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Figure 1: The DP-vMF-means algorithm adapts the number of clusters to the complexity of the surface normal distribution as depicted in the first row. For
a sequence of batches of data, the DDP-vMF-means algorithm allows temporally consistent clustering as shown in the second row. The coloring indicates
cluster membership of the surface normals extracted from the depth channel of an RGB-D camera. Note that only surface normals are used for clustering;
the grayscale images in the figure are for display purposes only, and RGB and raw depth information from the camera are not used for inference.

Man-made environments and objects exhibit clear structural regularities
such as planar or rounded surfaces. These properties are evident on all
scales from small objects such as books, to medium-sized scenes like ta-
bles, rooms and buildings and even to the organization of whole cities. Such
regularities can be captured in the statistics of surface normals that describe
the local differential structure of a shape. These statistics contain valuable
information that can be used for scene understanding, plane segmentation,
or to regularize a 3D reconstruction.

Inference algorithms in fields such as robotics or augmented reality,
which would benefit from the use of surface normal statistics, are not gener-
ally provided a single batch of data a priori. Instead, they are often provided
a stream of data batches from depth cameras. Thus, capturing the surface
normal statistics of man-made structures often necessitates the temporal in-
tegration of observations from a vast data stream of varying cluster mixtures.
Additionally, such applications pose hard constraints on the amount of com-
putational power available, as well as tight timing constraints.

We address these challenges by focusing on flexible Bayesian nonpara-
metric (BNP) Dirichlet process mixture models (DP-MM) which describe
the distribution of surface normals in their natural space, the unit sphere in
3D, S2. Taking the small variance asymptotic limit of the DP-MM of von-
Mises-Fisher (vMF) distributions, we obtain a fast k-means-like algorithm,
which we call DP-vMF-means, to perform nonparametric clustering of data
on the unit hypersphere. Furthermore, we propose a novel dependent DP
mixture of vMF distributions to achieve integration of directional data into
a temporally consistent streaming model. Small variance asymptotic anal-
ysis yields the k-means-like DDP-vMF-means algorithm. In this extended
abstract we discuss the DP-vMF-means algorithm derivation, and leave the
DDP-vMF-means algorithm to the full paper.

The Dirichlet process (DP) [2] with concentration α has been widely
used as a prior for mixture models with a countably infinite set of clus-
ters [1, 4]. Assuming a base distribution vMF(µ; µ0,τ0), the DP is an ap-
propriate prior for a vMF mixture with an unknown number of components
with means {µk}K

k=1 and known vMF concentration τ . Gibbs sampling in-
ference consists of sampling labels zi for data xi ∈ S2 from

p(zi = k|z−i,µµµ,x;τ) ∝

{
|Ik|vMF(xi|µk;τ) k ≤ K
α p(xi; µ0,τ0,τ) k = K +1 ,

(1)

where Ik is the set of data indices assigned to cluster k, and sampling pa-
rameters from

p(µ|x; µ0,τ0) = vMF
(

µ; τ0µ0+τ ∑
N
i=1 xi

‖τ0µ0+τ ∑
N
i=1 xi‖2

,‖τ0µ0 + τ∑
N
i=1xi‖2

)
. (2)

To derive a hyperspherical analog to DP-means [3] we consider the limit of
the posterior distributions as τ → ∞.

Label Update: In the limit of the label sampling step (1) as τ → ∞, sam-
pling from p(zi|z−i,µµµ,x;τ) is equivalent to the following assignment rule:

zi = argmax
k∈{1,...,K+1}

{
xT

i µk k ≤ K
λ +1 k = K +1 .

(3)

Intuitively λ defines the maximum angular spread φλ of clusters about their
mean direction, via λ = cos(φλ )−1.

Parameter Update: Taking τ → ∞ in the parameter posterior for cluster
k causes τ0 and µ0 to become negligible. Hence:

µk =
∑i∈Ik

xi

‖∑i∈Ik
xi‖2

∀k ∈ {1, . . . ,K} . (4)

Objective Function: We show that DP-vMF-means maximizes

JDP-vMF =
K

∑
k=1

∑
i∈Ik

xT
i µk +λK . (5)

In the paper we demonstrate the performance and flexibility of DP-
vMF-means on both synthetic data and the NYU v2 RGB-D dataset (see first
row of Fig. 1). For DDP-vMF-means, Optimistic Iterated Restarts (OIR)
parallelized label assignments, enable real-time temporally consistent clus-
tering of batches of 300k surface normals collected at 30 Hz from a RGB-D
camera (see second row of Fig. 1). Note, that DDP-vMF-means correctly
reidentifies all directions after not observing them for a period of time in the
middle of the sequence.

We envision a large number of potential applications for the pre-
sented algorithms in computer vision and in other realms where directional
data is encountered. Implementations are available at http://people.
csail.mit.edu/jstraub/.
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