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Abstract

We address the challenging problem of recognizing the
camera wearer’s actions from videos captured by an ego-
centric camera. Egocentric videos encode a rich set of
signals regarding the camera wearer, including head move-
ment, hand pose and gaze information. We propose to
utilize these mid-level egocentric cues for egocentric action
recognition. We present a novel set of egocentric features
and show how they can be combined with motion and
object features. The result is a compact representation with
superior performance. In addition, we provide the first
systematic evaluation of motion, object and egocentric cues
in egocentric action recognition. Our benchmark leads to
several surprising findings. These findings uncover the best
practices for egocentric actions, with a significant perfor-
mance boost over all previous state-of-the-art methods on
three publicly available datasets.

1. Introduction
Understanding human actions from videos has been a

well-studied topic in computer vision. The recent advent
of wearable devices has led to a growing interest in un-
derstanding egocentric actions, i.e. analyzing a person’s
behavior using wearable camera video, otherwise known
as First-Person Vision (FPV). Since an egocentric camera
is aligned with the wearer’s field of view, it is primed to
capture the first person’s daily activities without the need to
instrument the environment. Knowledge of these activities
facilitates a wide range of applications, including remote
assistance, mobile health and human-robot interaction.

Despite the tremendous effort on understanding actions
in a surveillance setting [1, 35], it remains unclear whether
previous methods for action recognition can be successfully
applied to egocentric videos. Our first observation is that
egocentric video includes frequent ego-motion due to body
movement. This camera motion can potentially hamper the
motion-based representations that underlie many successful
action recognition systems. In contrast, state-of-the-art
egocentric action recognition methods [6, 27, 7] rely mainly

on an object-centric representation for discriminating action
categories. However, most of these works did not test
motion-based representations on a common ground, e.g.
separating the foreground motion from the camera motion.
Thus, a systematic evaluation of motion cues in egocentric
action recognition remains missing.

What makes egocentric videos different from surveil-
lance videos? The key is not simply that a camera is mov-
ing, but rather that the movement is driven by the camera-
wearer’s activities and attention. In a natural setting, the
camera wearer performs an action by coordinating his body
movement during an interaction with the physical world.
The action captured in an egocentric video contains a rich
set of signals, including the first person’s head/hand move-
ment, hand pose and even gaze information. We consider
these signals as mid-level egocentric cues. They usually
come from low-level appearance or motion cues, e.g. hand
segmentation or motion estimation, and are complementary
to traditional visual features. These mid-level egocentric
cues reveal the underlying actions of the first person, yet
have been largely ignored by previous methods for egocen-
tric action recognition.

We provide an extensive evaluation of motion, object
and egocentric features for egocentric action recognition.
We set up a baseline using local descriptors from Dense
Trajectories (DT) [36], a successful video representation
for action recognition in a surveillance setting. We then
systematically vary the method by adding motion com-
pensation, object features and egocentric features on top
of DT. Our benchmark demonstrates how these choices
contribute to the final performance. We identify a key set of
practices that produce statistically significant improvement
over previous state-of-the-art methods. In particular, we
find that simply extracting features around the first-person’s
attention point works surprisingly well. Our findings lead to
a significant performance boost over state-of-the-art meth-
ods on three datasets. Figure 1 provides an overview of
our approach. Materials for reproducing our results can be
found in our project website.1

Our work has three major contributions: (1) We propose
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a novel set of mid-level egocentric features for egocentric
action recognition, and demonstrate that how they can be
combined with low-level features to effectively improve the
performance. (2) We provide the first systematic evaluation
of motion, object and egocentric features in egocentric
actions. Our benchmark shows how different features
contribute to the performance. (3) Our study identifies a key
set of ingredients that are critical to the performance. These
best practices are shown to provide significant performance
boosts on existing datasets. In addition, our findings contain
valuable insights for understanding egocentric actions.

Our findings, derived from a large set of experiments,
can be summarized into three parts: (1) Motion cues,
with an explicit model of camera movement, can provide
comparable results with the state-of-the-art methods that
use object-centric features. This result is surprising and
challenges the prevailing view that motion features are less
reliable in egocentric videos. (2) Object cues, even simple
visual features, when combined with foreground regions,
can significantly improve the performance in object related
actions. This supports the argument for the importance of
object-centric representations. (3) Egocentric cues, when
combined with motion and object cues, can provide a
further large increase in performance. The performance
gap indicates that mid-level egocentric cues are crucial
for egocentric action recognition. We also discuss issues
regarding implementation details and existing benchmarks.

2. Related Work

2.1. Action Recognition

There is a large body of literature on action recognition
in computer vision. Recent surveys can be found in [1, 35].

Local spatial-temporal features have been the most
prevalent over the past few years [19, 36]. Laptev [19]
introduced the Space-Time Interest Point (STIP) by extend-
ing 2D Harris corner to 3D. Wang et al. [36] propose to
densely sample feature points and track them using optical
flow. Multiple descriptors, including HOG [3], HoF [4],
MBH [36] or Cuboids [5] can be computed around the
interest points, followed by a bag-of-features representation
for action recognition. These spatial-temporal descriptors
aim to find key features that are relevant to actions. The
framework was shown to be robust to challenging scenes
and achieved the state-of-the-art performance on major
benchmarks. However, they have not been fully explored
in the egocentric setting, due to the significant ego-motion.

There has been growing interest in using mid-level fea-
tures for action recognition. Fathi and Mori [8] propose to
construct mid-level motion features from optical flow using
AdaBoost. Raptis et al. [28] extract action parts by forming
clusters of trajectories. Recognition is then formulated
as matching a subgraph of parts to a template. Tian et

al. [34] extend the deformable part model to 3D volumes
and learn 3D spatio-temporal parts for action detection.
Jain et al. [11] demonstrate that mid-level discriminative
patches can be mined from video, and used for classifica-
tion as well as building correspondences between videos.
Most recently, Mathe and Sminchesescu [23] demonstrate
promising results for recognizing actions by sampling local
descriptors from a predicted saliency map. While most of
the previous work focus on a surveillance setting, we show
that egocentric video provides rich signals about the camera
wearer and these signals can be used as mid-level features
for understanding the first-person’s actions.

2.2. First-Person Vision

By taking advantage of a point-of-view camera, there
have been several recent advances in First-Person Vision
(FPV) [14], also known as egocentric vision, such as video
summarization [20], video stabilization [16], object recog-
nition [29] and action and activity recognition [33, 6, 27].

We focus on egocentric action and activity recognition in
this paper. Spriggs et al. [33] address the segmentation and
classification of activities using a combination of egocentric
videos and wearable sensors. Fathi and Rehg [9] propose
to differentiate egocentric actions by modeling the change
of the states of objects and materials in the environment.
Moreover, several papers [6, 9, 27] reported that local
spatial-temporal features (such as STIP [19]) often fire at
locations irrelevant to an action due to the camera motion
and therefore perform poorly. A possible solution is an
object-centric representation proposed by Pirsiavash and
Ramanan in [27]. However, directly applying local features
in egocentric videos is problematic, as most of them implic-
itly assume a static camera. We provide a systematic study
of these local features, and demonstrate that they perform
surprisingly well if the camera motion is removed.

In contrast, the camera motion generated by the first
person can be a useful cue for understanding egocentric
actions. For example, Kitani et al. [15] track camera motion
using sparse optical flow, and encode the motion of tracked
points into a histogram, which is used to cluster egocentric
video content and discover egocentric actions. Ryoo and
Matthies [31] combine a global motion descriptor with local
motion cues for interaction-level action recognition. In fact,
egocentric videos embed a rich set of mid-level egocentric
cues, including body movement, hand pose and location
and even gaze information. Our previous work [22] models
the coordination of hand, head and eye, which is then used
to predict egocentric gaze from hand pose and head move-
ment. Fathi et al. [7] propose to select key visual features
around egocentric gaze for action recognition. However,
these mid-level cues had never been evaluated carefully in
egocentric action recognition. We explore novel approaches
for encoding these features, and provide a study of how



Figure 1. Overview of our approach. We propose to combine a novel set of mid-level egocentric cues with low-level object and motion
cues for recognizing egocentric actions. Our egocentric features encode hand pose, head motion and gaze direction. Our motion and
object features come from local descriptors in Dense Trajectories, with motion compensation using head motion. We design a systematic
benchmark to evaluate how different types of features contribute to the final performance, and seek the best recipe using motion, object
and egocentric cues. Our findings significantly advance the results in all our benchmarks.

different egocentric cues affect the performance.

3. Motion, Object and Egocentric Cues

We give a brief description of the motion, object and
egocentric features used in our paper. Different encoding
schemes for the egocentric features are also discussed.

3.1. Local Descriptors for Motion and Object Cues

Our method is built upon the pipeline of DT [36], which
has not been fully explored in egocentric video. The success
of DT lies in its dense tracking strategy using optical flow,
and the combination of multiple descriptors aligned with
the trajectories. Dense sampling ensures that key visual
information is captured by the trajectories. The feature
set is designed for different aspects of an action, including
trajectory shape, 2D image boundary, motion direction and
motion boundary. Each descriptor in DT thus includes
its spatial-temporal trajectory and the features along the
trajectory. We further separate the features into motion
features and object features.

Motion Features: Motion is the inherent nature of an
action. DT captures motion information by 1) trajectory
features of the shape of a trajectory; 2) Histogram of Flow
(HoF) as the local motion pattern; 3) Motion Boundary
Histogram (MBH) using the gradient of optical flow split
into vertical (MBHy) and horizontal directions (MBHx), as
the shape of moving foreground objects.

Object Features: Object information is crucial in ego-
centric settings, as many of the actions are based on inter-
actions with objects. DT include Histogram of Oriented
Gradient (HOG), which encodes the 2D image boundaries.
We further augment DT with histogram of LAB color and

Local Binary Patterns (LBP) along the trajectory, capturing
color and texture information. We deliberately choose our
object features as low-level descriptors to keep our pipeline
simple.

3.2. Egocentric Cues

We introduce our egocentric cues, which are used as
mid-level features, and show how they can be inferred from
an egocentric video.

Hand Pose and Movement: The first person’s hand
pose, location and movement are directly related to their
interaction with objects. Accurate segmenting and tracking
of hands in egocentric video remains an open problem [21].
Our previous work [22] demonstrated that egocentric hands
can be abstracted by the concept of a manipulation point. A
manipulation point is a 2D point in the image, defined as
a control point where the first person is most likely to ma-
nipulate an object using his or her hands. It can be obtained
by analyzing the shape of the hands in each frame, and is
relatively robust to hand segmentation performance. We
apply textonBoost with CRF [32] for hand segmentation,
and match the boundaries to different templates under four
hand configurations as in [22].

Head Movement: Head movement is important for
egocentric actions. The egocentric camera is aligned with
the first-person’s head direction, and thus the head motion
is captured by the camera motion. We model the camera
motion by matching sparse interest points between succes-
sive frames using ORB [30]. To ensure a homogeneous
distribution of interest points for robust motion estimation,
we divide the image plane into a grid, trying to extract at
least 3 points per cell. We also delete interest points that
lie on the hand mask. We then fit a homography for head



motion using RANSAC [10].
Gaze Direction: As we sense the visual world through

a series of fixations, our gaze reveals important information
about our goals. Gaze points often lie on objects that are
relevant to the task we are performing, since gaze is used
to coordinate actions [18]. In egocentric gaze, the point of
regard is represented by a 2D image point in each frame.
In our experiments, we use a wearable eye tracker to obtain
gaze measurements.

Encoding Head and Hand Movement: Head motion
and hand movement are complementary to visual features.
We, therefore, propose to directly encode the head motion
and the trajectory of manipulation points as separate feature
channels. We also experimented with encoding the trajec-
tory of gaze points, yet found only negligible improvement.

3.3. Egocentric Cues Improve Local Descriptors

The key challenge for using local descriptors in ego-
centric video is that they often fire at locations that are
irrelevant to the current action. This is mainly due to camera
motion and background clutter. In addition to directly
exploiting egocentric cues, we show that they can be used
to produce meaningful local descriptors for egocentric ac-
tions. This is done by motion compensation and trajectory
selection.

Motion Compensation: Camera motion compensation
is important for egocentric actions. Several recent efforts
addressed the issue in a surveillance setting by either sta-
bilizing the input video [25] or compensating the optical
flow [37, 12]. The latter has been proved to be effective for
action recognition [37, 12]. Thus, we adapt the technique
from [37]. We directly subtract camera motion from dense
optical flow field and reject trajectories with a small motion.
We did not back-warp a future frame as in [37]. Warping is
less reliable when a large camera motion in egocentric video
is approximated by a homography.

Motion compensation has two major effects. First, it
helps to select trajectories on foreground regions that move
differently from the camera motion. Secondly, it generates
more reliable motion features that exclude the ego-motion
from the dense optical flow field. Note that our imple-
mentation is different from [37]. Our version uses ORB
features homogeneously distributed on the image plane. It
only requires dense optical flow to be computed once, and
is more efficient with comparable results.

Trajectory Selection: Gaze points index key locations
that are discriminative for actions. Fathi et. al [7] proposed
a simple heuristic by only encoding visual features around
gaze points. In this case, egocentric features provide a weak
spatial prior of an action. We experiment with selecting
local descriptors by their trajectories in the vicinity of both
manipulation point and gaze point. Trajectory selection
drives local descriptors to focus on egocentric actions, by

filtering out descriptors with irrelevant trajectories, e.g.
trajectories due to the background clutter. It also improves
efficiency as fewer descriptors are used for recognition.

4. Egocentric Action Recognition
We now describe our approach to combine object, mo-

tion and egocentric features for action recognition. We
discuss the details of our implementation and benchmark,
followed by our results and findings. Our results demon-
strate a significant performance boost on three existing
datasets.

4.1. Method and Implementation

Feature Extraction: Our method shares a similar
pipeline with [37]. We track feature points using DT in
an input video, using a time window of 6 frames. Note
the trajectory length is shorter than [37], as many of the
egocentric actions only last for a few seconds. We extract
a set of local descriptors aggregated along the trajectories.
Each descriptor consists of 7 feature channels, including
trajectory features, MBHx, MBHy, HoF, HoG, LAB color
histogram and LBP. We use 8-neighbour comparison for
LBP and quantize three color channels (LAB) separately
into 8 bins each. Each trajectory is further divided by
2× 2× 3 grids and histograms of features within each grid
are concatenated. The final dimensions of the descriptors
are 12 for Trajectory, 96 for HoG and LBP, 108 for HoF,
192 for MBH and 288 for Color. Other parameters of DT
are kept the same as in [36]. We also extract egocentric
features at each frame, including head motion parameters
(8D homography) and hand manipulation point (2D).

Fisher Encoding: We encode all descriptors using
Improved Fisher Vector (IFV) and concatenate the result
vectors. IFV [26] has been shown to outperform other
encoding methods in action recognition [24]. IFV is ob-
tained by soft quantization of the projected descriptor of
dimension D using a Gaussian Mixture Model (GMM) of
K components. Zero, first and second order differences
between each descriptor and its Gaussian cluster mean are
calculated, and weighted properly by the Gaussian soft-
assignments and covariance. They are then averaged into an
unnormalized fisher vector. We further take a signed square
root of its scalar components and normalize the vector with
a unit l2 norm [26]. The result is a fisher vector of the
dimension (2D + 1)K. For all of our experiments, we
first perform PCA to reduce the input feature dimensions
by 50%, followed by a GMM with K = 50 using 200K
randomly sampled descriptors. To eliminate randomness in
clustering, all results are obtained by averaging over 5 runs.

Classification: We concatenate the IFVs from different
features into the final representation of the video. We train
a linear SVM over the final FV for action recognition.
The SVM parameter C is selected by leave-one-subject-out



Task Mounting Resolution
FPS
(Hz)

Duration
(hours)

# Subjects
# Action

Categories
# Action
Instances

Other
Sensors

GTEA [6] Action Head 1280*720 30 0.6 4 71(61*) 525(456*) N/A
GTEA Gaze [7] Action Head 640*480 30 1 14 40(25*) 331(270*) Gaze

GTEA Gaze+ [7] Action Head 1280*960 24 9 6 44 1958 Gaze
UCI ADL [27] Activity Chest 1280*960 30 10 20 18 364 N/A

JPL Interaction [31] Activity Chest 320*240 30 0.4 N/A 7 94 N/A

EgoAction [15]
Action

Discovery
Head 840*480 30 0.7 N/A N/A N/A N/A

UT Ego [15] Summary Head 480*320 15 20 4 N/A N/A N/A

Table 1. Comparison between existing FPV datasets. GTEA Gaze+ is the largest egocentric action dataset in terms of the number of action
categories and instances. We choose datasets captured by head-mounted cameras (GTEA, GTEA Gaze and GTEA Gaze+) to benchmark
our method. (*Only a subset of the actions is benchmarked in previous work [9, 22, 7].)

Figure 2. Sample frames from our bechmark (GTEA, GTEA Gaze, GTEA Gaze+ dataset), which are captured by head mounted cameras.
These datasets focus on recognizing object manipulation tasks during meal preparation activites. While GTEA and GTEA Gaze are
collected in a controlled lab environment, GTEA Gaze+ is collected in a real-world kitchen setting with complex backgrounds.

cross-validation on the training set on GTEA (best C=40)
and GTEA Gaze+ (best C=60). We manually set C = 60
for GTEA Gaze, where cross-validation is not feasible.

Implementation Details: We also implement spatial FV
(SFV) [17] and data augmentation [2]. Data augmentation
is done by mirroring the videos horizontally in both train-
ing and testing. Our final classification results are given
by the averaged score between the original video and its
mirrored version. We find that SFV and data augmentation
consistently improve the performance, and include them in
all methods across experiments.

4.2. Datasets and Baselines

We utilize three datasets for our experimental evalua-
tions: GTEA, GTEA Gaze and GTEA Gaze+. They are
publicly available and include action annotations. Each
action consist of a verb and a set of nouns, such as “put
turkey (on) bread”. We summarize the statistics of the
datasets in comparison to other FPV datasets in Table 1.
We choose these datasets because 1) they are designed
for egocentric action and activity recognition; 2) they are
captured by head-mounted cameras, and therefore contain
a rich set of egocentric cues. Sample frames of these three
datasets are shown in Figure 2.

Results have been reported on GTEA and GTEA Gaze
in [9, 7, 22, 6]. However, these findings can not be directly
compared in order to properly understand the performance.
This is because (1) the action annotation of GTEA does
not include all actions that start with the verb “put”, which
biases the benchmark; (2) Results in [7, 22] are reported
over a subset of all actions in GTEA Gaze, again, missing
all “put” actions; (3) GTEA Gaze+ includes over 900
categories in total, yet most of them happen only 1-2 times
and no previous result has been reported; (4) No cross-
validation is performed for the reported results. Thus, the
generalization error estimate may not be accurate.

We establish the first rigorous baseline through a com-
prehensive performance evaluation. This is done by (1) re-
annotating GTEA dataset to reinstate actions that include
the verb “put”; (2) reporting leave-one-subject-out cross-
validation results on both the old and new lists of categories
on GTEA; (3) reporting benchmark results on both the
partial and full lists of GTEA Gaze; (4) redefining the list of
action categories on GTEA Gaze+ by requiring each action
to occur at least twice for each subject, which results in 44
action classes with 1958 instances; (5) providing leave-one-
subject-out cross-validation results on GTEA Gaze+; (6)
generating a set of common baselines for all three datasets



GTEA (61)
Fixed Split

GTEA (61)
Cross Valid

GTEA (71)
Cross Valid

GTEA Gaze (25)
Fixed Split

GTEA Gaze (40)
Fixed Split

GTEA Gaze+ (44)
Cross Valid

STIP 32.9 31.1 25.3 26.3 23.8 14.9
Cuboids 11.2 12.5 13.3 20.1 20.6 22.7
DT 33.0 34.1 32.9 34.2 34.1 42.4
IDT 39.8 42.5 40.5 41.3 27.7 49.6
M 37.3 39.6 38.7 40.3 27.5 45.6
O 56.7 53.9 55.0 42.5 28.2 53.4
O+M 56.9 56.1 55.2 43.2 29.5 56.3
Ego Only (E) 15.3 16.3 16.5 19.9 17.4 22.3
O+M+E 59.4 55.9 55.7 44.5 32.0 56.7
O+M+E+H 61.1 59.1 59.2 53.2 35.7 60.5
O+M+E+G N/A N/A N/A 60.9* 39.6* 60.3*
M+E+H 40.8 43.1 42.3 47.6 30.3 53.2
O+E+H 66.8 64.0 62.1 51.1 35.1 57.4
M+E+G N/A N/A N/A 44.1* 33.1* 51.3*
O+E+G N/A N/A N/A 53.4* 34.1* 57.7*
State-of-the-art 39.7 [9] N/A N/A 32.8 [22](47.0*) [7] N/A N/A

Table 2. Our results are grouped into four parts, with all numbers in percentages. The first group (row) includes the baselines of STIP,
Cuboids, DT and IDT. In the second group, we compare motion (M) and object (O) features. Note our motion features are a subset from
IDT with trajectory features, HoF, MBHx and MBHy. The third part focuses on incorporating egocentric features. We consider direct
encoding of egocentric cues (E), as well as feature extraction around an attention point given by hand (H) or gaze (G). In the fourth part, we
explore the combination of motion (M) and object (O) features with the attention point by hand (H) or gaze (G). By systematically varying
different components, we uncover the ingredients of success for egocentric action recognition and significantly advance the state-of-the-art.
(*Results that utilized the measurement of human gaze using eye tracking glasses)

and then comparing to our method. We also supplement
the datasets with 2.5K hand masks. These masks are
used to train our hand segmentation pipeline. The action
annotations together with hand masks are publicly available
at our project website.2

Our baselines include STIP [19], Cuboids [5], DT and
Improved DT (IDT) [36, 37]. Note that we supplement IDT
with our head motion estimation, which provides slightly
better results in first person videos. We also include results
from [9, 7, 22]. Our results are obtained by adding motion
compensation (IDT [37]), object features and egocentric
features on top of DT. We report average class accuracy
as the benchmark criterion. For efficiency, we resize the
videos into 320 × 240 for GTEA Gaze and GTEA Gaze+
dataset. We use the rectified frames for GTEA from [6]
and resize the video to 360 × 203. We also reduce the
frame rate by half for all datasets. Using a higher resolution
or frame rate was found to have negligible impact on the
performance.

4.3. Results and Findings

To facilitate comparison to previous work, we provide
benchmark results for 5 different settings: (1) GTEA dataset
with old labels using the same training and testing split as
in [9, 6]; (2) GTEA dataset with old labels using leave-
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one-subject-out cross-validation; (2) GTEA dataset with
new labels and leave-one-subject-out cross-validation; (3)
GTEA Gaze dataset with the same action categories and
training testing split in [7, 22]; (4) GTEA Gaze dataset with
all action categories using the same training testing split
in [7, 22]; (5) GTEA Gaze+ dataset with leave-one-subject-
out cross-validation.

In particular, we divide the features into three parts and
benchmark them separately: (1) Motion features obtained
by concatenating FVs from trajectory features, MBHx,
MBHy and HoF; (2) Object features by concatenating FVs
from HoG, LAB color histogram and LBP; (3) Egocentric
features by concatenating FVs from head motion and ma-
nipulation point. We also denote H and G as selecting
local descriptors using manipulation point and gaze point.
Our results are summarized in Table 2. The best results are
highlighted in bold.

Imbalanced Data: We notice that both GTEA and
GTEA Gaze have very few number of instances (3 ∼ 4)
for many categories. More precisely, the distribution of
instances within each category is highly imbalanced. For
example, in GTEA, while the action of “take bread” has
28 instances, 33 out of the 71 categories have less than
5 instances. This can produce misleading results [13],
as missing one instance in these “sparse” categories can
impose a large penalty on average class accuracy. There is

www.cbi.gatech.edu/egocentric


Figure 3. We encode features within a circle of raduis r in pixels around either a manipulation point (red) or a gaze point (green) for
egocentric action recognition. These three plots show the impact of region size on the recognition accuracy. The baseline accuracy at
r = 200 is given by encoding all local descriptors within the video.

Figure 4. Confusion matrix of our method (O+M+E+H) on three datasets. Action categories are sorted based on decreasing number of
instances. Our results are centered at the diagonal on GTEA and GTEA Gaze+. Our method achieves a performance boost of 27.0% in
GTEA, 13.9% in GTEA Gaze and 10.7% in GTEA Gaze+ over the state-of-the-art methods [9, 7, 37].

no good single measurement to resolve this issue. Random
undersampling or oversampling is a possible solution, but
they may miss important instances.

The same issue also holds for GTEA Gaze+, yet to a
lesser extent. With more instances, GTEA Gaze+ has a
median number of 25 instances per category in comparison
to 8 (GTEA) and 5 (GTEA Gaze). Therefore, methods are
less likely to get penalized in average accuracy by missing a
few instances. Moreover, GTEA Gaze+ is collected in a real
kitchen setting with a higher resolution, while both GTEA
and GTEA Gaze are captured at a lab environment. In this
paper, we report results on all datasets. However, we highly
recommend that future works focus on evaluations with
GTEA Gaze+, as GTEA and GTEA Gaze are preliminary
and incomplete.

Motion Compensation: Traditional action recognition
methods without explicit camera motion compensation do
not work well. STIP, Cuboids and DT all performed
poorly, in comparison to state-of-the-art method. In our first
experiment, we added motion compensation. IDT with our
head motion estimation and motion features significantly
improves the results on all datasets (fourth row in Table
2), except for GTEA Gaze with 40 classes. This is due
to imbalanced data as we examine the confusion matrix.

While we expect better results by removing the camera mo-
tion, it is a bit surprising to find that IDT already provides
comparable results with state-of-the-art methods.

Object vs. Motion: We proceed by supplementing IDT
with object features. We compare three different settings as
shown in the second group of Table 2: (1) IDT with motion
features (M) along the trajectories as baseline; (2) IDT with
object features (O) along the trajectories; (2) IDT with both
object and motion features (O+M) . Even with simple object
features, the results are surprisingly good, outperforming all
previous state of art results and motion features by a large
margin. The results justify the argument that object cues are
crucial in understanding egocentric actions.

We also notice that the trajectories given by IDT provide
a rough location of foreground objects. Extracting object
features along these trajectories is equivalent to extracting
features on the foreground moving regions, which is sim-
ilar to [6]. Our object features encode which object the
first person is interacting with, and are therefore useful
in recognizing egocentric actions. Combining object and
motion features (O+M), however, only leads to marginal
improvements, in comparison to using only object features.

Egocentric Cues: We further leverage egocentric fea-
tures (E) in our method. These features are obtained by en-



coding the first-person’s head motion and hand movements.
Using only egocentric features, we achieve a reasonable
performance comparable to Cuboids. We combine ego-
centric features with motion and object features (O+M+E),
and only observe a slight improvement over all datasets.
Directly encoding egocentric cues is not effective. Head
motion is less discriminative for fine-grain actions. For
example, taking a slice of bread and taking a peanut butter
jar will result in very similar head motion. Moreover, hand
movement is already encoded by the local motion features.

Trajectory Selection: In addition, we select descriptors
based on their trajectories using manipulation or gaze point
(O+M+E+G/H). We only encode a subset of the trajecto-
ries, which lie within the vicinity of an “attention” point,
defined by a circle of radius r. The radius is defined by
the minimum of the 2D distances between each point on
the trajectory and the attention point in the corresponding
frame. We vary the radius of the local region, plot the
classification accuracy on all datasets in Figure 3 and report
the best results in Table 2 (third group). We observe peaks
along the curves. With a small region of radius equal to
60 pixels, roughly occupying 20% of the image area, our
method is able to achieve a consistent performance boost
from 2% to 16% over all datasets. This strategy is also very
efficient as many fewer descriptors are encoded. The result
indicates that “attention” points, e.g. gaze or manipulation
points, provide a strong prior of where an action occurs.

In GTEA Gaze, the performance gap between manipula-
tion points and gaze points is large. Again, we find that this
result is dominated by categories with a few instances. In
GTEA Gaze+, this gap is small. In fact, the manipulation
point has shown to be effective for gaze prediction [22].
While current evidence cannot support the replacement of
gaze points, we confirm that the concept of manipulation
point is a powerful tool for egocentric action recognition.
We also notice a plateau around the peaks of r, which
suggests that our method is relatively robust to the measure-
ment error of manipulation or gaze points.

Object vs. Motion Revisited: We further analyze which
cue is more important with the selected descriptors. We
benchmark object and motion features with the best radius
(O/M+E+H/G) in the fourth group of Table 2. Constraining
the features within a salient region improves the baseline
performance of encoding object or motion features over the
whole video. Moreover, object and motion features are
complementary towards the final performance, except on
GTEA, where object features are clear winners. This is
largely due to the fact that this dataset used the same object
instances in all actions under an ideal illumination.

Confusion Matrix: Our final results with O+M+E+H/G
outperform previous results by a large margin. We improve
the performance by 27.0% in GTEA, 13.9% in GTEA Gaze
and 10.7% in GTEA Gaze+, in comparison to the state-of-

the-art [9, 7, 37]. However, as we discussed in the beginning
of the section, the single average class accuracy is not a
proper measure for imbalanced data. We include the full
confusion matrices as a source of additional insight. We sort
the action categories with decreasing number of instances,
and report confusion matrix using our best combination
(O+M+E+H) on all three datasets in Figure 4. Our method
is able to get most of the categories correct, except on
GTEA Gaze. The result on GTEA Gaze is worse due to
the mixture of low video quality, imbalanced samples and
insufficient training data.

4.4. Best Practices

Based on our experimental results, we recommend the
combination of O+M+E+H for egocentric action recogni-
tion. We summarize and briefly explain the best practices.

• Motion compensation is important. It leads to more
reliable motion features, and can identify foreground
regions for meaningful object features.

• Object cues are of crucial importance for understand-
ing egocentric actions.

• Using an “attention” point (manipulation/gaze point)
to guide feature encoding works surprisingly well. A
manipulation point derived from hand shape serves as
a good approximation to the actual gaze point.

5. Conclusion and Future Work

In this paper, we propose a novel set of mid-level
egocentric cues, and demonstrate how they can be
combined with low-level motion and object features for
egocentric action recognition. In addition, we establish
a rigorous benchmark baseline, and provide an extensive
study of how object cues, motion cues and egocentric
cues contribute to egocentric action recognition. Our
method achieves a significant performance boost in three
major benchmarks. We identify three key components for
performance: motion compensation, object features over
foreground regions and the use of an attention point to
guide feature extraction. Our work provides insight into
egocentric actions, and motivates us to continue to explore
principled approaches for modeling these egocentric cues.
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