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In many real-world applications, we need to deal with high-dimensional
datasets, such as images, videos, text, and more. In practice, such high-
dimensional datasets can be well approximated by multiple low-dimensional
subspaces corresponding to multiple classes or categories. For example, the
feature point trajectories associated with a rigidly moving object in a video
lie in an affine subspace (of dimension up to 4), and face images of a subject
under varying illumination lie in a linear subspace (of dimension up to 9).
Therefore, the task, known in the literature as subspace clustering [6], is
to segment the data into the corresponding subspaces and finds multiple
applications in computer vision.

State of the art approaches [1, 2, 3, 4, 5, 7] for solving this problem fol-
low a two-stage approach: a) Construct an affinity matrix between points by
exploiting the ‘self-expressiveness’ property of the data, which allows any
data point to be represented as a linear (or affine) combination of the other
data points; b) Apply spectral clustering on the affinity matrix to recover
the data segmentation. Dividing the problem in two steps is, on the one
hand, appealing because the first step can be solved using convex optimiza-
tion techniques, while the second one can be solved using existing spectral
clustering techniques. On the other hand, its major disadvantage is that the
natural relationship between the affinity matrix and the segmentation of the
data is not explicitly captured.

In this paper, we attempt to integrate the two separate stages into one
unified optimization framework. One important motivating observation is
that a perfect subspace clustering can often be obtained from an imperfec-
t affinity matrix. In other words, the spectral clustering step can clean up
the disturbance in the affinity matrix – which can be viewed as a process of
information gain by denoising. Because of this, if we feed back the infor-
mation gain properly, it may help the self-expressiveness model to yield a
better affinity matrix.

To jointly estimate the clustering and affinity matrix, we define a sus-
pace structured `1 norm as follows:
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where α > 0 is a tradeoff parameter, Θi j ∈ {0,1} indicates whether two data
points belong to the same subspace in which Θi j = 0 if point i and j lie in
the same subspace and otherwise Θi j = 1, and 1 is the vector of all ones of
appropriate dimension.

Equipped with the subspace structured `1 norm of Z, we then define the
unified optimization framework for subspace clustering as follows:

min
Z,E,Q

‖Z‖1,Q +λ‖E‖` s.t. X = XZ +E, diag(Z) = 0, Q ∈Q, (2)

where Q is the set of all valid binary segmentation matrices defined as

Q= {Q ∈ {0,1}N×k : Q1 = 1 and rank(Q) = k}, (3)

and the norm ‖ · ‖` on the error term E depends upon the prior knowledge
about the pattern of noise or corruptions. We call problem (2) Structured
Sparse Subspace Clustering (SSSC or S3C).

The solution to the optimization problem in (2) is based on solving the
following two subproblems alternatively: a) Find Z and E given Q by solv-
ing a weighted sparse representation problem; b) Find Q given Z and E by
spectral clustering. We solve this problem efficiently via a combination of an
alternating direction method of multipliers with spectral clustering. Experi-
ments on a synthetic data, the Hopkins 155 motion segmentation database,
and the Extended Yale B data set demonstrate its effectiveness.

Some results are presented in Figure 1, Table 1 and 2. Figure 1 shows
the improvement in both the affinity matrix and the subspace clustering us-
ing S3C over SSC on a subset of face images of three subjects from the
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Figure 1: Visualization of matrices Z(t) and Θ(t) in the first and the third iterations
of S3C algorithm. Note that the first iteration of S3C is effectively a SSC and hence
the images of Z(1) and Θ(1) in panel (a) and (b) are the representation matrix and
the structure matrix of SSC. The images in panel (c) and (d) are the representation
matrix Z(t) and structure matrix Θ(t) of S3C when converged (t = 3). The percentage
numbers in bracket are the corresponding clustering errors.

Corruptions (%) 0 10 20 30 40 50 60 70 80

SSC 1.43 1.93 2.17 4.27 16.87 32.50 54.47 62.43 68.87
Our S3C 0.30 0.33 0.90 2.97 10.70 23.67 50.50 60.70 67.97

Table 1: Clustering Errors on Synthetic Data Set. The best results are in bold font.

no. subj. 2 3 5 8 10
ERR (%) Mean Med Mean Med Mean Med Mean Med Mean Med

SSC [1] 1.87 0.00 3.35 0.78 4.32 2.81 5.99 4.49 7.29 5.47
S3C 1.27 0.00 2.71 0.52 3.41 1.25 4.15 2.93 5.16 4.22

Table 2: Clustering Errors on Extended Yale B Data Set. The best results are in bold
font.

Extended Yale B data set. Table 1 shows the results on a synthetic data
set which consists of 150 data points sampled from 15 linear subspaces of
dimension 5 in 100-dimensional space. Table 2 shows the results on the
Extended Yale B data set. As can be observed, our method consistently
outperforms SSC on both synthetic and real world data set.
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