCT for local

decorrelation. The so-called LPG-PCA method uses non-

local similar patches as data samples to estimate statistical

parameters for PCA training. Combining the ideas of struc-

tural clustering and dictionary learning, CSR [8] attempts

to unify local and nonlocal sparsity constraints.

This paper aims to develop an effective image denois-

ing scheme using adaptive signal modeling and adaptive



soft-thresholding. It regularizes all image patches based on

adaptive distribution modeling in the transform domain. In-

stead of using a global model, the scheme employs content

adaptive models that are estimated for each patch individu-

ally. In particular, we considered the possibility of non-zero

expectation in the distribution of transform coefficient. To

esitimate the expectation and variance for each coefficient,

we exploit non-local correlation and collect a set of similar

patches as data samples to form the distribution. We use

PCA to determine the decorrelation transform, and treat d-

ifferent transform bands separately according to their statis-

tical characteristics. To study the distribution of non-local

sample patches, we considered generalized Gaussian distri-

butions (GGD) and observed that the distribution of non-

local similar patches can be well approximated by Lapla-

cian distribution. Based on the observation, adaptive soft-

thresholding is adopted to implement the regularization.

The remainder of the paper is organized as follows. Sec-

tion 2 briefly reviews the methods of image denoising from

the local and nonlocal perspectives, respectively. Section 3

discusses how to model the distribution of transform coef-

ficients adaptively. Section 4 describes the proposed image

denoising scheme in details and Section 5 shows how the

optimization problem can be efficiently solved. Experimen-

tal results are reported in Section 6 and Section 7 concludes

the paper.

2. Background
The regularization techniques for image denoising prob-

lems can generally be divided into two categories: local

regularization and non-local regularization. This section

briefly reviews the basic ideas from these two perspectives.

Just as most recent methods, this paper considers patch

based denoising, which divides the image into overlapping

patches and performs denoising on each patch, and then

reconstructs the overall image by averaging the denoised

patches. We denote the vectorized patch of size S × S at

location i by xi.

Local regularization utilizes the feature of image signals

that they can be sparsely represented in transform domain:

x̃ = argmin
x

μ

2
‖y − x‖22 +

∑
i

‖Φxi‖qp , (2)

where p is often set to be 0, 1 or 2, μ is the regularization

parameter controlling the trade-off between the two terms.

Φ is the transform matrix, which is able to decorrelate and

sparsely represent the image signal. Since noise is usually

independently distributed, it can be separated from the sig-

nal components after decorrelation and then suppressed via

hard-thresholding (when p = 0), soft-thresholding (p = 1)

or Wiener filtering (p = 2).

Due to the existence of self-repeating patterns in image

signals, nonlocal similar patches can act as data samples to

provide statistical information for the estimation of original

signals. Furthermore, making use of nonlocal correlation

often leads to sparser representation in transform domain,

hence can distinguish signal components from noise more

effectively and result in better denoising performance. The

impressive success of nonlocal means (NLM) denoising [7]

triggered a flurry of research works to utilize the nonlo-

cal similarity of natural images. Different nonlocal denois-

ing schemes utilize nonlocal correlation in various ways.

For instance, NLM generates the estimated pixels by lin-

ear weighted average of nonlocal pixels in spatial domain,

BM3D [2] enhances the sparsity of coefficients by an addi-

tional transform along the third dimension of three dimen-

sional (3D) patch groups, LPG-PCA [13] treats nonlocal

similar patches as samples, while CSR [8] gathers similar

patches into a cluster and approximate them to the centroid.

3. Regularization via Adaptive Modeling

This paper introduces an adaptive denoising method

based on transform domain adaptive distribution model-

ing. The key points of the proposed scheme include: 1)

The regularization is applied based on distribution model-

ing in transform domain. 2) Instead of using a global model

that assumes the same distribution for all transform coef-

ficients, we employ adaptive models that are estimated for

each patch individually and can vary for different location-

s and different transform bands. 3) Both the expectation

and variance of the distribution are adaptively estimated. In

particular, we consider the possibility that each individual

coefficient may have non-zero expectation. 4) To estimate

the distribution parameters for a particular patch, we use a

set of non-local similar patches as the data samples to for-

m the distribution. Dissimilar patches are excluded so that

the parameters are not affected by irrelevant image contents.

5) The adaptive regularization is realized by adaptive soft-

thresholding and overlapped patches are aggregated and av-

eraged to generate the ultimate estimated image.

3.1. Adaptive Regularization

We may interpret Eq. (2) as the maximum a posterior-

i (MAP) estimation deduced in Bayesian framework, then

the lp-norm indicates the assumed distribution of the coef-

ficients. Just as BM3D and LPG-PCA, we adopt l2-norm in

this section, which implicitly assumes the coefficients to be

Gaussian distributed.

It is straightforward to deal with different bands equally.

In this case, we denote the variance of the whole coefficients

by scalar σ2 and the variance of noise by σ2
n, then the MAP

estimate of the original signal writes:

x̃ = argmin
x

1

2σ2
n

‖y − x‖22 +
1

2σ2

∑
i

‖Φxi‖22 . (3)
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Figure 1. PSNR comparison for uniform denoising and band adap-

tive denoising. The input images are contaminated by Gaussian

white noise, with standard deviation σn ranging from 10 to 60.

Such minimization problem leads to a uniform operation on

all the coefficients.

The above consideration ignores the fact that statistical

characteristics of coefficients in different bands may vary

dramatically. Evidently, variance of coefficients in a low

frequency band is usually much more significant than that

in a high frequency band. For this reason, it is be more plau-

sible to treat different bands separately. This would make

for band adaptive operation, which assigns coefficients with

appropriate parameters adaptively. Let −→σi be the standard

deviation vector of xi, with the k-th element in −→σi being the

standard deviation of the k-th element in patch xi.
−→σi is of

the same size as xi. In this setting, the MAP estimate of x
is formulated as:

x̃ = argmin
x

1

2σ2
n

‖y − x‖22 +
1

2

∑
i

∥∥∥∥Φxi−→σi

∥∥∥∥
2

2

, (4)

where the division operation is component wise.

To verify the conjecture that the band adaptive scheme

performs better, we compare the denoising results of Eq. (3)

and Eq. (4), with σn ranging from 10 to 60. Fig. 1 shows

the denoising results of images Lena and Peppers. Other-

s images exhibit similar results. It is evident that the band

adaptive parameter estimation would lead to much better

denoising performance. Such observations encourage us to

treat the transform coefficients adaptively according to their

statistical characteristics. This paper uses PCA as the trans-

form, which is known for its virtue of being signal adaptive

and near optimal for decorrelation.

3.2. Distribution Modeling of Transform Coeffi-
cients

Just as most existing image restoration regularization,

the formulation of Eq. (4) simply assumes the expectations

of coefficients to be zero, which may not be accurate. In ad-

dition to variances, expectations of coefficients in different

bands are also estimated adaptively in this paper.
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Figure 3. KL divergences between the distributions of coefficients

and GGD with shape parameter λ ranging from 0.5 to 2.5. The

three curves correspond to coefficients in three different bands.

The optimal λ is near 1.3.

To model the distribution of coefficients, we fit the dis-

tribution of coefficients by general exponential family dis-

tributions, i.e. generalized Gaussian distribution (GGD),

which is widely used in image coding and processing. The

Generalized Gaussian density has the following form:

G(u;λ) = 1

2Γ(1 + 1
λ )

exp
(−|u|λ) , (5)

where Γ(·) is the gamma function, and λ is the shape pa-

rameter which controls the overall shape of the distribution.

G(u;λ) is a Laplacian distribution when λ = 1 and is a

Gaussian distribution when λ = 2.

We extract more than 6.5×104 groups from 9 natural im-

ages, with every group consisting of 60 similar patches, and

apply PCA to each group. For the k-th band of the i-th
group, suppose μk

i and σk
i are respectively the mean value

and standard deviation of the coefficients, then coefficients

of this band (denoted by Ck
i ) are centralized and variance-

normalized:

Ck
i :=

(
Ck

i − μk
i

)
/σk

i . (6)

After that, coefficients of the band k from all the group-

s are gathered together as samples and form the variance-

normalized distribution, as shown in Fig. 2.

To find out the shape parameter λ that can best fit the dis-

tribution of PCA coefficients, we employ Kullback-Leibler

(KL) divergence to measure the fitting error of GGD, with

λ ranging from 0.5 to 2.5 for every band, as displayed in

Fig. 3. The optimal λ falls near 1.3 for all the bands. For

convenience of calculation, this paper sets λ = 1, i.e. the

optimal GGD is approximated by Laplacian distribution.

4. The Denoising Scheme via Adaptive Soft-
Thresholding

The proposed denoising scheme is based on the discus-

sions in Section 3. Specifically speaking, the input image is



−5 0 50

0.2

0.4

0.6

0.8
Coefficient Distribution (Band 1)

Coffictient Value

Pr
ob

ab
ili

ty
 D

en
si

ty

−5 0 50

0.2

0.4

0.6

0.8
Coefficient Distribution (Band 10)

Coffictient Value
Pr

ob
ab

ili
ty

 D
en

si
ty

−5 0 50

0.2

0.4

0.6

0.8
Coefficient Distribution (Band 25)

Coffictient Value

Pr
ob

ab
ili

ty
 D

en
si

ty

Figure 2. Variance-normalized distributions of 3 different bands.

divided into overlapping patches of size S×S. For the cur-

rent patch yi, we search non-locally for its similar patches.

The dissimilarity between two patches yi and yj is mea-

sured by Euclidean distance:

d(i, j) =
‖yi − yj‖22

S2
. (7)

Then the patches with distances smaller than a certain

threshold τ are considered to be “similar” and stacked in-

to group Yi:

Yi = {yj |d(i, j) ≤ τ}, (8)

and the corresponding locations are recorded in set Li:

Li = {j|d(i, j) ≤ τ}. (9)

As an alternative, we may also group the M most similar

patches into Yi.

Besides, the similar patches of yi are used to train the

PCA transform Φi. Suppose p1
i ,p

2
i , . . .p

N
i are the selected

training samples and let matrix Pi = [p1
i ,p

2
i , . . .p

N
i ]. We

calculate pi by averaging every row of Pi so that the cen-

tralized version of Pi is estimated as P̃i = [p1
i − pi,p

2
i −

pi, . . .p
N
i − pi]. The covariance matrix of P̃i is written as

Cov(P̃i) = ΨiΛiΨ
T
i , where Ψi is the orthonormal eigen-

vector matrix and Λi is the sorted diagonal eigenvalue ma-

trix. Then we adopt ΨT
i as the transform matrix Φi.

Apply the learned transform Φi to all the patches in Yi.

Let −→μi and −→σi be the expectation vector and standard devi-

ation vector of the xi, where the k-th entry of −→μi and −→σi

are the expectation and standard deviation of coefficients in

band k respectively. Then the proposed objective function

of this paper writes:

x̃ = argmin
x

c

σ2
n

‖y − x‖22 +
∑
i

∥∥∥∥Φixi −−→μi−→σi

∥∥∥∥
1

, (10)

where c = 1
2
√
2

.

In practice, the expectation and standard deviation of

clean data is not available. The expectation −→μi(k) is esti-

mated as the median value of the coefficients in the k-th

band because the coefficients are assumed to conform to

Laplacian distribution. The advantage of such estimation

is to exclude influences of outliers. Furthermore, since the

noise is assumed to be i.i.d. Gaussian distributed, the stan-

dard deviation of coefficients in the k-th band −→σi(k) can be

estimated by

−→σi(k)
2 = max

(−→σyi(k)
2 − σ2

n, 0
)
, (11)

where −→σyi is the standard deviation vector calculated by

coefficients of observed noisy image y. Let
−→
βj = Φiyj ,

j ∈ Li, then −→σyi is calculated as

−→σyi
2 =

1

M

∑
j∈Li

(−→
βj −−→μi

)2

, (12)

where M is the number of similar patches in the group and

the calculations are element wise.

Since the solution to this optimization problem can be

boiled down to coefficient wise soft-thresholding opera-

tions, and the parameters are adaptively estimated by non-

locally searched samples, we name this scheme as adaptive

soft-thresholding based on non-local samples (AST-NLS).

5. Numerical Solutions
The frequencies of pixels appearing in the overlapping

patches are roughly equal, hence

‖y − x‖22 ≈ c1
∑
i

‖yi − xi‖22 , (13)

here c1 is a positive constant. Let −→αi = Φixi,
−→
βi = Φiyi.

Considering the unitary property of Φi, we have

‖yi − xi‖22 = ‖Φiyi − Φixi‖22 =
∥∥∥−→βi −−→αi

∥∥∥2

2
, (14)

thus we may write Eq. (10) as:

−→α =argmin−→α

∑
i

c2
σ2
n

∥∥∥−→βi−−→αi

∥∥∥2

2
+
∑
i

∥∥∥∥−→αi−−→μi−→σi

∥∥∥∥
1

, (15)



Table 1. PSNR Comparison (Unit: dB)

σn 10 20 30

Schemes BM3D L.PCA CSR Proposed BM3D L.PCA CSR Proposed BM3D L.PCA CSR Proposed
Airplane 35.86 35.57 35.93 36.14 32.53 32.06 32.62 32.81 30.78 30.23 30.88 31.09
Barbara 34.53 34.99 35.02 35.20 30.89 30.94 31.20 31.43 28.64 28.46 28.83 29.09
C.man 33.92 33.61 33.93 34.24 30.15 29.73 30.29 30.51 28.27 27.83 28.54 28.63
Lena 35.05 35.01 35.31 35.40 31.29 31.07 31.58 31.59 29.20 28.79 29.44 29.48

Monarch 33.93 34.09 34.51 34.92 30.08 30.09 30.67 30.89 27.94 27.79 28.51 28.70
R.R.Hood 34.97 34.88 35.17 35.28 32.00 31.72 32.19 32.23 30.40 30.09 30.63 30.62

Sailboats 36.31 36.16 36.38 36.47 32.88 32.49 32.92 33.06 30.88 30.43 31.01 31.11
Window 36.51 36.31 36.85 36.99 32.67 32.16 32.89 33.08 30.49 29.76 30.63 30.92
Baboon 29.43 29.40 29.37 29.53 25.45 25.39 25.52 25.65 23.58 23.49 23.78 23.88
Couple 33.87 33.55 33.91 34.02 30.60 30.05 30.59 30.68 28.66 27.94 28.62 28.77
F.boat 33.75 33.62 33.83 33.96 30.62 30.24 30.72 30.76 28.77 28.26 28.89 28.92
House 36.39 36.17 36.82 36.77 33.39 33.05 33.87 33.92 31.56 31.12 32.07 32.42

Peppers 34.54 34.11 34.69 34.88 31.07 30.58 31.26 31.36 28.97 28.47 29.24 29.35
straw 30.78 31.35 31.49 31.50 26.92 27.08 27.42 27.35 24.76 24.55 25.03 25.09

Average 34.27 34.20 34.51 34.66 30.75 30.47 30.98 31.09 28.78 28.37 29.01 29.15
σn 50 70 90

Schemes BM3D L.PCA CSR Proposed BM3D L.PCA CSR Proposed BM3D L.PCA CSR Proposed
Airplane 28.67 27.94 28.60 28.95 27.27 26.46 27.17 27.65 26.19 25.39 26.13 26.67
Barbara 26.11 25.53 26.17 26.27 24.44 23.80 24.59 24.63 23.29 22.60 23.49 23.63
C.man 26.03 25.46 26.13 26.31 24.42 23.84 24.46 24.74 23.27 22.65 23.24 23.59
Lena 26.83 26.07 26.90 27.13 25.27 24.31 25.22 25.58 24.06 22.98 23.99 24.44

Monarch 25.57 24.85 25.67 26.05 23.92 22.93 23.96 24.33 22.67 21.52 22.66 23.11
R.R.Hood 28.65 28.10 28.73 28.79 27.31 26.75 27.41 27.54 26.25 25.73 26.45 26.73
Sailboats 28.68 27.93 28.68 28.84 27.10 26.34 27.14 27.40 25.84 25.19 26.00 26.34
Window 27.99 26.93 27.91 28.28 26.34 25.21 26.30 26.60 25.07 24.01 25.11 25.41
Baboon 21.81 21.58 21.98 22.03 20.83 20.57 20.98 20.94 20.21 19.97 20.31 20.25

Couple 26.40 25.41 26.23 26.39 24.89 23.90 24.81 24.82 23.81 22.88 23.82 23.73

F.boat 26.61 25.85 26.59 26.62 25.16 24.40 25.16 25.19 24.12 23.35 24.16 24.20
House 29.31 28.34 29.52 30.20 27.51 26.47 27.66 28.50 26.15 25.11 26.28 27.12

Peppers 26.59 25.71 26.63 26.84 24.97 23.83 24.90 25.26 23.67 22.40 23.57 24.09
straw 22.33 21.78 22.39 22.51 20.78 20.23 20.88 20.85 19.71 19.26 19.81 19.68

Average 26.54 25.82 26.58 26.80 25.02 24.22 25.05 25.29 23.87 23.07 23.93 24.21

where c2 = c · c1.

It is not difficult to derive the solution to Eq. (15), which

is basically a component wise soft-thresholding operation:

−→αi=
−→μi+max

(∣∣∣−→βi−−→μi

∣∣∣− σn

c2 ·−→σi
, 0

)
·sgn(

−→
βi−−→μi). (16)

Then xi can be calculated by

xi = ΦT
i
−→αi. (17)

After obtaining all the patches, we may get the full image x
by putting back the patches and averaging overlaps. Let Ei

be the matrix extracting xi from x at location i, i.e. xi =
Eix, then the least-square solution writes [3]:

x =

(∑
i

ET
i Ei

)−1 ∑
i

(
ET

i xi

)
. (18)

Besides, this paper borrows the wisdom of iterative reg-

ularization [8, 27] to update the observed noisy image in

every iteration:

ỹ := x̃+ ρ(y − x̃), (19)

and then regenerate x̃ using ỹ as the input image. Such

technique has appeared in existing works, so detailed dis-

cussions are omitted here. Please refer to [8, 27] for further

details. The proposed denoising procedure is summarized

in Algorithm 1.

6. Experimental Results
This section evaluates the efficiency of the proposed

method by comparing it with three state-of-art denoising

schemes, including BM3D [2], LPG-PCA [13] and CSR



Table 2. SSIM Comparison (Unit: dB)

σn 10 20 30

Schemes BM3D L.PCA CSR Proposed BM3D L.PCA CSR Proposed BM3D L.PCA CSR Proposed
Airplane 0.9355 0.9309 0.9342 0.9343 0.8844 0.8734 0.8822 0.8808 0.8531 0.8373 0.8520 0.8429

Barbara 0.9515 0.9543 0.9540 0.9552 0.9036 0.9037 0.9067 0.9100 0.8499 0.8472 0.8543 0.8585
C.man 0.9283 0.9242 0.9239 0.9298 0.8684 0.8600 0.8644 0.8751 0.8256 0.8192 0.8284 0.8338
Lena 0.9422 0.9420 0.9430 0.9448 0.8907 0.8906 0.8954 0.8965 0.8462 0.8439 0.8544 0.8529

Monarch 0.9546 0.9554 0.9578 0.9596 0.9147 0.9154 0.9210 0.9228 0.8746 0.8747 0.8859 0.8865

R.R.Hood 0.8907 0.8879 0.8932 0.8955 0.8194 0.8137 0.8250 0.8239 0.7702 0.7677 0.7826 0.7745

Sailboats 0.9287 0.9285 0.9278 0.9284 0.8870 0.8831 0.8857 0.8850 0.8492 0.8428 0.8535 0.8447

Window 0.9543 0.9534 0.9558 0.9563 0.9126 0.9085 0.9151 0.9170 0.8725 0.8649 0.8797 0.8803
Baboon 0.8757 0.8627 0.8547 0.8772 0.7222 0.7091 0.7067 0.7321 0.6180 0.6039 0.6119 0.6286
Couple 0.8171 0.8453 0.8454 0.8369 0.7502 0.7601 0.7548 0.7564 0.7865 0.7616 0.7835 0.7844

F.boat 0.8867 0.8826 0.8854 0.8889 0.8197 0.8091 0.8184 0.8198 0.7682 0.7528 0.7690 0.7669

House 0.9150 0.9149 0.9226 0.9188 0.8657 0.8679 0.8745 0.8692 0.8374 0.8387 0.8474 0.8453

Peppers 0.9262 0.9225 0.9262 0.9292 0.8819 0.8768 0.8842 0.8866 0.8407 0.8373 0.8494 0.8491

straw 0.9573 0.9619 0.9626 0.9624 0.8948 0.8965 0.9033 0.9018 0.8233 0.8124 0.8295 0.8314
Average 0.9188 0.9190 0.9205 0.9227 0.8582 0.8549 0.8598 0.8626 0.8154 0.8075 0.8201 0.8201

σn 50 70 90

Schemes BM3D L.PCA CSR Proposed BM3D L.PCA CSR Proposed BM3D L.PCA CSR Proposed
Airplane 0.8172 0.7813 0.8132 0.7951 0.7888 0.7277 0.7849 0.7699 0.7642 0.6740 0.7597 0.7552

Barbara 0.7573 0.7412 0.7615 0.7594 0.6765 0.6557 0.6870 0.6803 0.6155 0.5870 0.6300 0.6310
C.man 0.7745 0.7586 0.7803 0.7799 0.7229 0.7003 0.7403 0.7408 0.6814 0.6419 0.7029 0.7134
Lena 0.7834 0.7667 0.7906 0.7916 0.7280 0.7018 0.7354 0.7436 0.6797 0.6430 0.6873 0.7054

Monarch 0.8142 0.7979 0.8205 0.8229 0.7582 0.7286 0.7661 0.7716 0.7084 0.6652 0.7166 0.7298
R.R.Hood 0.7180 0.7080 0.7290 0.7158 0.6769 0.6608 0.6958 0.6830 0.6436 0.6154 0.6706 0.6656

Sailboats 0.7744 0.7744 0.8068 0.7881 0.7563 0.7157 0.7715 0.7525 0.7167 0.6606 0.7425 0.7311

Window 0.8167 0.7871 0.8216 0.8199 0.7627 0.7169 0.7743 0.7752 0.7146 0.6517 0.7315 0.7407
Baboon 0.4727 0.4562 0.4819 0.4934 0.3881 0.3652 0.3983 0.3950 0.3358 0.3130 0.3384 0.3303

Couple 0.9072 0.8985 0.9060 0.9077 0.8427 0.8254 0.8401 0.8400 0.5812 0.5269 0.5833 0.5746

F.boat 0.6954 0.6689 0.6959 0.6879 0.6385 0.6070 0.6446 0.6342 0.5949 0.5551 0.6055 0.5973

House 0.8044 0.7848 0.8126 0.8116 0.7654 0.7309 0.7779 0.7835 0.7275 0.6776 0.7450 0.7604
Peppers 0.7859 0.7682 0.7930 0.7874 0.7342 0.7086 0.7464 0.7419 0.6891 0.6537 0.7047 0.7062

straw 0.6802 0.6480 0.6857 0.6945 0.5489 0.5000 0.5607 0.5525 0.4356 0.3837 0.4399 0.4196

Average 0.7572 0.7386 0.7642 0.7611 0.6991 0.6675 0.7088 0.7046 0.6349 0.5892 0.6470 0.6472

Figure 4. Test images for denoising experiments.

[8]. The proposed algorithm is implemented in Matlab

2010b, and the three anchor schemes are tested using ex-

ecutables or source codes released by the authors of the pa-

pers. Parameters used in the algorithm are empirically cho-

sen according to the noise levels so as to achieve relatively

good performance. The detailed setting of three parameters

are shown in Table 3, including patch size S, the number of

similar patches in a group M , and the iterative regulariza-

tion parameter ρ in (19). The denoising schemes are tested

on 14 typical natural images with noise variance ranging

from 10 to 100. The test images are displayed in Fig 4.

As shown in Table 1, the proposed scheme outperform-

s the other three methods in most cases in terms of peak

signal to noise ratio (PSNR). When standard deviation of

noise fluctuates from 10 to 90, the average PSNR of the

proposed method is 0.46∼1.14dB higher than LPG-PCA,



Algorithm 1: Image Denoising by AST-NLS

Data: The noisy image y
Result: Denoised image x
initialization: x = y, ỹ = y
while Outer stopping criteria unsatisfied do

Update ỹ according to Eq. (19);

Update noise variance σ2
n;

for i = 1, 2, 3, . . .N do
Calculate distances of nonlocal patches by Eq. (7);

Group similar patches of ỹi into Yi;

Apply PCA to patches in Yi;

Estimate expectations −→μi by calculating median of

each band separately;

Estimate standard deviations −→σi by Eq. (12) and

(11);

Operate soft-thresholding according to Eq. (16);

Calculate xi by Eq. (17);

end
Aggregate estimated patches into x by Eq. (18);

end

Noise level ρ M S

σn ≤ 10 0.11 75 6

10 < σn ≤ 20 0.11 80 7

20 < σn ≤ 40 0.12 100 7

40 < σn ≤ 60 0.12 130 8

60 < σn ≤ 80 0.12 150 9

σn > 80 0.12 150 10

Table 3. Parameter settings.

0.26∼0.39dB higher than BM3D and 0.11∼0.28dB higher

than CSR. The structural similarity (SSIM) [28] of AST-

NLS also outperforms BM3D and LPG-PCA, and is highly

competitive against CSR, as displayed in Table 2.

Our ultimate goal is to achieve better perceptual quali-

ty since in most cases images are meant to be viewed by

people’s eyes. Fig. 5, Fig. 6, Fig. 7 and Fig. 8 demon-

strate visual improvement of the proposed scheme at differ-

ent noise levels. It is evident that the images denoised by

the proposed scheme exhibit much less noise and artifact-

s (e.g. the face of the man and the background in Fig. 5),

and better preserves details and textures (e.g. the tentacles

of monarch in Fig. 7). The images denoised by LPG-PCA

exhibit slightly less noise and artifacts than BM3D and C-

SR but tend to be blurred. Comparing with the three anchor

schemes, the output of the proposed scheme is obviously

more clean, sharp and visually pleasant.

7. Conclusions
This paper aims to develop an effective image denois-

ing scheme based on adaptive distribution estimation in

transform domain. The regularization attempts to approxi-

mate the actual distribution of transform coefficients. Since

the statistical characteristics may vary significantly, image

patches at different locations are processed separately, and

coefficients in different bands are treated distinctively. We

use a set of nonlocal similar patches as samples to adaptive-

ly estimate the distribution parameters, including expecta-

tion and variance. Experimental results demonstrate that

the proposed denoising scheme outperforms some state-of-

art methods like BM3D and CSR, in terms of both objective

measurements and perceptual quality.
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