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Abstract

We show how the simplex algorithm can be tailored to
the linear programming relaxation of pairwise energy min-
imization with binary variables. A special structure formed
by basic and nonbasic variables in each stage of the algo-
rithm is identified and utilized to perform the whole iterative
process combinatorially over the input energy minimization
graph rather than algebraically over the simplex tableau.
This leads to a new efficient solver. We demonstrate that
for some computer vision instances it performs even better
than methods reducing binary energy minimization to find-
ing maximum flow in a network.

1. Introduction

Energy minimization is a well known NP-hard combina-
torial problem which arises in MAP inference in graphical
models [16]. It is of great importance in low-level computer
vision. A lot of effort has been spent by researchers to in-
vent methods finding exact or approximate solutions.

Pairwise energy minimization with binary variables has a
prominent role. It is easily expressible as quadratic pseudo-
boolean optimization (QPBO) [1, 8]. Max-flow/min-cut al-
gorithms can be applied to find a partial optimal solution,
with some variables undecided. This shrinks the size of the
input problem. The undecided variables can be further re-
solved by applying e.g. the probing technique [13] or, in
general, by branch and bound. A complete optimal solu-
tion is always returned by QPBO for submodular instances.
This is further utilized in some cases of energy minimiza-
tion with general variables. Every multi-label energy mini-
mization reduces to the binary one [6, 14], preserving the
submodularity property. Further, solving submodular bi-
nary instances is a crucial part of approximate minimiza-
tions [3].

Since binary energy minimization is cast as a max-
flow/min-cut problem, the key prerequisite for solving it

efficiently has been so far to come up with a max-flow al-
gorithm working well on vision instances. The popular al-
gorithm by Boykov and Kolmogorov [2] fulfills this role.
An empirical comparison of max-flow algorithms recently
done by Verma and Batra [15] reveals that some other con-
temporary implementations are more suitable for instances
with dense graphs.

In this paper we introduce a different principle to solve
the binary case. We do not perform any translation to max-
flow. Our starting point is the linear programming (LP)
relaxation of the problem [17]. For binary variables, it is
known to be half-integral, i.e., all components of each opti-
mal solution are in {0, 1

2 , 1}. Moreover, the solution coin-
cides with the result of QPBO – value 1

2 indicates undecided
variables [1]. We show that the simplex method solving the
LP relaxation can be turned into a very efficient algorithm,
performed purely over the input energy minimization graph.
Special versions of the simplex method with similar prop-
erties have already been proposed for transportation, as-
signment and minimum cost-flow problems [4]. They are
known as the network simplex algorithms. There is even a
customization for the maximum flow problem [5], though it
does not figure among the leading implementations.

The proposed algorithm has practical benefit. Our ex-
periments demonstrate there are vision instances, where the
algorithm performs better than max-flow based solvers. Be-
sides that, it allows to study the behavior of the simplex
method on large-scale data and gives a hope for a general-
ization to multi-label problems. And finally, its impact may
extend beyond the scope of energy minimization as it can
be applied to min-cut which is expressible as submodular
binary energy minimization. Since the formulation and the
underlying structure is different than in the case of the net-
work simplex algorithm for max-flow, new ideas for solving
min-cut/max-flow may emerge.

We assume the reader is familiar with the simplex
method, as presented e.g. in [4]. Knowledge of notions like
basis, basic variable, basic feasible solution, pivoting rule
or minimum ratio test is essential for understanding the text.



2. Energy minimization and its LP relaxation
The task of pairwise energy minimization is to compute

min
k∈KV

[ ∑
u∈V

θu(ku) +
∑

{u,v}∈E

θuv(ku, kv)

]
(1)

where V is a finite set of objects, E ⊂
(
V
2

)
is a set of

object pairs (i.e., (V,E) is an undirected graph), K is a
finite set of labels, and the functions θu: K → R and
θuv: K ×K → R are unary and pairwise interactions. We
adopt that θuv(k, `) = θvu(`, k) and refer to the values of θu
and θuv as potentials. We shortly write θu(k) as θu;k and
θuv(k, `) as θuv;k`. The potentials together form a vector
θ ∈ RI with

I = { (u; k) | u ∈ V, k ∈ K } ∪
{ (uv; k`) | {u, v} ∈ E; k, ` ∈ K }. (2)

Throughout the paper, we consider energy minimization
with two labels, so K is fixed as {0, 1}. An instance of
problem (1) is thus fully defined by a tuple (V,E,θ). Its
linear programming relaxation reads as

argmin
x∈Λ

〈θ,x〉. (3)

Here we optimize over polytope Λ which consists of vectors
x ∈ RI that satisfy the constraints∑

`∈K

xuv;k` = xu;k, u ∈ V, v ∈ Nu, k ∈ K (4a)∑
k∈K

xu;k = 1, u ∈ V (4b)

x ≥ 0, (4c)

where Nu = { v | {u, v} ∈ E } is the set of neighbors of
object u. We again adopt xuv;k` = xvu;`k.

3. Applying simplex method – preparation
We work with the variant of the simplex method which

assumes the input linear program to be in the standard form:

min{〈θ,x〉 | Ax = b, x ≥ 0} (5)

where A ∈ Rm×n, m ≤ n, rank(A) = m, b ∈ Rm, and
θ ∈ Rn.

The LP relaxation of an energy minimization given by
(V,E,θ) induces overall n = 2|V | + 4|E| variables and
m = |V |+ 3|E| linearly independent equations [9].

For a given basis B ⊂ I , Figure 1 shows how we visual-
ize basic and nonbasic LP relaxation variables. The scheme
includes the input graph (V,E). The variables form an un-
derlying “microstructure”. Nonbasic variables are colored

r0

r1

r′0

r′1

p00

p11p01
p10

v v′

Figure 1. An LP relaxation diagram. The energy minimiza-
tion graph consists of objects v, v′ and object pair {v, v′}.
LP relaxation variables are denoted as rk = xv;k, r′k =
xv′;k, and pk` = xvv′;k`. Nonbasic variables are red, ba-
sic variables are black or blue. The selected basis is B =
{(v; 0), (vv′; 00), (v′; 0), (vv′; 01), (vv′; 10)}.

in red. They always attain zero value in the induced feasi-
ble solution. Basic variables attaining nonzero or zero value
are black or blue, respectively. Each such scheme is called
the LP relaxation diagram. In accordance with the diagram
appearance, every unary or pairwise LP relaxation variable
is simply called a node (variable) or edge (variable), respec-
tively.

The set of basic variables represented in Figure 1 results
in the following simplex tableau.

r0 r1 r′0 r′1 p00 p01 p10 p11

θ0 θ1 θ′0 θ′1 θ00 θ01 θ10 θ11 0
r0 1 1 0 0 0 0 0 0 1
r′0 0 0 1 1 0 0 0 0 1
p00 0 1 0 1 1 0 0 -1 1
p01 0 0 0 -1 0 1 0 1 0
p10 0 -1 0 0 0 0 1 1 0

Constraints (4a), (4b) give 6 linear equations, but only 5
of them are linearly independent. Each row of the tableau
is a linear combination of the constraints expressing a ba-
sic variable. The induced basic solution is feasible since
all elements in the rightmost column are nonnegative. The
simplex algorithm could be launched if the row with poten-
tials (objective costs) is adjusted to contain zeros in all basic
columns.

Performance of the standard, tableau-based simplex al-
gorithm is influenced by two factors.

• The number of performed iterations. It tends to be
steadily O(n) in practical applications [4]. Some
pathological LP instances result in an exponential
amount of iterations. On the other hand, polyno-
mial upper bounds were proved e.g. for the assignment
problem mentioned in the introduction.

• Memory and running time required to represent and
update the simplex tableau. This is what makes the
method computationally infeasible for large-scale in-
stances, quadratic time and space is required. A us-
age of a sparse matrix might be helpful, however, the
number of nonzero elements keeps growing and the



θ <0 θ
A b

aij

Figure 2. Having chosen pivot aij , only nonzero elements in the
i-th row and j-th column are needed to update θ, θ and b properly.

update is still a time-consuming operation. The prob-
lems are partially addressed by the so called revised
simplex method [4], but still, the general algorithm is
not fast enough to be able to compete with max-flow
based QPBO solvers.

The key concept leading to an efficient algorithm is ex-
plained in Figure 2. Each iteration of the simplex algo-
rithm updates cost vector θ and the objective function value
θ based on the pivotal row, while the right-hand sides vector
b is updated based on the pivotal column. Moreover, only
nonzero values have an impact. We show that the LP relax-
ation diagram enables a cheap retrieval of all such nonzero
elements. It is thus enough to maintain only θ, θ and b.

4. Structure of basis
It is a well known fact that each basic variable is express-

ible as a linear function of nonbasic variables. Moreover, it
is expressed in a unique way.

Theorem 1. Let B ⊂ I be a basis of (3) and letN = IrB
be the set of nonbasic indices. There are unique coefficients
bi, aij ∈ R (i ∈ B, j ∈ N ) such that each feasible vector
x ∈ Λ satisfies

xi = bi −
∑
j∈N

aijxj , ∀i ∈ B. (6)

Proof. Consider a linear program with constraint equations
Cx = c where C ∈ Rm×n, c ∈ Rm and rank(C) = m.
It can be written as BxB + NxN = c where B is an in-
vertible matrix and xB, xN are vectors of basic and non-
basic variables, respectively [4]. This implies that xB =
B−1c−B−1NxN . Assume that also xB = d−DxN for
some D ∈ Rm×(n−m), d ∈ Rm. Setting nonbasic vari-
ables to zeros gives the (only) basic solution corresponding
to basis B, hence d = B−1c. This further implies that
DxN = B−1NxN for all xN ∈ Rn−m, which holds only
if D = B−1N. �

Note that coefficients aij and bi in Theorem 1 correspond
to elements in the simplex tableau composed for basis B. In
what follows, we examine how they relate to the structure
of the LP relaxation diagram.

We say that a basic variable xi depends on a nonbasic
variable xj if aij 6= 0. Two useful corollaries can be ob-
tained from Theorem 1.

Corollary 2. Let B ⊂ I be a basis of (3), N = I r B and
y, z ∈ Λ. If yi = zi for all i ∈ N , then y = z.

Corollary 3. Let B ⊂ I be a basis of (3), N = I r B and
y, z ∈ Λ. Let there be k ∈ N such that yk 6= zk and yi = zi
for all i ∈ N r {k}. For j ∈ B, if xj is a basic variable
in (6) which depends on nonbasic variable xk, then yj 6= zj .

The first corollary states that a feasible vector is fully de-
termined by its nonbasic components. The second corollary
states that if two feasible vectors have the same nonbasic
components except one, then they differ in all basic compo-
nents which depend on the distinctive nonbasic component.

Given a basis B, two special elements in (V,E) are im-
portant for expressing basic node variables in the form (6).

• An object u ∈ V is called a dependency root if each
basic node variable xu;k (k ∈ {0, 1}) depends only
on the other node xu;1−k and/or on edge variables in
object pairs adjacent to u. Two possible configurations
forming a dependency root are depicted in Figure 3.

• An object pair {u, v} ∈ E is called a dependency ob-
ject pair if there are exactly two nonbasic edges xuv;k`

which are either “parallel” or “intersecting” as shown
in Figure 4.

Note that Figure 3(b) and Figure 4 show only snippets of
an LP relaxation diagram, not standalone diagrams with a
valid basis.

Define a dependency graphD(V,E,B) = (V,E′) as the
subgraph of (V,E) whereE′ consists of all dependency ob-
ject pairs inE. Moreover, for u ∈ V , defineDu(V,E,B) as
the connected component of D(V,E,B) containing u. An
example of a LP relaxation diagram and the induced depen-
dency graph is depicted in Figure 6. The following theorem
gives its characterization.

Theorem 4. Let (V,E,θ) be an instance of binary energy
minimization and let B be a basis of its LP relaxation. Then,
D(V,E,B) has the following structure.

• Each component has at most one cycle,

• if a component is a tree, it contains exactly one depen-
dency root, and

• if a component has a cycle, it does not contain any de-
pendency root.

Moreover, each basic node in an object u ∈ V depends only
on nonbasic variables located in the following elements:
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Figure 3. Objects u and v are dependency roots since (a) a =
1− b, (b) d = e+ f and c = 1− e− f .
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Figure 4. Two (a) parallel or (b) intersecting nonbasic edges allow
to delegate expressing basic nodes in u to expressing basic nodes
in v (and vice versa). For example, a = e−f+d and b = f−e+c.

u v

(a)

u v

(b)

Figure 5. (a) Objects u and v do not depend on a single non-
basic edge in {u, v}. (b) Three nonbasic edges in {u, v} induce
dependency roots u, v.
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Figure 6. An example of (a) an LP relaxation diagram and (b)
its dependency graph. Dependency object pairs are displayed as
directed edges oriented towards the root or cycle of the component.
Edges in a cycle follow one of the orientations which closes a loop.
Dependency roots as well as objects in cycles are highlighted.

• objects and object pairs forming the path from u to the
dependency root or the cycle of Du(V,E,B),

• objects and object pairs of the cycle of Du(V,E,B),
and

• the object pair containing nonbasic edges establishing
the root of Du(V,E,B) (refers to Figure 3(b)).

Proof. We list all locally admissible configurations of basic
and nonbasic variables (up to permutations). After that, we
derive how a basic node is expressed in the form (6).

As the first step, observe there is at most one nonbasic
node within one object. Since nonbasic nodes attain zero
in feasible solutions, two nonbasic nodes do not fulfill con-
straint (4b). In addition, each object pair {u, v} contains
one, two or three nonbasic edges. This is proved by contra-
diction. Let all four edges xuv;ij , i, j ∈ {0, 1} be nonba-
sic (and thus of zero value). Constraint (4a) forces xu;0 =
xu;1 = 0 which again does not fulfill (4b). On the other
side, let all four xuv;ij be basic. Take a feasible solution y
where yuv;00 = yuv;11 = 1/2 and yuv;01 = yuv;10 = 0.
Create vector z from y as follows: set zuv;00 = zuv;11 =
zuv;01 = zuv;10 = 1/4 and copy values of all other compo-
nents. Since z is again a feasible solution, pair y, z contra-
dicts Corollary 2.

We further inspect, how the configurations participate in
expressing nodes in the form (6). If there is only one non-
basic edge (see Figure 5(a)), we can prove that none of the
basic nodes in the adjacent objects depends on it. Consider
the same vectors y and z as specified before. W.l.o.g., let
xuv;10 be the only nonbasic edge within {u, v} and, w.l.o.g.,
let xu;0 depend on xuv;10. Observe that yuv;10 differs from
zuv;10, but yu;0 equals zu;0. This contradicts Corollary 3.

If there are two nonbasic edges with a shared end-node in
object v (Figure 3(b)), then, by definition, v is a dependency
root. Three nonbasic edges induce one pair of edges with
a shared end-node in each of the objects (Figure 5(b)), two
dependency roots are thus formed.

The only configurations of nonbasic edges allowing de-
pendance of basic nodes on more distant nonbasic variables
are those ones defining dependency object pairs (Figure 4).
In this case, nodes in one object can be locally expressed
using nodes in the opposite object (and vice versa). For a
parallel dependency object pair (Figure 4(a)) we derive

xu;0 = xuv;00 − xuv;11 + xv;1,

xu;1 = xuv;11 − xuv;00 + xv;0.

Analogously, for an intersecting object pair (Figure 4(b))
we get

xu;0 = xuv;01 − xuv;10 + xv;0,

xu;1 = xuv;10 − xuv;01 + xv;1.

Since xuv;00 and xuv;11 are nonbasic variables, to complete
the expression of xu;0 and xu;1 as (6) would require to ex-
press xv;1 and xv;0. This again could delegate the process
to a neighboring object. Such a procedure produces a com-
plete expression of a basic variable when a dependency root
is reached, as demonstrated in Figure 7(a). Following the
path from u to w yields

xu;0 = xuv;00 − xuv;11 + xvw;10 − xvw;01 + xw;1.



If a sequence of objects (ui)
k
i=1 forms a path in (V,E),

each {ui, ui+1}, 1 ≤ i ≤ k − 1 is w.l.o.g. an intersect-
ing dependency object pair and xuk;0 is the only nonbasic
node among all nodes in ui’s, then basic nodes in u1 are
expressed by nonbasic variables as follows.

xu1;0 =

k−1∑
i=1

xuiui+1;01 −
k−1∑
i=1

xuiui+1;10 + xuk;0, (7)

xu1;1 =1−
k−1∑
i=1

xuiui+1;01 +

k−1∑
i=1

xuiui+1;10 − xuk;0. (8)

The second possibility how to terminate the described pro-
cess of expressing a basic node is to close a loop. This is
demonstrated in Figure 7(b) where

xu;0 =
1

2
(xuv;00 − xuv;11 + xvs;10 − xvs;01

+ xst;11 − xst;00 + xtu;00 − xtu;11 + 1).

In general, let (ui)
k
i=1 be a sequence of objects forming a

cycle in (V,E). W.l.o.g., let {ui, ui+1} be intersecting for
1 ≤ i ≤ k− 1 and let {u1, uk} be parallel. Assume than all
nodes in ui’s are basic. Node xu1,0 can be again expressed
as (7), but this is not yet the form (6) since xuk;0 is basic
node. However, if we substitute

xuk;0 = xuku1;00 − xuku1;11 + 1− xu1;0,

we obtain an equation which gives

xu1;0 =
1

2

(
1 +

k−1∑
i=1

xuiui+1;01 −
k−1∑
i=1

xuiui+1;10

+ xuku1;00 − xuku1;11

)
. (9)

Node xu1;1 can be now expressed as (6) using the equality
xu1;1 = 1−xu1;0. Note it was essential that {u1, uk} is par-
allel. Changing it to intersecting would result in an equation
where both, xu1;0 and xu1;1 are missing. To express these
variables, it is necessary to have a dependency cycle where
all basic edges and nodes form a connected component in
the underlying microstructure.

Finally, the most general situation when there is a path
starting at object u and leading to object v which is part of a
cycle (and it is the first such an object in the path) is handled
in two steps. First, nodes in u are expressed along to the
path to v as (7), (8), and second, nodes of v are expressed
within the cycle as (9). To finish the proof it suffices to
realize it is not possible to have more choices of following
dependency object pairs to a root or cycle since (6) is unique
for each basic variable. �

u v w

(a)

v u

s t

(b)

Figure 7. Expressing a nonbasic node variable in u along a path
formed of dependency object pairs terminates only if (a) a depen-
dency root is reached or (b) a loop is closed.

Theorem 5. Given a binary energy minimization (V,E,θ)
and a basis B of its LP relaxation, each basic edge of an ob-
ject pair e = {u, v} ∈ E depends only on a subset of non-
basic variables in e,Cu = Du(V,E,B),Cv = Dv(V,E,B)
and on nonbasic edges establishing dependency roots of Cu

and Cv .

Proof. If there are at least two nonbasic edges in e =
{u, v}, then each basic edges in e is adjacent to a nonba-
sic edge in some node (inspect all possible configurations in
Figures 3(b), 4(a), 4(b), 5(b)). It is thus possible to express
every basic edge in e as a linear function of one nonbasic
edge and one (basic or nonbasic) node. For example, we
derive in Figure 4(a)

xuv;01 = xv;1 − xuv;11. (10)

If there is only one nonbasic edge in e (Figure 5(a)), then
the basic edge which is not adjacent to it in any node is
expressed using two nodes. In Figure 5(a), it holds

xuv;01 = xu;0 − xv;0 + xuv;10. (11)

Formula (6) for any basic edge in e is obtained if we substi-
tute the basic nodes with their expressions (6). �

Theorem 6. Given a binary energy minimization (V,E,θ),
a feasible basis B of its LP relaxation, i ∈ B and xi ex-
pressed in the form (6). It holds bi ∈ {0, 1

2 , 1} and, for all
j ∈ I r B, aij ∈ {0,± 1

2 ,±1,±2}.

Proof. Possible values of bi are prescribed by the half-
integrality of basic feasible solutions [1]. As observable in
Figure 6(a), values 1

2 are assigned to basic variables in de-
pendency components with a cycle and to basic edge vari-
ables in object pairs adjacent to such components.

By checking expressions (7), (8) and (9) derived in the
proof of Theorem 5, we find that aij is in {0,± 1

2 ,±1} for
each basic node. The same conclusion holds for basic edges
which can be expressed as (10). Consider a basic edge ex-
pressed as (11). Substitute for xu;0 and xv;0 their expres-
sions (6). If Du(V,E,B) and Dv(V,E,B) differ, then the
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Figure 8. The blue signs show dependency of a on nonbasic vari-
ables (each dependency coefficient is either +1 or −1), while the
black signs show dependency of b. Since f = e + a − b, edge
f does not depend on node c, neither on the nonbasic edges in
{w, u}. If the length of the dependency path from w to v was an
even number, the dependency coefficient of f on c would be 2.

substituted expressions do not share variables with nonzero
coefficients. However, if Du(V,E,B) = Dv(V,E,B) then
a nonbasic variable xq with a nonzero coefficient can be
present in both expressions, with coefficients of the same
absolute value, hence the dependency of xuv;01 on xq either
vanishes or the dependency coefficient is doubled. This is
demonstrated in Figure 8. �

5. Algorithm
Section 4 has established theoretical basis for a special

version of the simplex algorithm executed for the LP relax-
ation of a binary energy minimization (V,E,θ). Here we
put together all needed ingredients and give a description of
the algorithm itself.

The algorithm performs steps over the LP relaxation di-
agram induced by the actual feasible basis B. The diagram
enables an efficient retrieval of dependency coefficients
which corresponds to elements in the simplex tableau. For a
faster traversal of the diagram, the direction of dependency
object pairs towards the dependency root or cycle, as given
in Figure 6(b), is maintained. Each node and edge variable
is assigned by a boolean flag determining its basic/nonbasic
status. Black/blue color of basic variables is recorded only
for nodes. Color of basic edges can be derived from a local
context.

For a nonbasic variable, it is possible to locate all ba-
sic variables that depend on it by traversing the dependency
component in the direction opposite to the orientation of de-
pendency object pairs in Figure 9(a). Similarly, for a basic
variable, it is possible to traverse all nonbasic variables on
which it depends. In this case a directed path to the depen-
dency root or cycle is followed in one or two components,
as can be seen in Figure 9(b). The dependency coefficient
can also be determined by traversing components.

We apply a modified Dantzig’s pivoting rule. The orig-
inal variant chooses a nonbasic variable with the lowest
negative cost (such a variable enters the basis), however,

e

(a)

`

u

v

(b)

Figure 9. (a) The highlighted elements contain all the basic vari-
ables that depend on a nonbasic edge variable in object pair e. (b)
A basic variable in object pair ` = {u, v} is expressed along paths
from u and v to the root or cycle.

this is time-consuming. We rather use r doubly linked lists
L1, . . . ,Lr and negative threshold values τ1 < τ2 < . . . <
τr = 0. An objective cost θ is stored in Ls if τs−1 < θ ≤ τs
(where τ0 = −∞). The list can be found by a binary search
in dlog2 re steps. From performance reasons, we also do
not implement any anti-cycling strategy. This is a normal
approach in general LP solvers. No cycling has been ob-
served during our numerous experiments. The experiments
further revealed that it is sufficient to choose r = 8. Setting
r > 8 has not resulted in any considerable improvement for
the tested instances. It has also turned out that the number
of iterations performed by the algorithm is nearly identical
as in the case of the regular Dantzig rule.

The initial feasible basis follows the uniform pattern in
Figure 1. A description of the algorithm follows.

Initialization. Create the initial feasible basis. For every
object u ∈ V , mark xu;1 as a nonbasic node. For every
object pair {u, v} ∈ E, mark xuv;11 as a nonbasic edge.
All the other nodes and edges are basic variables. Ap-
ply a reparametrization (see section 2.1 of [8]) to θ which
changes costs of all basic variables to zero. Insert negative
costs into lists Li.

Entering variable selection. Find the first nonempty list
Li and take its first element. The nonbasic variable xe ref-
erenced by it is the entering variable. Assume it is located
in an object or object pair e.

Leaving variable selection. Mark each object u that
passes through e when traversing from u to the root or cy-
cle, respectively. Search through the dependent variables
and find a leaving variable (x` in an object or object pair `)
fulfilling the minimum ratio test. Finish the search prema-
turely if a zero ratio is found. Unmark all the marked ob-
jects.

Iteration. Update costs of all variables on which x` de-
pends. Remove positive costs from lists, append costs that
became negative. If a negative cost in Li is changed and



belongs now to Lj , remove it form Li and append it to Lj .
Update basic/nonbasic flag of xe and x`. Update the rep-
resentation of dependency components. Update colors of
nodes.

Termination. Finish when all lists Li are empty.

Time of one iteration is proportional to size of the in-
volved dependency components. A good performance can
be expected for those energy minimization instances which
induce dependency components whose average size is ei-
ther constant or slowly growing in size of the energy min-
imization graph. The experimental evaluation showed that
such small components usually emerge for nonsubmodular
instances and submodular instances where pairwise poten-
tials are less dominant. On the other hand, submodular in-
stances with more dominant pairwise potentials (e.g. seg-
mentation instances), which result in solutions containing
large regions assigned by the same label, tend to form large
dependency components during the late iterations of the al-
gorithm. In the next section, we report details on the favor-
able type of problems.

6. Experiments
We have implemented the specialized simplex algorithm

(SA) in C++. It supports the creation of general graphs
and computes with double precision floating point num-
bers. The max-flow based QPBO implementation by Kol-
mogorov [18] (BK) is used for comparison. All the sources
were compiled in Microsoft Visual Studio 2012 and run on a
notebook with Intel Core i5-4300M 2.6 GHz, 12 GB RAM
and 64-bit Windows 7. The evaluation is done for vision
problems and random data.

6.1. Vision problems

Test data are taken mainly from the empirical compari-
son of max-flow algorithms [15] which targets a wide range
of max-flow algorithms based on augmenting-path, push-
relabel or pseudoflow principles. Since their performance
relative to BK algorithm is known, it is possible to compare
SA with them. The data are available at [20] in the form of
QPBO graphs. We turned them into an energy minimization
format.

Decision Tree Field (DTF) is a recently introduced
model by Nowozin et al. [11] that combines random forests
and conditional random fields. 99 instances are available,
giving a sufficiently representative sample. The problem
is nonsubmodular and involves dense graphs. We measure
performance of SA relative to BK. Ratios of running times
(SA/BK) sorted in ascending order are plotted in Figure 10.
SA is at least two times faster than BK for 80 instances. It
is slower only for 4 instances. The average time of the best
performing max-flow algorithm over DTFs reported in [15]
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Figure 10. SA/BK relative time for Decision Tree Fields.

is about 46% of the average time of BK (provided that the
initialization time is counted). SA achieves 31% of BK.

The amount of samples available for the next problems
is considerably lower. We have collected two instances of
Super Resolution (a sparse nonsubmodular problem) and
six instances of Deconvolution with 3x3 or 5x5 blur-kernel
(a dense nonsubmodular problem, graph connectivity is 24
or 80, respectively). These instances were considered by
Rother et al. in [13]. Some of them (#3, #7, #9) are provided
at [20]. Shape Fitting [10] is a representative of a sparse
submodular problem. An instance (LB07-bunny-sml)
has been taken at [19].

Measured absolute running times are in Table 1. Two se-
lected DTFs are included there for comparison. To demon-
strate a huge gain over a general LP solver, running times of
IBM ILOG CPLEX 12.6 for the instances are also included.
We tested the primal as well as the dual simplex method.
Time limit of 10 minutes was applied for each computation.

We can see that BK performs better than SA for instances
#3 – 8. However, the responsiveness of SA is within reason-
able limits. The situation is different for deconvolution with
a 5x5 blur-kernel. BK outperforms SA for #9. Conversely,
SA outperforms BK for #10. Note that there are max-flow
algorithms better than BK for this denser variant of decon-
volution (approx. 1.5 times faster [15]).

6.2. Scalable random data

Here we study how the performance of SA scales in the
size of the input graph. For this purpose we need a dataset of
instances with equally growing number of objects. We gen-
erate a subset of square grids from 10×10 to 500×500 with
8-neighborhood system. Unary potentials are generated as
independent gaussians θu;0, θu;1 ∼ N (0, 1). Pairwise po-
tentials are set to zero for θuv;00 and θuv;11. Values of θuv;01

and θuv;10 are generated as N (0, 2). This setup is an in-
stance of the Ising model with mixed potentials. Overall, we
obtain sparse nonsubmodular inputs containing about 66%
undecided variables in the optimal LP relaxation solution.

The evaluation is also done for the variant of SA which
strictly follows Danzig’s pivoting rule (a binary heap is used
to store negative objective costs in this case). This variant



# description objects obj. pairs SA [ms] BK [ms] CPLEX primal [ms] CPLEX dual [ms]
1 dtf-78 7776 217414 149 1337 time limit exceeded 96315
2 dtf-94 8384 234237 276 1523 time limit exceeded 129574
3 sup. res. (4-con) 5246 10345 3.7 1.5 218 421
4 sup. res. (8-con) 5246 20545 10.4 3.2 483 1388
5 shape fit. (6-con) 805800 2391242 628 135 out of memory out of memory
6 deconv. 3x3 1024 11346 5.5 2.2 1451 296
7 deconv. 3x3 1000 10968 4.9 3.1 1185 358
8 deconv. 3x3 1000 10968 4.6 2.5 858 405
9 deconv. 5x5 1000 33900 71.7 8.3 17924 1872

10 deconv. 5x5 1024 35400 7.5 23.9 22730 2496
11 deconv. 5x5 880 29820 32.1 46.4 1841 1342

Table 1. Running time of SA, BK and CPLEX 12.6 for vision instances.
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Figure 11. Running time of SA, SA-D and BK for random grids.
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Figure 12. SA and SA-D: the number of performed iterations and
the average number of objects traversed per iteration.

is denoted as SA-D. The dependency of running time on
the number of objects is plotted in Figure 11. SA performs
better than BK and the measured time is linear. In contrast, a
non-linearity caused by the binary heap usage is observable
for SA-D. It is also interesting that the function for SA is
the smoothest one.

Figure 12 reveals two dependencies. The number of it-
erations performed by the simplex algorithm is linear. It is
almost identical for both, SA and SA-D, the displayed func-
tions coalesce. Moreover, the average number of objects
traversed within one iteration is almost constant. Surpris-
ingly, the constant is greater for SA-D.

In conclusion, SA demonstrated a very good perfor-
mance and stability in this test.

7. Conclusion

We have presented a graph-based version of the simplex
method for pairwise energy minimization with binary vari-
ables. The experiments confirmed that the proposed algo-
rithm is efficient for certain types of vision problems. Out-
performing other solvers on DTF instances represents an
immediate practical benefit.

We believe the method has a very good potential for fur-
ther research. We obtained an algorithm competitive with
best solvers based on finding maximum flow in a network,
which has been intensively studied by many researches for
a long time. Our algorithm has not undergone such evo-
lution. Promising opportunities for improvements are thus
expectable. For example, a different pivoting rule might re-
sult in a smaller size of dependency components, a more
advanced representation of components might reduce the
number of traversed objects when searching for the leav-
ing variable, etc. The algorithm may also be suitable for
parallelization.

An interesting question is whether the approach can be
efficiently generalized to the LP relaxation of multi-label
energy minimization problems. The situation is surely more
difficult. More labels induce richer relations among basic
and nonbasic variables. Except that, the LP relaxation be-
comes as hard as general LP [12] and, as a consequence,
components of optimal solutions are, roughly speaking, ar-
bitrary fractions. On the other hand, known methods for
solving the LP relaxation of multi-label problems like mes-
sage passing [7] are considerably slower than max-flow al-
gorithms. Even a slower retrieval of simplex tableau ele-
ments (e.g. by solving subsystems of linear equations within
dependency components) could still result in a method with
better performance. The presented applicability of the sim-
plex algorithm in the binary setting should encourage such
considerations.
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