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Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [30] revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects,
which we call “fooling images” (more generally, fooling ex-
amples). Our results shed light on interesting differences
between human vision and current DNNs, and raise ques-
tions about the generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-
ers of representation from sensory input in order to per-
form pattern recognition [2, 14]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[16, 7, 31, 17]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
≥ 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

A recent study revealed a major difference between DNN
and human vision [30]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static
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Figure 2. Although state-of-the-art deep neural networks can increasingly recognize natural images (left panel), they also are easily
fooled into declaring with near-certainty that unrecognizable images are familiar objects (center). Images that fool DNNs are produced by
evolutionary algorithms (right panel) that optimize images to generate high-confidence DNN predictions for each class in the dataset the
DNN is trained on (here, ImageNet).

is a motorcycle). Specifically, we use evolutionary algo-
rithms or gradient ascent to generate images that are given
high prediction scores by convolutional neural networks
(convnets) [16, 18]. These DNN models have been shown
to perform well on both the ImageNet [10] and MNIST [19]
datasets. We also find that, for MNIST DNNs, it is not easy
to prevent the DNNs from being fooled by retraining them
with fooling images labeled as such. While retrained DNNs
learn to classify the negative examples as fooling images, a
new batch of fooling images can be produced that fool these
new networks, even after many retraining iterations.

Our findings shed light on current differences between
human vision and DNN-based computer vision. They also
raise questions about how DNNs perform in general across
different types of images than the ones they have been
trained and traditionally tested on.

2. Methods

2.1. Deep neural network models

To test whether DNNs might give false positives for
unrecognizable images, we need a DNN trained to near
state-of-the-art performance. We choose the well-known
“AlexNet” architecture from [16], which is a convnet
trained on the 1.3-million-image ILSVRC 2012 ImageNet
dataset [10, 24]. Specifically, we use the already-trained
AlexNet DNN provided by the Caffe software package [15].
It obtains 42.6% top-1 error rate, similar to the 40.7% re-
ported by Krizhevsky 2012 [16]. While the Caffe-provided
DNN has some small differences from Krizhevsky 2012
[16], we do not believe our results would be qualitatively
changed by small architectural and optimization differences
or their resulting small performance improvements. Simi-
larly, while recent papers have improved upon Krizhevsky
2012, those differences are unlikely to change our results.
We chose AlexNet because it is widely known and a trained

DNN similar to it is publicly available. In this paper, we
refer to this model as “ImageNet DNN”.

To test that our results hold for other DNN architectures
and datasets, we also conduct experiments with the Caffe-
provided LeNet model [18] trained on the MNIST dataset
[19]. The Caffe version has a minor difference from the
original architecture in [18] in that its neural activation func-
tions are rectified linear units (ReLUs) [22] instead of sig-
moids. This model obtains 0.94% error rate, similar to the
0.8% of LeNet-5 [18]. We refer to this model as “MNIST
DNN”.

2.2. Generating images with evolution

The novel images we test DNNs on are produced by evo-
lutionary algorithms (EAs) [12]. EAs are optimization al-
gorithms inspired by Darwinian evolution. They contain
a population of “organisms” (here, images) that alternately
face selection (keeping the best) and then random pertur-
bation (mutation and/or crossover). Which organisms are
selected depends on the fitness function, which in these ex-
periments is the highest prediction value a DNN makes for
that image belonging to a class (Fig. 2).

Traditional EAs optimize solutions to perform well on
one objective, or on all of a small set of objectives [12] (e.g.
evolving images to match a single ImageNet class). We
instead use a new algorithm called the multi-dimensional
archive of phenotypic elites MAP-Elites [6], which enables
us to simultaneously evolve a population that contains in-
dividuals that score well on many classes (e.g. all 1000
ImageNet classes). Our results are unaffected by using
the more computationally efficient MAP-Elites over single-
target evolution (data not shown). MAP-Elites works by
keeping the best individual found so far for each objective.
Each iteration, it chooses a random organism from the pop-
ulation, mutates it randomly, and replaces the current cham-
pion for any objective if the new individual has higher fit-



ness on that objective. Here, fitness is determined by show-
ing the image to the DNN; if the image generates a higher
prediction score for any class than has been seen before, the
newly generated individual becomes the champion in the
archive for that class.

We test EAs with two different encodings [29, 5], mean-
ing how an image is represented as a genome. The first
has a direct encoding, which has one grayscale integer for
each of 28× 28 pixels for MNIST, and three integers (H, S,
V) for each of 256 × 256 pixels for ImageNet. Each pixel
value is initialized with uniform random noise within the
[0, 255] range. Those numbers are independently mutated;
first by determining which numbers are mutated, via a rate
that starts at 0.1 (each number has a 10% chance of being
chosen to be mutated) and drops by half every 1000 gener-
ations. The numbers chosen to be mutated are then altered
via the polynomial mutation operator [8] with a fixed muta-
tion strength of 15. The second EA has an indirect encod-
ing, which is more likely to produce regular images, mean-
ing images that contain compressible patterns (e.g. symme-
try and repetition) [20]. Indirectly encoded images tend to
be regular because elements in the genome can affect mul-
tiple parts of the image [28]. Specifically, the indirect en-
coding here is a compositional pattern-producing network
(CPPN), which can evolve complex, regular images that re-
semble natural and man-made objects [25, 28, 1].

Importantly, images evolved with CPPNs can be recog-
nized by DNNs (Fig. 3), providing an existence proof that
a CPPN-encoded EA can produce images that both humans
and DNNs can recognize. These images were produced on
PicBreeder.org [25], a site where users serve as the fitness
function in an evolutionary algorithm by selecting images
they like, which become the parents of the next generation.

CPPNs are similar to artificial neural networks (ANNs).
A CPPN takes in the (x, y) position of a pixel as input, and
outputs a grayscale value (MNIST) or tuple of HSV color
values (ImageNet) for that pixel. Like a neural network,
the function the CPPN computes depends on the number
of neurons in the CPPN, how they are connected, and the
weights between neurons. Each CPPN node can be one of
a set of activation functions (here: sine, sigmoid, Gaussian
and linear), which can provide geometric regularities to the
image. For example, passing the x input into a Gaussian
function will provide left-right symmetry, and passing the
y input into a sine function provides top-bottom repetition.
Evolution determines the topology, weights, and activation
functions of each CPPN network in the population.

As is custom, and was done for the images in Fig. 3,
CPPN networks start with no hidden nodes, and nodes are
added over time, encouraging evolution to first search for
simple, regular images before adding complexity [27]. Our
experiments are implemented in the Sferes evolutionary
computation framework [21]. Our code and parameters are

Figure 3. Evolved, CPPN-encoded images produced with humans
performing selection on PicBreeder.org. Human image breeders
named each object (centered text). Blue bars show the top three
classifications made by a DNN trained on ImageNet (size indi-
cates confidence). Often the first classification relates to the hu-
man breeder’s label, showing that CPPN-encoded evolution can
produce images that humans and DNNs can recognize.

available at http://EvolvingAI.org/fooling.

3. Results
3.1. Evolving irregular images to match MNIST

We first evolve directly encoded images to be confidently
declared by LeNet to be digits 0 thru 9 (recall that LeNet is
trained to recognize digits from the MNIST dataset). Mul-
tiple, independent runs of evolution repeatedly produce im-
ages that MNIST DNNs believe with 99.99% confidence to
be digits, but are unrecognizable as such (Fig. 4). In less
than 50 generations, each run of evolution repeatedly pro-
duces unrecognizable images of each digit type classified by
MNIST DNNs with ≥ 99.99% confidence. By 200 genera-
tions, median confidence is 99.99%. Given the DNN’s near-
certainty, one might expect these images to resemble hand-
written digits. On the contrary, the generated images look
nothing like the handwritten digits in the MNIST dataset.

3.2. Evolving regular images to match MNIST

Because CPPN encodings can evolve recognizable im-
ages (Fig. 3), we tested whether this more capable, regular
encoding might produce more recognizable images than the
irregular white-noise static of the direct encoding. The re-
sult, while containing more strokes and other regularities,
still led to MNIST DNNs labeling unrecognizable images as
digits with 99.99% confidence (Fig. 5) after only a few gen-
erations. By 200 generations, median confidence is 99.99%.

Certain patterns repeatedly evolve in some digit classes
that appear indicative of that digit (Fig. 5). Images classi-

http://EvolvingAI.org/fooling
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Figure 4. Directly encoded, thus irregular, images that MNIST
DNNs believe with 99.99% confidence are digits 0-9. Each col-
umn is a digit class, and each row is the result after 200 generations
of a randomly selected, independent run of evolution.

0 1 2 3 4 5 6 7 8 9

Figure 5. Indirectly encoded, thus regular, images that MNIST
DNNs believe with 99.99% confidence are digits 0-9. The column
and row descriptions are the same as for Fig. 4.

fied as a 1 tend to have vertical bars, while images classi-
fied as a 2 tend to have a horizontal bar in the lower half
of the image. Qualitatively similar discriminative features
are observed in 50 other runs as well (supplementary mate-
rial). This result suggests that the EA exploits specific dis-
criminative features corresponding to the handwritten digits
learned by MNIST DNNs.

3.3. Evolving irregular images to match ImageNet

We hypothesized that MNIST DNNs might be easily
fooled because they are trained on a small dataset that could
allow for overfitting (MNIST has only 60,000 training im-
ages). To test this hypothesis that a larger dataset might
prevent the pathology, we evolved directly encoded images
to be classified confidently by a convolutional DNN [16]
trained on the ImageNet 2012 dataset, which has 1.3 mil-
lion natural images in 1000 classes [9]. Confidence scores
for images were averaged over 10 crops (1 center, 4 corners
and 5 mirrors) of size 227× 227.

The directly encoded EA was less successful at produc-
ing high-confidence images in this case. Even after 20,000
generations, evolution failed to produce high-confidence
images for many categories (Fig. 6, median confidence

21.59%). However, evolution did manage to produce im-
ages for 45 classes that are classified with ≥ 99% confi-
dence to be natural images (Fig. 1). While in some cases
one might discern features of the target class in the image
if told the class, humans without such priming would not
recognize the image as belonging to that class.
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Figure 6. Median confidence scores from 5 runs of directly en-
coded, evolved images for all 1000 ImageNet classes. Though
rare, evolution can produce images that the DNN believes with
over 99% confidence to be in a natural, ImageNet class.

3.4. Evolving regular images to match ImageNet

Once again, we test whether the CPPN encoding, which
has previously evolved images that both humans and DNNs
recognize similarly (Fig. 3), might produce more recogniz-
able images than the direct encoding. The hypothesis is that
the larger ImageNet dataset and more powerful DNN ar-
chitecture may interact with the CPPN encoding to finally
produce recognizable images.

In five independent runs, evolution produces many im-
ages with DNN confidence scores ≥ 99.99%, but that are
unrecognizable (Fig. 1 bottom). After 5000 generations, the
median confidence score reaches 88.11%, similar to that for
natural images (supplementary material) and significantly
higher than the 21.59% for the direct encoding (Fig. 12,
p < 0.0001 via Mann-Whitney U test), which was given 4-
fold more generations. High-confidence images are found
in most categories (Fig. 7).

Figure 7. Median confidence scores from 5 runs of CPPN-
encoded, evolved images for all 1000 ImageNet classes. Evolution
can produce many images that the DNN believes with over 99%
confidence to belong to ImageNet classes.

While a human not given the class labels for CPPN im-
ages would not label them as belonging to that class, the
generated images do often contain some features of the tar-
get class. For example, in Fig. 1, the starfish image contains
the blue of water and the orange of a starfish, the baseball
has red stitching on a white background, the remote control



Figure 8. Evolving images to match DNN classes produces a
tremendous diversity of images. Shown are images selected to
showcase diversity from 5 evolutionary runs. The diversity sug-
gests that the images are non-random, but that instead evolutions
producing discriminative features of each target class. The mean
DNN confidence scores for these images is 99.12%.

has a grid of buttons, etc. For many of the produced images,
one can begin to identify why the DNN believes the image
is of that class once given the class label. This is because
evolution need only to produce features that are unique to,
or discriminative for, a class, rather than produce an image
that contains all of the typical features of a class.

The pressure to create these discriminative features led
to a surprising amount of diversity in the images pro-
duced (Fig. 8). That diversity is especially noteworthy be-
cause (1) it has been shown that imperceptible changes to an
image can change a DNN’s class label [30], so it could have
been the case that evolution produced very similar, high-
confidence images for all classes, and (2) many of the im-
ages are related to each other phylogenetically, which leads
evolution to produce similar images for closely related cat-
egories (Fig. 9). For example, one image type receives high
confidence scores for three types of lizards, and a different
image type receives high confidence scores for three types
of small, fluffy dogs. Different runs of evolution, however,
produce different image types for these related categories,
revealing that there are different discriminative features per
class that evolution exploits. That suggests that there are
many different ways to fool the same DNN for each class.

Many of the CPPN images feature a pattern repeated
many times. To test whether that repetition improves the
confidence score a DNN gives an image, or whether the
repetition stems solely from the fact that CPPNs tend to pro-
duce regular images [28, 5], we ablated (i.e. removed) some
of the repeated elements to see if the DNN confidence score

Figure 9. Images from the same evolutionary run that fool closely
related classes are similar. Shown are the top images evolution
generated for three classes that belong to the “lizard” parent class,
and for three classes that belong to “toy dog” parent class. The top
and bottom rows show images from independent runs of evolution.

for that image drops. Psychologists use the same ablation
technique to learn which image features humans use to rec-
ognize objects [4]. In many images, ablating extra copies of
the repeated element did lead to a performance drop, albeit
a small one (Fig 10), meaning that the extra copies make
the DNN more confident that the image belongs to the tar-
get class. This result is in line with a previous paper [26]
that produced images to maximize DNN confidence scores
(discussed below in Section 3.9), which also saw the emer-
gence of features (e.g. a fox’s ears) repeated throughout an
image. These results suggest that DNNs tend to learn low-
and middle-level features rather than the global structure of
objects. If DNNs were properly learning global structure,
images should receive lower DNN confidence scores if they
contain repetitions of object subcomponents that rarely ap-
pear in natural images, such as many pairs of fox ears or
endless remote buttons (Fig. 1).

Figure 10. Before: CPPN-encoded images with repeated patterns.
After: Manually removing repeated elements suggests that such
repetition increases confidence scores.

The low-performing band of classes in Fig. 7 (class num-
bers 157-286) are dogs and cats, which are overrepresented
in the ImageNet dataset (i.e. there are many more classes of
cats than classes of cars). One possible explanation for why
images in this band receive low confidence scores is that the
network is tuned to identify many specific types of dogs and
cats. Therefore, it ends up having more units dedicated to
this image type than others. In other words, the size of the
dataset of cats and dogs it has been trained on is larger than



for other categories, meaning it is less overfit, and thus more
difficult to fool. If true, this explanation means that larger
datasets are a way to ameliorate the problem of DNNs be-
ing easily fooled. An alternate, though not mutually exclu-
sive, explanation is that, because there are more cat and dog
classes, the EA had difficulty finding an image that scores
high in a specific dog category (e.g. Japanese spaniel), but
low in any other related categories (e.g. Blenheim spaniel),
which is necessary to produce a high confidence given that
the final DNN layer is softmax. This explanation suggests
that datasets with more classes can help ameliorate fooling.

3.5. Images that fool one DNN generalize to others

The results of the previous section suggest that there are
discriminative features of a class of images that DNNs learn
and evolution exploits. One question is whether different
DNNs learn the same features for each class, or whether
each trained DNN learns different discriminative features.
One way to shed light on that question is to see if im-
ages that fool one DNN also fool another. To test that, we
evolved CPPN-encoded images with one DNN (DNNA)
and then input these images to another DNN (DNNB). We
tested two cases: (1) DNNA and DNNB have identical ar-
chitectures and training, and differ only in their randomized
initializations; and (2) DNNA and DNNB have different
DNN architectures, but are trained on the same dataset. We
performed this test for both MNIST and ImageNet DNNs.

Images were evolved that are given ≥ 99.99% confi-
dence scores by both DNNA and DNNB . Thus, some
general properties of the DNNs are exploited by the CPPN-
encoded EA. However, there are also images specifically
fine-tuned to score high on DNNA, but not on DNNB .
See the supplementary material for more detail and data.

3.6. Training networks to recognize fooling images

One might respond to the result that DNNs are eas-
ily fooled by saying that, while DNNs are easily fooled
when images are optimized to produce high DNN confi-
dence scores, the problem could be solved by simply chang-
ing the training regimen to include negative examples. In
other words, a network could be retrained and told that the
images that previously fooled it should not be considered
members of any of the original classes, but instead should
be recognized as a new “fooling images” class.

We tested that hypothesis with CPPN-encoded images
on both MNIST and ImageNet DNNs. The process is as
follows: We train DNN1 on a dataset (e.g. ImageNet),
then evolve CPPN images that produce a high confidence
score for DNN1 for the n classes in the dataset, then we
take those images and add them to the dataset in a new class
n + 1; then we train DNN2 on this enlarged “+1” dataset;
(optional) we repeat the process, but put the images that
evolved for DNN2 in the n + 1 category (a n + 2 cate-

gory is unnecessary because any images that fool a DNN
are “fooling images” and can thus go in the n+1 category).
Specifically, to represent different types of images, each it-
eration we add to this n + 1 category m images randomly
sampled from both the first and last generations of multiple
runs of evolution that produce high confidence images for
DNNi. Each evolution run on MNIST or ImageNet pro-
duces 20 and 2000 images respectively, with half from the
first generation and half from the last. Error-rates for trained
DNNi are similar to DNN1 (supplementary material).

3.7. Training MNIST DNNs with fooling images

To make the n+1 class have the same number of images
as other MNIST classes, the first iteration we add 6000 im-
ages to the training set (taken from 300 evolutionary runs).
For each additional iteration, we add 1000 new images to
the training set. The immunity of LeNet is not boosted
by retraining it with fooling images as negative examples.
Evolution still produces many unrecognizable images for
DNN2 with confidence scores of 99.99%. Moreover, re-
peating the process for 15 iterations does not help (Fig. 11),
even though DNN15’s overrepresented 11th “fooling im-
age class” contains 25% of the training set images.

3.8. Training ImageNet DNNs with fooling images

The original ILSVRC 2012 training dataset was ex-
tended with a 1001st class, to which we added 9000 images
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9 99.51
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11 98.62

12 99.97

13 99.93
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Figure 11. Training MNIST DNNi with images that fooled
MNIST DNN1 through DNNi−1 does not prevent evolution
from finding new fooling images for DNNi. Columns are dig-
its. Rows are DNNi for i = 1...15. Each row shows the 10
final, evolved images from one randomly selected run (of 30) per
iteration. Medians are taken from images from all 30 runs.



that fooled DNN1. That 7-fold increase over the 1300 im-
ages per ImageNet class is to emphasize the fooling images
in training. Without this imbalance, training with negative
examples did not prevent fooling; MNIST retraining did not
benefit from over representing the fooling image class.

Contrary to the result in the previous section, for Ima-
geNet models, evolution was less able to evolve high confi-
dence images for DNN2 than DNN1. The median confi-
dence score significantly decreased from 88.1% for DNN1

to 11.7% for DNN2 (Fig. 12, p < 0.0001 via Mann-
Whitney U test). We suspect that ImageNet DNNs were
better inoculated against being fooled than MNIST DNNs
when trained with negative examples because it is easier to
learn to tell CPPN images apart from natural images than it
is to tell CPPN images from MNIST digits.

Figure 12. Training a new ImageNet DNN (DNN2) with images
that fooled a previous DNN (DNN1) makes it significantly more
difficult for evolution to produce high confidence images.

To see whether this DNN2 had learned features specific
to the CPPN images that fooled DNN1, or whether DNN2

learned features general to all CPPN images, even recog-
nizable ones, we input recognizable CPPN images from
Picbreeder.org to DNN2. DNN2 correctly labeled 45 of
70 (64%, top-1 prediction) PicBreeder images as CPPN im-
ages, despite having never seen CPPN images like them be-
fore. The retrained model thus learned features generic to
CPPN images, helping to explain why producing new im-
ages that fool DNN2 is more difficult.

3.9. Producing fooling images via gradient ascent

A different way to produce high confidence, yet mostly
unrecognizable images is by using gradient ascent in pixel
space [11, 26, 30]. We calculate the gradient of the posterior
probability for a specific class — here, a softmax output unit
of the DNN — with respect to the input image using back-
prop, and then we follow the gradient to increase a chosen
unit’s activation. This technique follows [26], but whereas
we aim to find images that produce high confidence classi-
fications, they sought visually recognizable “class appear-
ance models.” By employing L2-regularization, they pro-
duced images with some recognizable features of classes
(e.g. dog faces, fox ears, and cup handles). However, their
confidence values are not reported, so to determine the de-
gree to which DNNs are fooled by these backpropagated

images, we replicated their work (with some minor changes,
see supplementary material) and found that images can be
made that are also classified by DNNs with 99.99% confi-
dence, despite them being mostly unrecognizable (Fig. 13).
These optimized images reveal a third method of fooling
DNNs that produces qualitatively different examples than
the two evolutionary methods in this paper.

Figure 13. Images found by maximizing the softmax output for
classes via gradient ascent [11, 26]. Optimization begins at the Im-
ageNet mean (plus small Gaussian noise to break symmetry) and
continues until the DNN confidence for the target class reaches
99.99%. Images are shown with the mean subtracted. Adding reg-
ularization makes images more recognizable but results in slightly
lower confidence scores (see supplementary material).

4. Discussion
Our experiments could have led to very different results.

One might have expected evolution to produce very similar,
high confidence images for all classes, given that [30] re-
cently showed that imperceptible changes to an image can
cause a DNN to switch from classifying it as class A to class
B (Fig. 14). Instead, evolution produced a tremendous di-
versity of images (Figs. 1, 8, 10, 15). Alternately, one might
have predicted that evolution would produce recognizable
images for each class given that, at least with the CPPN
encoding, recognizable images have been evolved (Fig. 3).
We note that we did not set out to produce unrecognizable
images that fool DNNs. Instead, we had hoped the resul-
tant images would be recognizable. A different prediction
could have been that evolution would fail to produce high
confidence scores at all because of local optima. It could
also have been the case that unrecognizable images would
have been given mostly low confidences across all classes
instead of a very high confidence for one class.

In fact, none of these outcomes resulted. Instead, evolu-
tion produced high-confidence, yet unrecognizable images.
Why? Our leading hypothesis centers around the difference
between discriminative models and generative models. Dis-



Figure 14. Interpreting our results and related research. (1) [30]
found that an imperceptible change to a correctly classified natural
image (blue dot) can result in an image (square) that a DNN classi-
fies as an entirely different class (crossing the decision boundary).
The difference between the original image and the modified one
is imperceptible to human eyes. (2) It is possible to find high-
confidence images (pentagon) using our directly encoded EA or
gradient ascent optimization starting from a random or blank im-
age (I0) [11, 13, 26]. These images have blurry, discriminative
features of the represented classes, but do not look like images in
the training set. (3) We found that indirectly encoded EAs can find
high-confidence, regular images (triangles) that have discrimina-
tive features for a class, but are still far from the training set.

criminative models — or models that learn p(y|X) for a
label vector y and input example X — like the models in
this study, create decision boundaries that partition data into
classification regions. In a high-dimensional input space,
the area a discriminative model allocates to a class may be
much larger than the area occupied by training examples for
that class (see lower 80% of Fig. 14). Synthetic images far
from the decision boundary and deep into a classification re-
gion may produce high confidence predictions even though
they are far from the natural images in the class. This per-
spective is confirmed and further investigated by a related
study [13] that shows large regions of high confidence ex-
ist in certain discriminative models due to a combination of
their locally linear nature and high-dimensional input space.

In contrast, a generative model that represents the com-
plete joint density p(y,X) would enable computing not
only p(y|X), but also p(X). Such models may be more dif-
ficult to fool because fooling images could be recognized by
their low marginal probability p(X), and the DNN’s confi-
dence in a label prediction for such images could be dis-
counted when p(X) is low. Unfortunately, current genera-
tive models do not scale well [3] to the high-dimensionality
of datasets like ImageNet, so testing to what extent they
may be fooled must wait for advances in generative models.

In this paper we focus on the fact that there exist images
that DNNs declare with near-certainty to be of a class, but
are unrecognizable as such. However, it is also interesting
that some generated images are recognizable as members of
their target class once the class label is known. Fig. 15 jux-
taposes examples with natural images from the target class.

Baseball Matchstick Ping-pong ball Sunglasses

Figure 15. Some evolved images do resemble their target class. In
each pair, an evolved, CPPN-encoded image (left) is shown with a
training set image from the target class (right).

Other examples include the chain-link fence, computer key-
board, digital clock, bagel, strawberry, ski mask, spotlight,
and monarch butterfly of Fig. 8. To test whether these im-
ages might be accepted as art, we submitted them to a se-
lective art competition at the University of Wyoming Art
Museum, where they were accepted and displayed (supple-
mentary material). A companion paper explores how these
successes suggest combining DNNs with evolutionary algo-
rithms to make open-ended, creative search algorithms [23].

The CPPN EA presented can also be considered a novel
technique to visualize the features learned by DNNs. The
diversity of patterns generated for the same class over dif-
ferent runs (Fig. 9) indicates the diversity of features learned
for that class. Such feature-visualization tools help re-
searchers understand what DNNs have learned and whether
features can be transferred to other tasks [32].

One interesting implication of the fact that DNNs are
easily fooled is that such false positives could be exploited
wherever DNNs are deployed for recognizing images or
other types of data. For example, one can imagine a security
camera that relies on face or voice recognition being com-
promised. Swapping white-noise for a face, fingerprints, or
a voice might be especially pernicious since other humans
nearby might not recognize that someone is attempting to
compromise the system. Another area of concern could
be image-based search engine rankings: background pat-
terns that a visitor does not notice could fool a DNN-driven
search engine into thinking a page is about an altogether
different topic. The fact that DNNs are increasingly used in
a wide variety of industries, including safety-critical ones
such as driverless cars, raises the possibility of costly ex-
ploits via techniques that generate fooling images.

5. Conclusion
We have demonstrated that discriminative DNN models

are easily fooled in that they classify many unrecognizable
images with near-certainty as members of a recognizable
class. Two different ways of encoding evolutionary algo-
rithms produce two qualitatively different types of unrec-
ognizable “fooling images”, and gradient ascent produces
a third. That DNNs see these objects as near-perfect ex-
amples of recognizable images sheds light on remaining
differences between the way DNNs and humans recognize
objects, raising questions about the true generalization ca-
pabilities of DNNs and the potential for costly exploits of
solutions that use DNNs.
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