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The problem of finding a dense disparity map from a stereo rectified image
pair is well studied in the computer vision literature. Despite that, in real-
world situations, where images contain noise and reflections, it is still a hard
problem.

The advances in machine learning approaches have lead to classifiers
that are able to estimate surface orientation based on a single image [4]. We
argue that information about the surface orientation that is extracted from the
input image gives additional important cues about the geometry, exactly in
the cases where standard stereo matching algorithms struggle. Therefore we
propose a global optimization approach that allows for combining responses
of a surface normal direction classifier with matching scores from binocular
stereo. Our algorithm is not limited to binocular stereo matching. It can also
be applied on scores from a classifier for the single view depth estimation
problem [3].

Adding the surface normal directions into a global optimization frame-
work, addresses the problems with standard approaches in stereo matching.
In homogeneous areas, such as walls, or on the reflective ground the surface
normal directions can often be estimated reliably and hence constrain the
depth estimation problem to the desired solution. An important feature of
our method is that it is not restricted to use a single surface normal direc-
tion per pixel but allows the inclusion of the scores from multiple directions,
which is important when the classifier is not able to reliably decide on a spe-
cific direction. An example result of our method for the single view depth
estimation problem is depicted in Figure 1.

Our method builds on top of the idea of lifting the problem of assigning
a depth to each pixel to a volumetric one, where each element of the vol-
ume gets assigned whether it is before or after the depth. Using a graph-cut
or a convex continuous formulation, the surface attains a globally optimal
solution [5, 6]. Depth discontinuities often correspond to image edges, [6]
propose to use the anisotropic total variation [1] to align depth discontinu-
ities with image edges. We propose to extend this anisotropic penalization
to also include the information from the surface normal direction classifier
[3] and hence make a surface direction that has a high likelihood based on
the classifier less costly in our energy formulation.

More formally, the goal is to assign to each pixel (r,s) from a rectangular
domain I = W ×H a label `(r,s) ∈ L = {0, . . . ,L}. Instead of assigning
labels to pixels directly an indicator variable u(r,s,t) ∈ [0,1] for each (r,s, t)∈
Ω = I×L is introduced. Using the definition

u(r,s,t) =

{
0 if `(r,s) < t
1 else,

(1)

the problem of assigning a label to each pixel is transformed to finding the
surface through Ω that segments the volume into an area in front of and
behind of the assigned depth. Adding regularization and constraints on the
boundary allow us to state the label assignment problem as a convex mini-
mization problem [6], which can be solved globally optimally.

E(u) =∑
r,s,t

{
ρ(r,s,t)|(∇tu)(r,s,t) |+φ(r,s,t) (∇u)(r,s,t)

}
s.t. u(r,s,0) = 0 u(r,s,L) = 1 ∀(r,s) (2)

The values ρ(r,s,t) are the data costs or also called unary potential, for
assigning label t to pixel (r,s), they for example originate from binocular
stereo matching. With the symbol ∇t we denote the derivative along the
label dimension t, and ∇ denotes full 3 component gradient. In both cases
we use a forward difference discretization. The regularizer φ(r,s,t) can be
any convex positively 1-homogeneous function. This term allows for an
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Figure 1: Overview of our method. Top Row: The input to our method
is depicted in the top row. On a single input image (left) two classifiers
are evaluated, single view depth estimation (middle) and surface normal
directions (right). Bottom Row: On the bottom the obtained depth map by
our surface normal direction based regularization is shown (left) together
with two renderings of the obtained dense point cloud (middle and right).

anisotropic penalization of the surface area of the cut surface. The main
novelty of our algorithm is the use of a normal direction classifier to define
the anisotropic regularization term. The boundary constraints on u enforce
that there is a cut through the volume.

In order to define the anisotropic smoothness term we follow the ap-
proach, that any convex positively 1-homgenoous function φ can be defined
in terms of a convex shape [1].

φW (∇u) = max
p∈W

pT
∇u, (3)

where W is a convex, closed and bounded set that contains the origin, the
so-called Wulff shape. Furthermore, we follow the apporach of [2], which
discretizes the space of normal directions to map them to a Wulff shape
which is formed as an intersection of half-spaces. This way of defining the
regularizer nicely works together with the surface normal direction classifier
[4], as already the classifier outputs scores for a discrete set of normals,
which is defined during the training of the classifier.

In our experiments we show that we improve over a baseline approach,
without using the surface normals, for both, stereo matching and single view
depth estimation.
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