
Hypercolumns for Object Segmentation and Fine-grained Localization

Bharath Hariharan1, Pablo Arbeláez2, Ross Girshick3, Jitendra Malik1

1University of California, Berkeley. 2Universidad de los Andes, Colombia. 3Microsoft Research, Redmond.

Convolutional 
Network

Hypercolumn

Figure 1: The hypercolumn representation. The bottom image is the input,
while the other images represent feature maps of different layers in the CNN.
The hypercolumn at a pixel is the vector of activations of all units that lie
above that pixel.

Features based on convolutional networks (CNNs) [6] have now led to the
best results on a range of recognition tasks [2]. Typically, recognition algo-
rithms use the output of the last layer of the CNN. This makes sense when
the task is assigning category labels to images or bounding boxes: the last
layer is the most sensitive to category-level semantic information and the
most invariant to “nuisance" variables such as pose, illumination, articula-
tion, precise location and so on. However, when the task we are interested in
is finer-grained, such as one of segmenting the detected object or estimating
its pose, these nuisance variables are precisely what we are interested in.
For such applications, the top layer is thus not the optimal representation.

The information that is generalized over in the top layer is present in
intermediate layers, but intermediate layers are also much less sensitive to
semantics. For instance, bar detectors in early layers might localize bars pre-
cisely but cannot discriminate between bars that are horse legs and bars that
are tree trunks. This observation suggests that reasoning at multiple levels of
abstraction and scale is necessary, mirroring other problems in computer vi-
sion (such as optical flow) where reasoning across multiple levels has proved
beneficial.

In this paper, we think of the layers of the convolutional network as a
non-linear counterpart of the image pyramids used in other vision tasks. Our
hypothesis is that the information of interest is distributed over all levels of
the CNN and should be exploited in this way. We define the “hypercolumn"
at a given input location as the outputs of all units above that location at all
layers of the CNN, stacked into one vector. (Because adjacent layers are
correlated, in practice we need not consider all the layers but can simply
sample a few.) Figure 1 shows a visualization of the idea. We borrow the
term “hypercolumn" from neuroscience, where it is used to describe a set
of V1 neurons sensitive to edges at multiple orientations and multiple fre-
quencies arranged in a columnar structure [5]. However, our hypercolumn
includes not just edge detectors but also more semantic units and is thus a
more general notion.

We show the utility of the hypercolumn representation on two kinds of
problems that require precise localization. The first problem is simultaneous
detection and segmentation (SDS) [4], where the aim is to both detect and
segment every instance of the category in the image. The second problem
deals with detecting an object and localizing its parts. We consider two
variants of this: one, locating the keypoints [7], and two, segmenting out
each part [1].

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Figure 2: Example results. The first row shows figure-ground segmentations
starting from bounding box detections. The second row shows example part
labelings. The third row shows example keypoint predictions (left wrist).

We present a general framework for tackling these and other fine-grained
localization tasks by framing them as pixel classification. We start from an
initial detection of the object (which might come with an initial segmen-
tation). We then classify each pixel in the bounding box as belonging to
the object or not (for SDS), as belonging to a part or not (for part label-
ing) or as lying on a keypoint or not (for keypoint prediction). We use the
hypercolumn representation of each pixel as features for this classification
task. To incorporate the information provided by the location of the pixel in
the bounding box, we use a coarse grid of classifiers, interpolating between
them to produce high resolution, precise labelings. Finally, we formulate
our entire system as a neural network, allowing end-to-end training for par-
ticular tasks simply by changing the target labels.

Our empirical results are:

1. On SDS, the previous state-of-the-art is 49.7 mean APr [4]. Sub-
stituting hypercolumns into the pipeline of [4] improves this to 52.8.
We also propose a more efficient pipeline that allows us to use a larger
network, pushing up the performance to 60.0.

2. On keypoint prediction, we show that a simple keypoint prediction
scheme using hypercolumns achieves a 3.3 point gain in the APK
metric [7] over prior approaches working with only the top layer fea-
tures [3]. While there isn’t much prior work on labeling parts of
objects, we show that the hypercolumn framework is significantly
better (by 6.6 points on average) than a strong baseline based on the
top layer features.

[1] Yihang Bo and Charless C Fowlkes. Shape-based pedestrian parsing. In CVPR,
2011.

[2] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In CVPR,
2014.

[3] Georgia Gkioxari, Bharath Hariharan, Ross Girshick, and Jitendra Malik. R-
CNNs for pose estimation and action detection. 2014.

[4] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simulta-
neous detection and segmentation. In ECCV, 2014.

[5] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of physiology, 160
(1), 1962.

[6] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4), 1989.

[7] Yi Yang and Deva Ramanan. Articulated human detection with flexible mixtures
of parts. TPAMI, 35(12), 2013.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

