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Abstract

The next wave of micro and nano devices will create
a world with trillions of small networked cameras. This
will lead to increased concerns about privacy and secu-
rity. Most privacy preserving algorithms for computer vi-
sion are applied after image/video data has been captured.
We propose to use privacy preserving optics that filter or
block sensitive information directly from the incident light-
field before sensor measurements are made, adding a new
layer of privacy. In addition to balancing the privacy and
utility of the captured data, we address trade-offs unique
to miniature vision sensors, such as achieving high-quality
field-of-view and resolution within the constraints of mass
and volume. Our privacy preserving optics enable appli-
cations such as depth sensing, full-body motion tracking,
people counting, blob detection and privacy preserving face
recognition. While we demonstrate applications on macro-
scale devices (smartphones, webcams, etc.) our theory has
impact for smaller devices.

1. Introduction
Our world is bursting with ubiquitous, networked sen-

sors. Even so, a new wave of sensing that dwarfs current
sensor networks is on the horizon. These are miniature
platforms, with feature sizes less than 1mm, that will ap-
pear in micro air vehicle swarms, intelligent environments,
body and geographical area networks. Equipping these plat-
forms with computer vision capabilities could impact secu-
rity, search and rescue, agriculture, environmental monitor-
ing, exploration, health, energy, and more.

Yet, achieving computer vision at extremely small scales
still faces two challenges. First, the power and mass con-
straints are so severe that full-resolution imaging, along
with post-capture processing with convolutions, matrix in-
versions, and the like, are simply too restrictive. Second, the
privacy implications of releasing trillions of networked, tiny
cameras into the world would mean that there would likely
be significant societal pushback and legal restrictions.

In this paper, we propose a new framework to achieve

both power efficiency and privacy preservation for vision
on small devices. We build novel optical designs that filter
incident illumination from the scene, before image capture.
This allows us to attenuate sensitive information while cap-
turing exactly the portion of the signal that is relevant to a
particular vision task. In this sense, we seek to generalize
the idea of privacy preserving optics beyond specialized ef-
forts (cylindrical lenses [45], thermal motion sensors [7]).
We demonstrate privacy preserving optics that enable ac-
curate depth sensing, full-body motion tracking, multiple
people tracking, blob detection and face recognition.

Our optical designs filter light before image capture and
represent a new axis of privacy vision research that com-
plements existing “post image capture” hardware and soft-
ware based approaches to privacy preservation, such as
de-identification and cryptography. Like these other ap-
proaches, we seek both data-utility and privacy protection
in our designs. Additionally, for miniature sensors, we must
also balance the performance and privacy guarantees of the
system with sensor characteristics such as mass/volume,
field-of-view and resolution. In this paper, we demonstrate
applications on macro-scale devices (smartphones, web-
cams, etc.), but our theory has impact for smaller devices.

Our contributions are
1. To our knowledge, we are the first to demonstrate k-

anonymity preserving optical designs for faces. We
also provide theory to miniaturize these designs within
the smallest sensor volume.

2. We show how to select a defocus blur that provides a
certain level of privacy over a working region, within
the limits of sensor size. We show applications where
defocus blur provides both privacy and utility for time-
of-flight and thermal sensors.

3. We implement scale space analysis using an optical
array, with most of the power hungry difference-of-
gaussian computations performed pre-capture. We
demonstrate human head tracking with this sensor. We
provide an optical version of the knapsack problem
to miniaturize such multi-aperture optical privacy pre-
serving sensors in the smallest mass/volume.
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1.1. Related Work

Applied optics and computational photography for pri-
vacy preserving computer vision. [7] proposed a system
using thermal motion sensors that enables two-person mo-
tion tracking in a room. [45] used a line sensor and cylin-
drical lens to detect a person’s position and movement. [53]
controlled the light-transport to shadow sensitive regions,
removing data-utility in those areas. Our proposed optical
systems offer significant improvement over these systems in
terms of data-utility by capturing appropriately modulated
two dimensional sensor readings.
Privacy preserving computer vision algorithms. Pixela-
tion, Gaussian blurring, face swapping [4] and black-out
[5], provide privacy by trading off image utility [47, 41].
More complex encryption based schemes [64, 17, 39], en-
able recovery of the original data via a key. Other non-
distortion based methods based on k-anonymity [63], prov-
ably bound face recognition rate while maintaining image
utility [48, 29, 28, 15, 2]. We demonstrate the advantages of
performing some of these algorithms (such as k-anonymity
and defocus blur) in optics, prior to image capture.
Optics-based cryptography. [32] proposed an optics-
based encrypted communication framework where, for ex-
ample, random cryptographic bits are kept safe by volumet-
ric scattering materials. Our work exploits optics to con-
struct privacy preserving sensors that process illumination
directly from scenes.
Embedded systems and privacy preserving computer vi-
sion. The embedded vision community has proposed a
number of privacy sensors [44, 11, 69] which transform
the vision data at the camera level itself or offline and then
use encryption or other methods to manage the information
pipeline. The hardware integration decreases such systems’
susceptibility to attacks. Our privacy preserving optics pro-
vide another complementary layer of security by removing
sensitive data before image capture through optical “off-
board” processing. Further, our optical knapsack approach
is a miniature analog to larger camera sensor network cov-
erage optimizations [21, 19, 60, 20].
Efficient hardware for small-scale computer vision. The
embedded systems community has proposed many vision
techniques for low-power hardware [70, 6, 37]. That said,
for micro-scale platforms, the average power consump-
tion is often in the range of milli-Watts or micro-Watts
[31, 10, 8, 59, 61, 68]. In these scenarios, our approach of
jointly considering optics, sensing, and computation within
the context of platform constraints will be crucial.
Face De-blurring. Despite significant advances in image
and video de-blurring [54, 72, 51, 50, 24, 3, 14], de-blurring
heavily blurred images is still an open problem. In this pa-
per, some designs that use optical defocus for privacy may
be susceptible to reverse engineering.
Filtering in applied optics and computational photogra-

phy. Fourier optics [27, 71] has limited impact for minia-
ture vision systems that must process incoherent scene ra-
diance. However, controllable PSFs in conjunction with
post-capture processing are widely used in computer vision
[57, 49, 38, 25]. In contrast to these approaches, we seek
optics like [34, 35, 74, 46] that distill the incoming light-
field for vision applications.
Compressive Sensing CS techniques have found applica-
tion in imaging and vision [66, 16] and some approaches use
random optical projection [16], which could be augmented
with privacy preserving capabilities. Further, optical pro-
jection and classification have been integrated (without any
privacy preservation) as in [13]. Some of these algorithms
are linear [73, 1, 65, 12] and, in future work, we may con-
sider implementing these within our optical frame work.

2. Single Aperture Privacy Preserving Optics
We introduce two optical designs that perform privacy

preserving computations on the incident light-field before
capture. The first design, performs optical averaging and
enables k-anonymity image capture. The second, uses an
aperture mask to perform angular convolutions and enables
privacy enhancing image blur. For each design we describe
how to trade-off the optics’ mass/volume with sensor char-
acteristics such as resolution and field-of-view (FOV).

2.1. Optical K-Anonymity

K-anonymity for faces [63, 48] enables face de-
identification by averaging together a target face image with
k − 1 of its neighbors (according to some similarity met-
ric). The resulting average image has an algorithm-invariant
face recognition rate bound of 1

k . We present what is, to
our knowledge, the first ever optical implementation of k-
anonymity for faces. Our system, illustrated in Fig. 1(I),
consists of a sensor (approximated by an ideal pinhole cam-
era) whose viewing path is split between the scene and an
active optical mask, such as a projector or electronic dis-
play. The irradiance I measured at each sensor pixel (x, y)
that views a scene point P is given by,

I(x, y) = eP IP + eM
∑

1≤i≤k−1

Imask(wiFi(H(x, y))),

(1)
where IP is the radiance from P , Fi are digital images of
the k−1 nearest neighbors, Imask maps a mask pixel inten-
sity to its displayed radiance, wi are user defined weights
and H is a transformation between the sensor and mask
planes. eP and eM are the ratios of the optical path split
between the scene and the mask, and these can range from
0 to 1. We use planar non-polarizing half-mirrors in Fig.
1, so eP = eM = 0.5 and the sensor exposure must be
doubled to create full intensity k-anonymized images.



Figure 1. Optical K-Anonymity for Faces. Here, we show our design and results for, to our knowledge, the first ever optics-based
implementation of k-anonymity for faces [48]. In (I) we show the ray diagram and physical setup for our design whose primary input is
k, the number of faces to anonymize a target face with. Light from a real target face is merged via a beamsplitter with illumination from a
display showing the k − 1 nearest neighbors and captured by a conventional sensor. The output is a k-anonymized face, directly captured
by our sensor, as shown in (II). Finding the k − 1 neighbors and 2D translation/scaling alignment, between the target face and the k − 1
displayed faces, is achieved using two orthogonally-oriented line sensors with cylindrical lenses (III). The scale and position of the target
face is found by identifying local extrema of the intensity profiles. Lastly, in (IV) we show an example application that enables privacy
preserving face recognition for individuals in a membership class and maintains anonymity for individuals outside of the membership class.

Our implementation in Fig. 1 uses an LED, a webcam,
a beam splitter, and two line sensors with orthogonally-
oriented 6mm focal length cylindrical lenses. The output
is a k-anonymized face, directly captured, at 30 FPS, by our
sensor, as shown in Fig. 1(II). Finding the k − 1 neigh-
bors and 2D translation/scaling alignment, between the tar-
get face and the k− 1 displayed faces, is achieved using the
two line sensors with cylindrical lenses, which have been
shown to be privacy preserving [45]. The scale and posi-
tion of the target face is found by identifying local extrema
of the intensity profiles as shown in Fig. 1(III). The linear
combination of the k-1 faces displayed by the LCD is gen-
erated by aligning the k-1 faces, with any alignment method
[4, 9], and computing an appropriately weighted sum of the
k-1 faces.

Discussion: The use of a display commits the system to
continuous power use which makes miniaturization diffi-
cult. However, in the next section we discuss how to re-
duce the volume of the optics for small form factor plat-
forms. In addition, we have assumed the k − 1 neighbors
Fi in Eq. 1 are captured under similar illumination envi-
ronments to the target face. In the future, we will relax this
by using an additional single photodetector element, which
is also privacy preserving as it only captures a single inten-

sity value, to set the linear weights wi in Eq. 1 to compen-
sate for the image intensity differences. Additionally, the
display is susceptible to physical tampering that might pre-
vent k-anonymity. Finally, in the current implementation,
access to the database could allow an adversary to remove
k-anonymity. In future implementations we plan to random-
ize the value k, the choice of k neighbors and the blending
weights wi to make de-anonymity combinatorially hard.

2.1.1 Miniaturizing K-Anonymity Optics

Optical k-anonymity requires that the resolution of the dis-
play be equal to or greater than the resolution of the sensor.
Here we discuss how to reduce the size of the k-anonymity
optical setup while still maintaining the desired display res-
olution. We assume that the camera sensor in Fig. 1 is
optimally miniaturized by a method such as [34]. For clar-
ity we consider a 2D ray diagram, but since our optics are
symmetric these arguments hold in three dimensions. Let
the beamsplitter angle be fixed at φ and the sensor FOV be
θ. Let the minimum size of the mask that still affords the
desired resolution be Mmin. W.l.o.g let the mask be per-
pendicular to the reflected optical axis.

This leaves just two degrees of freedom for the k-
anonymity optics; the sensor-beamsplitter distance lbeam



Figure 2. Miniaturizing Optical K-same We demonstrate how to
reduce the volume occupied by the display and beamsplitter, deter-
mined by lbeam and lmask. For the perspective case, we show that
there exists two configurations with identical, minimum volume.

along the sensor’s optical axis and the mask-beamsplitter
distance lmask along the reflected optical axis. In an ortho-
graphic version of k-anonymity optics shown in Fig. 2 (I),
the size of the mask does not change as it is translated to-
wards the sensor. Therefore, a mask of minimum sizeMmin

can be moved as close as possible to the sensor without oc-
cluding the field-of-view as in Fig. 2 (I).

In the perspective case [26] the size of the mask reduces
as it slides along the pencil of rays, as in Fig. 2 (II). Once
the minimum mask sizeMmin is reached, that configuration
has the minimum optical size, given by4CDE’s area.

We show that there exists an alternate choice, in the per-
spective case, for the minimum optical size. To maintain the
minimum resolution, any mask position closer to the sensor
must be vertically shifted, as in Fig. 2 (II). The area of these
optics is given by4C ′

D
′
E+C

′
B

′
BC. From similar trian-

gles, we can write4C ′
D

′
E as being created from4CDE

by a scale factor 1
s , and then equate the two configurations

in Fig. 2 (II),

4CDE(1− 1

s
) = C

′
B

′
BC. (2)

Consider 4CDE = 4COE +4ODE. From the angle-
side-angle theorem, this becomes,

4CDE =
l2beam sin θ

2
sinφ

2 sin( θ
2
− φ)

+
l2beam sin θ

2
sinφ

2 sin( θ
2
+ φ)

. (3)

Since 4AB′
C

′
is a scaled version of 4ABC, the quadri-

lateral area C
′
B

′
BC =

4ABC(1− 1

s2
) =

Mminlmask
2

(1− 1

s2
). (4)

Putting Eq. 3 and Eq. 4 into Eq. 2, and setting constant
C1 =

sin θ
2 sinφ

2 sin( θ2−φ)
+

sin θ
2 sinφ

2 sin( θ2+φ)
,

s =
Mminlmask

2C1l2beam −Mminlmask
, (5)

which is an equation for the scaling factor s such that the
two designs in Fig. 2 (II) have the same area. Therefore we
have found two designs that provide the required resolution
within the smallest optical dimensions.

Example Application: Privacy Preserving Face
Recognition: Recent efforts have resulted in privacy pre-
serving face recognition frameworks [58, 22, 52, 33]. Here
we show a similar example application, using optical k-
same, that allows recognition of membership to a class
while preserving privacy. Each target is first anonymized
via optical k-same with k-1 faces corresponding to individ-
uals that are not in the membership class and are not known
to the party performing face recognition. The anonymized
face is compared to each face in the membership class us-
ing a similarity metric. If the similarity score is greater
than a threshold then the anonymized face is matched with
that individual. With no match, the system returns the k-
anonymized face.

We simulated this system using two subsets of the
FERET Database [55], each containing a single image of a
set of people (See supplementary document at [56]). For k
= {2, 4, 6, 8, 10}, 100 individuals from one subset were ran-
domly selected as targets and anonymized with their k − 1
nearest neighbors found in the same subset by simulating
the effect of the cylindrical lens by integrating the image
vertically and matching with the cosine similarity. The sim-
ilarity between this k-anonymized image and 11 other im-
ages from the second image subset was then computed us-
ing Face++’s verification algorithms [23]. One of these is
the target image from the second image subset, while the
remaining were randomly selected. A comparison of the
similarities is shown in Fig. 1(IV). A system was built using
this idea and the figure shows examples where individuals
were correctly discriminated.

2.2. Privacy Enhancement with Optical Defocus

We now consider single sensors whose optical elements
exhibit intentional optical defocus for privacy preservation.
Unlike the k-anonymity optics discussed previously, opti-
cal defocus occurs without drawing on any on-board power
source, which has advantages for miniaturization.

Optical Elements and eFOV: As in [34], we assume a
distant scene which can be represented by intensity varia-
tion over the hemisphere of directions (i.e. the local light-
field is a function of azimuth and elevation angles). Unlike
[34], we augment the hemispherical model with a notion of
scene depth, where the angular support of an object reduces
as its distance to the sensor increases. We use either lensless



Figure 3. Privacy Preserving Depth Sensing and Motion Tracking. We designed a 3D printed privacy sleeve that holds an off-the-shelf
lens for the Microsoft Kinect V2 and that allows accurate depth sensing and motion tracking. As shown in (I), without the privacy sleeve,
faces can clearly be identified in both the RGB and IR sensor images. In contrast, as shown in (II), our privacy sleeve performs optical
black-out out for the RGB sensor and optical defocus for the IR sensor. Lastly, (I) and (II) also show that the native Kinect tracking software
from Microsoft performs accurate depth sensing and motion tracking with and without the privacy sleeve.

or lens-based optics for defocus and, as illustrated in Fig. 5,
these apply an angular defocus kernel over the hemispher-
ical visual field. The range of viewing angles over which
this angular support is consistent, is known as the effective
FOV or eFOV [34]. We chose the optical elements in Fig. 5
for fabrication convenience and our theory can be used with
other FOV [34, 43, 62] elements. As demonstrated by [34],
every lensless element can be replaced with a correspond-
ing lenslet element. Such an equivalent pair is illustrated in
Fig. 5. In this paper, we utilize the lensless theory, even
when considering lenslet systems.

The inputs to our design tool are the defocus specifica-
tions Σ = {∆, σ, R,Θ, ρ}, where ∆ is the angular error
tolerance, σ is the desired defocus given in terms of a Gaus-
sian blur on an image of resolution R and FOV Θ, and ρ is
the length of the biggest target feature that is to be degraded
by defocus blurring. For example, for a sensor designed
to de-identify faces, ρ might be the size in millimeters of
large facial features, such as eyes. The field of view and
resolution are necessary to relate standard deviation, a di-
mensionless quantity, to an angular support defocus blur.
The output of the tool are lensless sensor dimensions and
characteristics, such as eFOV and angular support.

If we can approximate a gaussian filter of standard devi-
ation σ by a box blur corresponding to 2σ, then, for defocus
specifications Σ, the angular support is

ωo = 2σ

(
Θ

R

)
. (6)

Miniaturizing a Sensor with Optical Blurring: In [34], a
lensless sensor was optimally designed for maximum eFOV
given an angular support ωo and angular support tolerance

∆. We provide an additional design output, zmin, which is
the minimum distance between the sensor and the target in
order for the sensor to preserve the degree of privacy speci-
fied by the defocus specifications and it is given by,

zmin =
ρ

2tan(ωo2 )
. (7)

In summary, our algorithm takes as input defocus specifi-
cations Σ = {σ, ρ,Θ, R,∆}, computes ωo as described in
Eq. 6 and applies the method of [34] plus Eq. 7 to output the
optimal design with maximum eFOV, Π = {u, d, zmin}.

Example Application 1: Optical Privacy with a Time-
of-flight Depth Sensor. We designed a 3D printed pri-
vacy sleeve for the Microsoft Kinect V2 that optically de-
identifies faces via a defocused convex IR lens on the depth
sensor and a printed cover on the RGB camera. The defo-
cus affects the IR amplitude image while leaving the phase
(or depth information) mostly intact. This occurs when
the scene geometry is relatively smooth; i.e. the phasors
[30] averaged by the defocus kernel are similar. The pri-
vacy sleeve as well as body tracking results under defocus
are shown in Fig. 3 where the subject was 1.7m away.
The angular support of the IR sensor with the sleeve was
3◦, which corresponds to lensless parameters u = 10mm,
d = 0.5mm, a minimum distance, zmin = 1.5m for degrad-
ing features of 8cm and an eFOV of 64.7◦ for ∆ = 1◦.

Example Application 2: Optical Privacy with a Ther-
mal Sensor. We fitted a FLIR One thermal camera with
an IR Lens (Fig. 4(I)) to enable privacy preserving thermal
sensing via optical defocus. We performed privacy preserv-
ing people tracking by searching for high intensity blobs in
the defocused thermal images Fig. 4(III). The subjects in



Figure 4. Privacy Preserving People Tracking. We fitted a FLIR
One Thermal sensor with an IR Lens to enable privacy preserv-
ing people tracking via pre-capture optical Gaussian blurring. (I)
shows the FLIR One and the IR Lens. (II) shows and image of a
face taken with and without the IR Lens fitted to the FLIR One.
Using this system, we were able to easily perform people tracking
by searching for high intensity blobs in the optically de-identified
thermal images (III).

the figure were more than 5.5m from the sensor. With the
fitted IR lens, the FLIR One camera had an angular sup-
port of 0.9855◦, which corresponds to a minimum distance,
zmin = 4.6m for degrading features of 8cm, lensless pa-
rameters u = 2mm, d = 1.29mm, and and eFOV of 50.8◦

for ∆ = 0.2◦.

3. Multi-Aperture Privacy Preserving Optics
In previous sections, while optical processing was used

to implement privacy preserving algorithms, the actual vi-
sion computations (people counting, tracking, etc.) were
performed post-capture. Here, we perform both privacy pre-
serving and vision computations in optics by exploiting sen-
sor arrays, which have proved useful in other domains [67].

3.1. Blob Detection with an Optical Array

A classical approach to blob detection is to convolve an
image with a series of Laplacian of Gaussian (LoG) filters
for scale-space analysis [40]. The LoG operators are usu-
ally approximated by differences of Gaussians (DoGs), and
[34] demonstrated such computations with a single pair of
lensless sensors. We build a lensless sensor array that per-
form both blob detection and privacy preserving defocus to-

Figure 5. Optical elements used for defocus. We use either lens-
less or lenslet designs in this paper for optical defocus. The figure
shows that any lenslet sensor of diameter d and image distance u
can be modeled as a lensless sensor of height u and pinhole size
d, and therefore we use only the lensless version in our theory.

gether. This partitions the photodetector into n sub-images
with unique angular supports ωo1 < ωo2 < ... < ωon . Our
prototype build with an aperture array and baffles is shown
in Fig. 6. In a single shot, the sensor directly captures an im-
age’s Gaussian pyramid. When compared with a software
implementation of a Gaussian pyramid, our optical array
enables privacy preservation before capture. The degree of
privacy afforded is directly related to the minimum angular
defocus kernel ωo1 . The element with the least eFOV deter-
mines the array’s eFOV (although this is relaxed in the next
section). Finally, the privacy preserving advantage of these
arrays comes with tradeoffs; for example, the optical array
provides a fixed sampling of the scale space (scale granu-
larity) and can estimate blobs only in a fixed scale range.

Example Application: Privacy Preserving Head
Tracking: We built a privacy preserving scale-space blob
detector for head tracking. In Fig. 6 we show our proto-
type, which consisted of a camera (Lu-171, Lumenera Inc.)
with custom 3D-printed template assembly and binary tem-
plates cut into black card paper using a 100-micron laser
(VLS3.50, Versa Inc.). We divided the camera photode-
tector plane into nine single-aperture sensor elements us-
ing opaque baffles created from layered paper to prevent
crosstalk between the sensor elements. The Lu-171 has
a resolution of 1280x1024 so the photodetector array was
partitioned into a 3x3 array of 320x320 pixels. Of the
nine elements, three were used for our head tracking sys-
tem with optical parameters {∆ = 4◦, ωo1 = 9.76◦, ωo2 =
20.28◦, ωo3 = 40.37◦}, which corresponds to minimum
distance, zmin = 46.9cm for degrading features of 8cm
and an eFOV of 39.54◦. Once we detected blobs in an
image, we fed the highest probability blob regions into a
Viola-Jones object detector that was trained on images of
head blobs moving in an office scene. The use of blobs de-
creased the image search area for the Viola-Jones detector
by 50%. Such an example of using optics for processing
reduces computation load on the system, decreasing battery
usage and improving the scope for miniaturization. In the
example, the head was tracked correctly in 98% of frames.



Figure 6. Privacy Preserving Scale-Space Blob Detection. Our
privacy preserving optical blob detector uses a Lumenera Lu-171
sensor and 3D printed/laser cut optics. The sensor was divided
into multiple elements, where each performs pre-capture optical
defocus filtering of different aperture radii. Therefore, a single
frame contains a gaussian pyramid which can be used for blob
detection.

4. Miniaturizing a Multi-Aperture Sensor

In this section, we arrange optical elements within the
constraints of small devices. Such packing problems have
been studied in many domains [18] and the knapsack prob-
lem is a well-known instantiation [42]. We propose an op-
tical variation on the knapsack problem that takes into ac-
count each element’s angular coverage.

To see why this is needed, consider applying the tradi-
tional knapsack problem to our multi-aperture sensors. Let
the total size (mass, volume or area) available for sensing
optics be A. Suppose each optical element i has a field-
of-view fi and a size of ai. Given n elements with in-
dices 0 ≤ i ≤ n, we want to find an identity vector x of
length n s.t. xi ∈ (0, 1) and Σixifi is maximized whereas
Σixiai ≤ A. While this problem is NP-hard, a pseudo-
polynomial algorithm O(nA) has been proposed by recur-
sively creating an n×A array M ;

M [0, a] = 0 if 0 ≤ a ≤ A
M [i, a] = −∞ if a < 0

M [i, a] = max(M [i− 1, a], fi +M [i− 1, a− ai]),

where M(i, a) contains the maximum eFOV possible with
the first i elements within size constraints a and soM(n,A)
is the solution. Since the ai values may be non-integers,
these are usually multiplied by 10s, where s is the desired
number of significant digits. This well-known approach
fails to provide the best optical element packing, because
greedily increasing total eFOV does not guarantee coverage
of the visual hemisphere. For example, a set of 5 identical
elements, each having a eFOV of π

5 , would seem to have
a sum total of 180◦ eFOV but would redundantly cover the
same angular region.

Figure 7. Optical Knapsack Algorithm. A traditional knapsack
solution for packing optical elements might fail if the elements
covered the same portion of the visual field. Our optical knapsack
solution takes into account the angular coverage of each sensor and
maintains the pseudo-polynomial nature of the original dynamic
programming knapsack solution.

Our optical knapsack algorithm takes into account an-
gular coverage by first discretizing the field-of-view into β
angular regions, each with a solid angle of πβ . We define an
array K(n, β), where K(i, b) = 1 if that optical element
covers the angular regions b in its field-of-view, and is zero
everywhere else. We also define the array M to be three-
dimensional of size n × A × β. As before, each entry of
M(i, a, 0) contains the maximum field of view that can be
obtained with the first i elements with a sensor of size a
and M(n,A, 0) contains the solution to the knapsack prob-
lem. Entries M(i, a, 1) through M(i, a, β) are binary, and
contain a 1 if that angular region is covered by the elements
corresponding to the maximum field-of-viewM(i, a, 0) and
a zero otherwise. The array M is initialized as,

M [i, a, b] = 0, if 0 ≤ a ≤ A, 0 ≤ i ≤ n and 0 ≤ b ≤ β

and is recursively updated as
If a < 0 M [i, a, 0] = −∞
For any other a, for any i
If
M [i− 1, a, 0] <
fi +M [i− 1, a− ai, 0]
and∑

1≤b≤β
M [i− 1, a, b] <∑

1≤b≤β
M [i− 1, a− ai, b] ∨K[i, b]



M [i, a, 0] =

fi +M [i− 1, a− ai, 0]

M [i, a, b] =

M [i− 1, a− ai, b] ∨
K[i, b], b ∈ (1, β)

Otherwise ∀b M [i, a, b] =M [i− 1, a, b]

where ∨ represents the logical OR function. This optical
knapsack packing algorithm adds a β multiplications and
β + 2 additions to the computational cost of the algorithm.
This results in a O(nAβ) algorithm, which is still pseudo-
polynomial. As with the original knapsack problem, if the
discretization ofA and the angular regions β are reasonable,
the implementation is tractable.



Figure 8. Edge detection application with optical packing. Wide angle optical edge detection has been shown [34] by subtracting sensor
measurements from two different lensless apertures. [34]’s approach in (I) is unable to utilize the full sensor size because it requires each
image to come from one sensor. In contrast, our optical knapsack technique can pack the sensor plane with multiple optical elements (II)
and synthesize, in software, a wider field of view. (II) demonstrates how the angular support of multiple elements vary over the visual field,
and how different measurements from multiple apertures are combined to create a mosaicked image with a larger eFOV. We perform edge
detection using both the configuration from [34] and our packed sensor on a simple scene consisting of a white blob on a dark background.
When the target is directly in front of the sensor (III), both optical configurations produce reasonable edge maps. At a particular slanted
angle (in this case, around 15 degrees due to vignetting) [34]’s approach (IV) does not view the target (images show sensor noise) and no
edges are detected. The edges are still visible for our design, demonstrating its larger field of view.

Example Application: Wide-angle Edge Detection. We
demonstrate the optical packing algorithm for edge detec-
tion for a simple white disk target (Fig. 8). Our goal is
two lensless sensors, each with angular supports ωo1 = 25◦

and ωo2 = 45◦ and both with error margins of ∆ = 5◦.
Fig. 8(I) shows [34]’s approach, with no packing, for a
6.6mm × 5.5mm sensor and whose template height had
been constrained to u = 2mm. Only a small portion of
the sensor is used, corresponding to an eFOV of 36◦. Next
we utilized our optical knapsack algorithm to maximize the
eFOV on the given total area. In Fig. 8(II), a five element
design is shown. Note that our algorithm only solves the
knapsack part of the algorithm - the rectangular packing
could be performed using widely known methods [36], but
in this case was done manually. We discretized the template
sizes in steps of 0.1mm and considered 30 different optical
elements and discretized the angular coverage into 36 units
of 5 degrees each. Since we targeted two defocus sensor
designs, our 3D tensor was 30 × 2501 × 72. Our dynamic
programming algorithm produced the solution in Fig. 8(II),
where the measurements from three elements, with aper-
ture diameters 2.2mm, 1.9mm and 1.6mm, were mosaicked
to create the image corresponding to ωo2 and the remaining
two elements, with aperture diameters 1.2mm and 0.9mm,
were used to create ωo1. In the figure, the mosaicked mea-
surements were subtracted to create a DoGs based edge de-
tection. At a grazing angle, only the packed, wide FOV

sensor can still observe the scene, demonstrating that our
optimally packed design has a larger field of view.

5. Summary
We present a novel framework, which enables ”pre-

capture” privacy, for miniature vision sensors. Most privacy
preserving systems for computer vision, process images af-
ter capture. There exists a moment of vulnerability in such
systems, after capture, when privacy has not yet been en-
forced. Our privacy preserving sensors filter the incident
light-field before image capture, while light passes through
the sensor optics, so sensitive information is never measured
by the sensor. Within this framework, we introduce, to our
knowledge, the first ever sensor that enables pre-capture
k-anonymity and multiple sensors that achieve pre-capture
privacy through optical defocus. We also show theory for
miniaturizing the proposed designs, including a novel ”op-
tical knapsack” solution for finding a field-of-view-optimal
arrangement of optical elements. Our privacy preserving
sensors enable applications such as accurate depth sens-
ing, full-body motion tracking, multiple people tracking and
low-power blob detection.
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[15] B. Driessen and M. Dürmuth. Achieving anonymity against
major face recognition algorithms. In Communications and
Multimedia Security, pages 18–33. Springer, 2013.

[16] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska,
T. Sun, K. E. Kelly, and R. G. Baraniuk. Single-pixel imag-
ing via compressive sampling. IEEE Signal Processing Mag-
azine, 25(2):83, 2008.

[17] F. Dufaux and T. Ebrahimi. Scrambling for privacy protec-
tion in video surveillance systems. Circuits and Systems for
Video Technology, IEEE Transactions on, 18(8):1168–1174,
2008.

[18] H. Dyckhoff. A typology of cutting and packing problems.
European Journal of Operational Research, 44(2):145–159,
1990.

[19] A. O. Ercan, D. B. Yang, A. El Gamal, and L. J. Guibas.
Optimal placement and selection of camera network nodes
for target localization. In Distributed computing in sensor
systems, pages 389–404. Springer, 2006.

[20] A. O. Ercan, D. B. Yang, A. E. Gamal, and L. J. Guibas. On
coverage issues in directional sensor networks: A survey. Ad
Hoc Networks, 9(7):1238–1255, 2011.

[21] U. M. Erdem and S. Sclaroff. Automated camera layout
to satisfy task-specific and floor plan-specific coverage re-
quirements. Computer Vision and Image Understanding,
103(3):156–169, 2006.

[22] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. La-
gendijk, and T. Toft. Privacy-preserving face recognition. In
Privacy Enhancing Technologies, pages 235–253. Springer,
2009.

[23] H. Fan, Z. Cao, Y. Jiang, Q. Yin, and C. Doudou. Learning
deep face representation. arXiv preprint arXiv:1403.2802,
2014.

[24] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast
and robust multiframe super resolution. Image processing,
IEEE Transactions on, 13(10):1327–1344, 2004.

[25] R. Fergus, A. Torralba, and W. T. Freeman. Random lens
imaging. 2006.

[26] J. Gluckman and S. K. Nayar. Catadioptric stereo using
planar mirrors. International Journal of Computer Vision,
44(1):65–79, 2001.

[27] J. W. Goodman et al. Introduction to Fourier optics, vol-
ume 2. McGraw-hill New York, 1968.

[28] R. Gross, E. Airoldi, B. Malin, and L. Sweeney. Integrat-
ing utility into face de-identification. In Privacy Enhancing
Technologies, pages 227–242. Springer, 2006.

[29] R. Gross, L. Sweeney, F. De la Torre, and S. Baker. Semi-
supervised learning of multi-factor models for face de-
identification. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.

[30] M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin. Pha-
sor imaging: A generalization of correlation-based time-of-
flight imaging. 2014.

[31] B. Gyselinckx, C. Van Hoof, J. Ryckaert, R. Yazicioglu,
P. Fiorini, and V. Leonov. Human++: autonomous wire-
less sensors for body area networks. In Custom Integrated
Circuits Conference, Proceedings of the IEEE 2005, pages
13–19. IEEE, 2005.



[32] R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawa-
worrarit, and C. Yang. Physical key-protected one-time pad.
Scientific reports, 3, 2013.

[33] T. A. Kevenaar, G. J. Schrijen, M. van der Veen, A. H. Akker-
mans, and F. Zuo. Face recognition with renewable and pri-
vacy preserving binary templates. In Automatic Identifica-
tion Advanced Technologies, 2005. Fourth IEEE Workshop
on, pages 21–26. IEEE, 2005.

[34] S. J. Koppal, I. Gkioulekas, T. Young, H. Park, K. B. Crozier,
G. L. Barrows, and T. Zickler. Toward wide-angle microvi-
sion sensors. IEEE Transactions on Pattern Analysis & Ma-
chine Intelligence, (12):2982–2996, 2013.

[35] S. J. Koppal, I. Gkioulekas, T. Zickler, and G. L. Barrows.
Wide-angle micro sensors for vision on a tight budget. In
Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 361–368. IEEE, 2011.

[36] R. E. Korf, M. D. Moffitt, and M. E. Pollack. Optimal rect-
angle packing. Annals of Operations Research, 179(1):261–
295, 2010.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[38] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image
and depth from a conventional camera with a coded aper-
ture. In ACM Transactions on Graphics (TOG), volume 26,
page 70. ACM, 2007.

[39] F. Li, Z. Li, D. Saunders, and J. Yu. A theory of coprime
blurred pairs. In Computer Vision (ICCV), 2011 IEEE Inter-
national Conference on, pages 217–224. IEEE, 2011.

[40] T. Lindeberg. Scale-space theory in computer vision.
Springer Science & Business Media, 1993.

[41] G. Loukides and J. Shao. Data utility and privacy protection
trade-off in k-anonymisation. In Proceedings of the 2008
international workshop on Privacy and anonymity in infor-
mation society, pages 36–45. ACM, 2008.

[42] S. Martello and P. Toth. Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., 1990.

[43] K. Miyamoto. Fish eye lens. JOSA, 54(8):1060–1061, 1964.
[44] M. Mrityunjay and P. Narayanan. The de-identification cam-

era. In Computer Vision, Pattern Recognition, Image Pro-
cessing and Graphics (NCVPRIPG), 2011 Third National
Conference on, pages 192–195. IEEE, 2011.

[45] S. Nakashima, Y. Kitazono, L. Zhang, and S. Serikawa. De-
velopment of privacy-preserving sensor for person detec-
tion. Procedia-Social and Behavioral Sciences, 2(1):213–
217, 2010.

[46] S. K. Nayar, V. Branzoi, and T. E. Boult. Programmable
imaging: Towards a flexible camera. International Journal
of Computer Vision, 70(1):7–22, 2006.

[47] C. Neustaedter, S. Greenberg, and M. Boyle. Blur filtra-
tion fails to preserve privacy for home-based video confer-
encing. ACM Transactions on Computer-Human Interaction
(TOCHI), 13(1):1–36, 2006.

[48] E. M. Newton, L. Sweeney, and B. Malin. Preserving pri-
vacy by de-identifying face images. Knowledge and Data
Engineering, IEEE Transactions on, 17(2):232–243, 2005.

[49] R. Ng. Fourier slice photography. In ACM Transactions on
Graphics (TOG), volume 24, pages 735–744. ACM, 2005.

[50] M. Nishiyama, A. Hadid, H. Takeshima, J. Shotton, T. Koza-
kaya, and O. Yamaguchi. Facial deblur inference using
subspace analysis for recognition of blurred faces. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
33(4):838–845, 2011.

[51] M. Nishiyama, H. Takeshima, J. Shotton, T. Kozakaya, and
O. Yamaguchi. Facial deblur inference to improve recogni-
tion of blurred faces. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages 1115–
1122. IEEE, 2009.

[52] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. Scifi-
a system for secure face identification. In Security and Pri-
vacy (SP), 2010 IEEE Symposium on, pages 239–254. IEEE,
2010.

[53] M. O’Toole, R. Raskar, and K. N. Kutulakos. Primal-
dual coding to probe light transport. ACM Trans. Graph.,
31(4):39, 2012.

[54] J. Pan, Z. Hu, Z. Su, and M.-H. Yang. Deblurring face images
with exemplars. In Computer Vision–ECCV 2014, pages 47–
62. Springer, 2014.

[55] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss.
The feret evaluation methodology for face-recognition algo-
rithms. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(10):1090–1104, 2000.

[56] F. Pittaluga and S. J. Koppal. Pre-capture privacy web page.
focus.ece.ufl.edu/precaptureprivacy.

[57] R. Raskar, A. Agrawal, and J. Tumblin. Coded exposure
photography: motion deblurring using fluttered shutter. ACM
Transactions on Graphics (TOG), 25(3):795–804, 2006.

[58] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient
privacy-preserving face recognition. In Information, Secu-
rity and Cryptology–ICISC 2009, pages 229–244. Springer,
2010.

[59] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mami-
shev, and J. R. Smith. Design of an rfid-based battery-free
programmable sensing platform. Instrumentation and Mea-
surement, IEEE Transactions on, 57(11):2608–2615, 2008.

[60] S. Soro and W. B. Heinzelman. On the coverage problem
in video-based wireless sensor networks. In Broadband Net-
works, 2005. BroadNets 2005. 2nd International Conference
on, pages 932–939. IEEE, 2005.

[61] E. Steltz and R. S. Fearing. Dynamometer power output mea-
surements of miniature piezoelectric actuators. Mechatron-
ics, IEEE/ASME Transactions on, 14(1):1–10, 2009.

[62] R. Swaminathan, M. D. Grossberg, and S. K. Nayar. Caustics
of catadioptric cameras. In Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International Conference
on, volume 2, pages 2–9. IEEE, 2001.

[63] L. Sweeney. k-anonymity: A model for protecting pri-
vacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(05):557–570, 2002.

[64] C. Thorpe, F. Li, Z. Li, Z. Yu, D. Saunders, and J. Yu. A
coprime blur scheme for data security in video surveillance.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 35(12):3066–3072, 2013.



[65] M. J. Wainwright, M. I. Jordan, and J. C. Duchi. Privacy
aware learning. In Advances in Neural Information Process-
ing Systems, pages 1430–1438, 2012.

[66] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarbotham,
D. Takhar, K. Kelly, and R. Baranuik. An architecture for
compressive imaging. ICIP, 2006.

[67] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez,
A. Barth, A. Adams, M. Horowitz, and M. Levoy. High per-
formance imaging using large camera arrays. ACM Transac-
tions on Graphics (TOG), 24(3):765–776, 2005.

[68] A. Wilhelm, B. Surgenor, and J. Pharoah. Evaluation of a
micro fuel cell as applied to a mobile robot. In Mechatronics
and Automation, 2005 IEEE International Conference, vol-
ume 1, pages 32–36. IEEE, 2005.

[69] T. Winkler and B. Rinner. Trustcam: Security and privacy-
protection for an embedded smart camera based on trusted
computing. In Advanced Video and Signal Based Surveil-
lance (AVSS), 2010 Seventh IEEE International Conference
on, pages 593–600. IEEE, 2010.

[70] W. Wolf, B. Ozer, and T. Lv. Smart cameras as embedded
systems. Computer, 35(9):48–53, 2002.

[71] F. T. Yu and S. Jutamulia. Optical pattern recognition. Opti-
cal Pattern Recognition, by Francis TS Yu, Suganda Jutamu-
lia, Cambridge, UK: Cambridge University Press, 2008, 1,
2008.

[72] H. Zhang, J. Yang, Y. Zhang, N. M. Nasrabadi, and T. S.
Huang. Close the loop: Joint blind image restoration and
recognition with sparse representation prior. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on, pages
770–777. IEEE, 2011.

[73] S. Zhou, J. Lafferty, and L. Wasserman. Compressed and
privacy-sensitive sparse regression. Information Theory,
IEEE Transactions on, 55(2):846–866, 2009.

[74] A. Zomet and S. K. Nayar. Lensless imaging with a con-
trollable aperture. In Computer Vision and Pattern Recogni-
tion, 2006 IEEE Computer Society Conference on, volume 1,
pages 339–346. IEEE, 2006.


