
Robust Regression on Image Manifolds for Ordered Label Denoising

Hui Wu, Richard Souvenir
Department of Computer Science, University of North Carolina at Charlotte.

A recent trend for acquiring labels for large image sets is via crowdsourc-
ing or co-located sensors, which effectively automates the label collection
process, allowing for the rapid creation of large labeled data sets. However,
label accuracy often suffers. The goal of our work is to correct mislabeled
examples for image sets with ordered labels. We take advantage of the fact
that these data sets contain semantically-related images whose relationship
can be exploited to learn a smooth function of the labels with respect to the
images. From this point of view, the problem can be framed as robust regres-
sion in the high-dimensional domain of images. Unlike traditional robust
regression methods, our method incorporates the observation that many nat-
ural image sets, although embedded in high-dimensional spaces, have only
a few underlying causes of change. The contributions of this paper are:
• introducing the problem of ordered label denosing;
• an efficient, data-driven algorithm, based on the Hessian regularizer,

for high-dimensional robust regression; and
• providing more accurate labels for widely-used image sets.
For a set of images, X = [x1,x2, · · · ,xN ]

ᵀ, each example, xi ∈RD, cor-
responds to the D-dimensional feature representation (e.g., raw pixel values,
bag of words, HOG) of image i. We assume that the images are samples
drawn from (or near) a low-dimensional manifold, M, embedded in RD;
the labels, y = [y1,y2, · · · ,yN ]

ᵀ, are samples of a function defined on the
manifold; and the set of labels is contaminated by outliers. The goal is to
learn a smooth function on the image manifold that recovers denoised labels,
ŷ. Our formulation includes the Hessian regularizer and an L1 loss term:

argmin
ŷ

ŷᵀBŷ+λ‖ŷ−y‖1 (1)

where B regularizes the function on the manifold defined by the samples,
X, and λ is the trade-off parameter. This convex optimization can be solved
efficiently using solvers specialized for large-scale, sparse L1-regularized
least squares problems.

We compare our method, H3R against the following regression meth-
ods: K-NN, radial basis function network (RBFN), RANSAC, ε-support
vector regression (SVR), and kernel supervised principal component analy-
sis (KSPCA). Each method is provided the (corrupted) labeled data as input.
Figure 1 shows the ground truth, corrupted input, and regression results from
each method for a trial with 50% corruption. Across all of the experiments,
H3R returns the closest predicted values, even at corruption rates as high as
80%.

Figure 2 shows images with associated weather metadata. Cloud okta is
a measure of cloudiness from clear (0) to cloudy (8). These weather values
are estimated from the closest weather stations, which may be far enough
to be under different weather conditions from where the image is captured.
Those boxed in red are examples where the original label does not appear to
match the cloud level depicted in the scene. H3R provided predictions that
most closely matched visual appearance of the scene.

Figure 3 shows faces with an estimate of the face pan angle. This param-
eter would be used to, for example, retain only front-facing subjects. The
first row shows sample faces with the associated pose estimate. Each of the
subsequent rows show a subset of images sorted by the denoised head pose
estimate. The red boxes indicate examples where the pose estimate does not
visually match the direction the subject is facing. H3R outperformed each
of the competing approaches, resulting in no grossly mislabeled examples.

We presented an algorithm for robust regression on image manifolds
and applied it to the problem of ordered label denoising for natural image
sets. While the bulk of the algorithms and data sets for supervised learning
in computer vision address classification, or categorization problems, there
are important problems that rely on ordered output, and our work is one of
the first to address this underserved area.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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(a) Ground truth (3D)
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(b) Ground truth (2D)
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(c) Input
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(d) RANSAC
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(e) K-NN
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(f) RBFN
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(g) SVR
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(h) KSPCA
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(i) H3R

Figure 1: For the Swiss Roll (50% label corruption), the color in each plot
indicates the manifold function value. For clarity, (b) to (i) are plotted using
2D manifold coordinates.

RBFN 0.3 5.9 3.2 7.0 8.0
SVR 0.8 3.9 2.2 7.0 7.8

KSPCA 0.4 5.3 2.4 6.3 8.0
H3R 0.8 1.3 4.7 6.4 8.0

Figure 2: Each image shows the original cloudiness label, which ranges,
from 0 (clear) to 8 (cloudy). For each method, the predicted value is shown.
Clearly mislabeled (input or predicted) values are indicated by the red text
and boxes.
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Figure 3: For each row, the images are shown with the (input or predicted)
head pose estimate. Clearly mislabeled examples are highlighted by red
boxes.
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