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Abstract

The trifocal tensor, which describes the relation between
projections of points and lines in three views, is a funda-
mental entity of geometric computer vision. In this work,
we investigate a new parametrization of the trifocal tensor
for calibrated cameras with non-colinear pinholes obtained
from a quotient Riemannian manifold. We incorporate this
formulation into state-of-the art methods for optimization on
manifolds, and show, through experiments in pose averag-
ing, that it produces a meaningful way to measure distances
between trifocal tensors.

1. Introduction
The trifocal tensor was first introduced in the context of

calibrated geometry to describe relations between projec-
tions of lines by Spetsakis and Aloimonos [25] and Weng et
al. [32]. Later, Hartley [9, 10] generalized the trifocal tensor
for the uncalibrated case and Shashua [23] investigated tri-
linear relations of matched points in three perspective views.

There has been numerous works on minimal parametriza-
tions of the projective trifocal tensor [4,16,18,20,22,28]. In
most formulations, one of the three cameras local reference
frame is chosen as the global reference frame. A symmetric
formulation (where every camera has a similar role) was
recently proposed by Ponce and Hebert [20] who minimally
parametrized the trifocal tensor by providing necessary and
sufficient conditions for three visual rays to converge in
terms of three epipolar and one or two trifocal constraints.
Symmetric trilinear constraints were also introduced in [21].

Symmetric representations for the two view counterpart
of the trifocal tensor, the essential matrix, have been in-
troduced in [7, 12, 27] and are based on the singular value
decomposition (SVD) of essential matrices. Geometric in-
sights and further properties of symmetric representations
for the space of essential matrices endowed with a Rieman-
nian manifold structure were recently presented by Tron and
Daniilidis [29]. However, the study of the space of essential
matrices as a Riemannian manifold can be traced back to
Soatto et al. [24] who formulated structure from motion as

a filtering problem on the essential manifold. Later, Ma et
al. [15] proposed a Riemannian Newton algorithm on the
essential manifold for the problem of structure and motion
estimation which was later generalized by Vidal et al. [31]
for multiple views. To the best of our knowledge, analo-
gous representations and manifold structures for the space of
calibrated trifocal tensors have not been investigated before.

In this work, we propose a parametrization of the trifo-
cal tensor for calibrated cameras with non-colinear pinholes
based on a quotient Riemannian manifold. This parametriza-
tion is almost symmetric (we use a preferred camera only
for the translations), and is derived from a particular choice
of the global reference frame. We show how it can be used
for refining estimates of the tensor from image data through
state-of-the-art techniques for optimization on manifolds [1].
In addition, the Riemannian structure provides a notion of
distance between trifocal tensors. We show that this distance
can be computed efficiently, and that it produces meaningful
results in a sample Structure from Motion problem.

2. Definitions and notation
In this section, we briefly review several elementary facts

from group theory and differential geometry. For a more
detailed and rigorous treatment, we refer the reader to the
standard texts [1, 5, 14, 19].

A d-dimensional manifold M can be informally defined
as a set M that is locally homeomorphic to the Euclidean
space Rd. The tangent space TxM at a point x ∈ M is
the vector space consisting of all the tangents of all smooth
curves in M passing through x. A Riemannian manifold is a
manifold whose tangent spaces are equipped with a smoothly
varying inner product, which is called a Riemannian metric.
We use the notation g(ξ, ζ) to denote the inner product of
two elements ξ, ζ ∈ TxM (where the point x will be clear
from the context). The metric naturally induces a norm
‖ξ‖ .=

√
g(ξ, ξ).

A geodesic curve on M is the generalization of a straight
line (that is, a curve with zero acceleration). We denote as
γx,ξ(t) the geodesic emanating from x in the direction of
ξ ∈ TxM. The exponential map expx : TxM → M is de-
fined as expx ξ

.
= γx,ξ(1). The logarithm map logx : M→
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TxM is the inverse of the exponential map and is generally
defined only in a neighborhood of x. Where defined, we
have the identity d(x, y) = ‖logx(y)‖, where d(x, y) is the
Riemannian distance of x, y induced by the metric.

Let F : M→ N be a smooth map between two manifolds
M and N. The linear mapping DF (x) : TxM→ TF (x)M :
ξ 7→ DF (x)[ξ] is called the differential of F at x. For any

curve γ(t) on M we have DF (γ(t))[γ̇(t)] =
d

dt
F (γ(t)).

Furthermore, given a real-valued function f : M → R, the
Riemannian gradient grad f(x) of f at a point x ∈M is the
unique element of TxM satisfying

g(grad f(x), ξ) =
d

dt
f(γx,ξ(t))

∣∣∣∣
t=0

= Df(x)[ξ] (1)

for all ξ ∈ TxM.
A group (G, ·) is a set G along with a binary operation

· : G×G→ G satisfying the axioms of closure, associativity,
existence of an identity element e ∈ G and existence of
inverse for each element in the group. A Lie group is a group
that is also a manifold. If G is a group and M is a set, a
left action of G on M is a map G ×M → M, written as
(g, p) 7→ g · p, satisfying g1 · (g2 · p) = (g1g2) · p, for all
g1, g2 ∈M,p ∈M and e · p = p for all p ∈M. The action
is said continuous if the corresponding map is continuous,
and it is said free if g · p = p for some p ∈ M implies that
g = e. A group action induces an equivalence relation ∼ on
M: for any x, y ∈M, x ∼ y if y = g · x for some g ∈ G.

Let M be a manifold equipped with an equivalence rela-
tion ∼. The equivalence class of a point x ∈M is denoted
by [x] = {y ∈M : y ∼ x}. The quotient space M = M/∼
is the set of all equivalence classes and M is termed the total
space or ambient space. The canonical projection is the map
π : M → M defined by π(x) = [x]. The quotient space is
called a quotient manifold if the canonical projection is a
submersion, i.e., the differential of π at every point is sur-
jective. Consider any x ∈ M and let x ∈ π−1(x) ⊆ M.
The vertical space Vx = Tx(π−1(x)) at x is the tangent
space to the equivalence class π−1(x). The horizontal space
Hx is the orthogonal complement of Vx in TxM, that is,
Vx ⊕Hx = TxM. Given any and ξ ∈ TxM, there exists ex-
actly one horizontal lift ξx ∈ Hx satisfying Dπ(x)[ξ] = ξ.

In the context of this work, we will frequently use the Lie
group of three dimensional rotations SO(3) = {R ∈ R3×3 :
RTR = I, det(R) = 1}. The tangent space at a point R ∈
SO(3) is given by TRSO(3) = {RΩ : Ω ∈ so(3)}, where
so(3) denotes the vector space of 3 × 3 skew-symmetric
matrices. The standard metric of SO(3) at a point R ∈
SO(3) is given by g(ξ1, ξ2) = 1

2 tr(ξT1 ξ2) = 1
2 tr(ΩT1 Ω2)

where ξi = RΩi ∈ TRSO(3).
For modeling the translational part of the tensor, we will

use Kendall’s shape space [13]. Following the corresponding
notation, we define S32 = {X ∈ R2×2 : ‖X‖F = 1} as

the space of triangles in 2-D. The tangent space at a point
X ∈ S32 is TXS32 = {ξ ∈ R2×2 : tr(XT ξ) = 0} = X⊥,
the metric is the usual Euclidean inner product. We also
introduce the space S3∗2 = {X ∈ S32 : rank(X) = 2} ⊂ S32,
which is the space of non-degenerate triangles. For reasons
that will be made clear later, we will embed S32 and S3∗2 in
R3×2 by simply adding a third row paved with zeros.

3. Derivation of the trifocal tensor
In this section, we review the derivation of the trifocal

tensor that relates lines seen in three views. This derivation
generalizes the one from standard textbooks [11] by not
assuming that one of the camera frames coincides with the
global reference frame.

Let gi = (Ri, Ti) ∈ SE(3) be the pose of the i-th camera
such that the camera center in the global reference frame is
simply given by the translation Ti. Assuming that the cam-
eras are calibrated, the corresponding projection matrices are
given by Pi =

[
RTi −RTi Ti

]
∈ R3×4. Now, let {li}3i=1

be a set of images of three lines intersecting in 3-D. The
intersection of the pre-images of the lines, that is, the three
planes with normals ni = PTi li, i ∈ {1, 2, 3} is not empty.
Then, we have that the matrix N =

[
n1 n2 n3

]
∈ R4×3

is rank-deficient. Hence, also the following matrix is rank-
deficient:

N ′ =

[
RT1 0
TT1 1

]
N =

[
l1 RT1 R2l2 RT1 R3l3
0 TT12R2l2 TT13R3l3

]
, (2)

where Tij = Ti − Tj . Hence, there must be coefficients α
and β such that[

l1
0

]
=

[
RT1 R2l2 RT1 R3l3
TT12R2l2 TT13R3l3

] [
α
β

]
(3)

From the last row, we can choose α = −TT13R3l3 and β =
TT12R2l2. In this way, we get

l1 = lT2 R
T
2 T12R

T
1 R3l3 − lT3 RT3 T13RT1 R2l2 (4)

We define the canonical tensor centered on camera 1 as

Ti = RT2 T12e
T
i R

T
1 R3 −RT2 R1eiT

T
13R3 (5)

for i ∈ {1, 2, 3}, where ei denotes the i-th standard basis
vector in R3. Then, equation (4) becomes

(l1)i = lT2 Til3 (6)

where (l1)i stands for the i-th component of vector l1.

4. The normalized trifocal space
In this section, we define the normalized canonical de-

composition of the trifocal tensor. Under the assumption of
non-colinear cameras, we choose a global reference frame
such that the z-axis is aligned with the normal of the plane on
which the three cameras lie. Then, we define the normalized
trifocal space and parametrize it with a quotient manifold.



4.1. The normalized canonical decomposition

First of all, we will define the canonical decomposition
for a trifocal tensor in the following proposition.

Proposition 4.1. Any trifocal tensor admits the canonical
decomposition

Ti = RT2 T12e
T
i R

T
1 R3 −RT2 R1eiT

T
13R3 (7)

where (T12)3 = (T13)3 = 0 and ‖T12‖22 + ‖T13‖22 = 1.

Proof . Since T12, T13 are invariant to global translations
and since ‖RT12‖22 + ‖QT13‖22 = ‖T12‖22 + ‖T13‖22 for
any Q,R ∈ SO(3), it follows that the global scale and
the global reference frame can be chosen independently.
Under the assumption that the three camera centers do not
coincide, we can always choose a global scale such that
‖T12‖22 + ‖T13‖22 = 1. Then, given a tensor in the form (5),
pick any R0 ∈ SO(3) that aligns the z-axis with the vector
T12 × T13. Then one can verify (R0T12)3 = (R0T13)3 = 0.
In conclusion, the tensor can be written as

Ti =(R0R2)T (R0T12)eTi (R0R1)T (R0R3) (8)

−(R0R2)T (R0R1)ei(R0T13)T (R0R3) (9)

which is in the form (7).

Note that the choice of R0 in the proof is not unique:
if R0 is a rotation that satisfies the requirements, then any
rotation RzR0, where Rz denotes a rotation around z-axis,
will also satisfy the requirements.

Intuitively, the change of world coordinates corresponds
to aligning the z-axis with the normal to the plane defined by
the three cameras (which is given by T12 × T13). This plane
is then parallel to the xy-plane, thus the third components of
the translations become zero. For any two vectors T12, T13 ∈
R3 such that (T12)3 = (T13)3 = 0 and ‖T12‖22 + ‖T13‖22 =
1, we will write (T12, T13) ∈ S32. If the camera centers are
not colinear, then we have (T12, T13) ∈ S3∗2 .

Definition 4.2. We define the normalized trifocal space MT

as the image of the mapping T : SO(3)3 × S32 → R3×3×3

defined by

(R1, R2, R3, (T12, T13)) 7→ [T1,T2,T3] (10)

with Ti as defined in (7). Since this mapping is surjective by
Proposition 4.1, the space MT corresponds to the space of
all trifocal tensors.

4.2. Ambiguities of the canonical form

The purpose of this section is to describe the ambiguities
of the previously derived canonical form. In the proof of
Proposition 4.1, we saw that the mapping from SO(3)3×S32
to R3×3×3 as defined in (10) is not injective. We now state

the conditions under which two configurations yield the same
canonical trifocal tensor. Let Xa, Xb ∈ SO(3)3 × S32. We
define the equivalence relation “ ∼ ” on SO(3)3 × S32 as

Xa ∼ Xb iff Ta = Tb. (11)

Then, we have the following proposition regarding the equiv-
alence class of a point X ∈ SO(3)3 × S3∗2 .

Proposition 4.3. Define the groups

Hz = {(Rz(θ), Rz(θ), Rz(θ), Rz(θ)) : θ ∈ (−π, π]}
(12)

Hxπ = {(I3, I3, I3, I3), (Rx(π), Rx(π), Rx(π), Rx(π))}
(13)

Hzπ = {(I3, I3, I3, I3), (I3, I3, I3, Rz(π))} (14)

acting on the left on SO(3)3 × S3∗2 by component-wise mul-
tiplication. Then, given a point X ∈ SO(3)3 × S3∗2 , its
equivalence class with respect to “ ∼ ” is given by

[X] = {SzSxπSzπX : Sz ∈ Hz, Sxπ ∈ Hxπ, Szπ ∈ Hzπ}
(15)

A detailed proof of Proposition 4.3 is presented in the
supplementary material. The above result is in accordance
with the mirror image ambiguity according to which, without
using the cheirality constraint, the translational parts of the
trifocal tensor can be estimated only up to a sign [32]. This
ambiguity corresponds to the action ofHzπ and it is intrinsic
to the tensor estimation process. In addition, rotating the
global reference frame about x-axis by an angle of π results
in a z-axis which is still perpendicular to the plane defined
by the three cameras. This ambiguity is related to the action
of Hxπ and it is an artifact of the particular choice of the
global reference frame. As a result, [X] in (15) has four
components, each one isomorphic to SO(2). We will use
Sz = (Sz1, Sz2, Sz3, Sz4), Szπ = (Szπ1, Szπ2, Szπ3, Szπ4)
and Sxπ = (Sxπ1, Sxπ2, Sxπ3, Sxπ4) to denote points inHz ,
Hzπ and Hxπ respectively. Based on Proposition 4.3, we
propose to parametrize the space MT with the quotient space

MT = (SO(3)3 × S32)/(Hz ×Hxπ ×Hzπ) (16)

Remark: Proposition 4.3 does not hold for colinear con-
figurations, that is, for points X in the complement of
(SO(3)× S3∗2 ) in (SO(3)× S32). This is because, for these
points, the equivalence class [X] contains additional ele-
ments given by the rotation around the colinearity axis.
Nonetheless, the quotient space in (16) covers all valid ten-
sors T. The only difficulty is that, for and only for colinear
tensors, distinct points in Xa, Xb ∈ T might yield the same
tensor. However, these points constitute a set of measure
zero and, in practice, as we will see, this does not prevent
(16) (and its signed version, which we introduce later) from
being a useful parametrization.



5. The signed trifocal manifold parametriza-
tion

In this section, we use the cheirality constraint to fix the
mirror image ambiguity. Intuitively, this corresponds to se-
lecting two of the four components of each equivalence class.
Then, we show that the resulting space is a Riemannian
quotient manifold. Finally, we introduce geodesics, the ex-
ponential map and an efficient algorithm for computing the
logarithm map.

5.1. Three view depth estimation

Let Xw ∈ R3 denote the coordinates of a point p in the
world reference frame, x1, x2, x3 ∈ R3 the normalized coor-
dinates of point p in each of the three views and λ1, λ2, λ3 >
0 the corresponding depths. Then, Xw = λiRixi + Ti for
i ∈ {1, 2, 3}. By substituting the first equation into the other
two, and by taking into account Hz , Hxπ and Hzπ , we have

λ2x2 = λ1R
T
2 R1x1 +RT2 Szπ4T12, (17)

λ3x3 = λ1R
T
3 R1x1 +RT3 Szπ4T13, (18)

where the actions of Hz and Hxπ cancel out. Then, the
following proposition follows naturally.

Proposition 5.1. There is only one choice of Szπ for which
λ1, λ2, λ3 > 0.

Proof . We know that there always exists a choice of
Szπ ∈ Hzπ (the true one) such that all depths are posi-
tive. Denote this solution by (λ1, λ2, λ3). Then, the depths
(−λ1,−λ2,−λ3) satisfy (17) and (18) if we now choose
S′zπ = Rz(π)Szπ (that is, the other element in Hzπ). Thus,
only one choice corresponds to positive depths.

5.2. The signed trifocal manifold parametrization

In view of Proposition 5.1, given a point X ∈ MT we
can always pick two of the four components of [X] (the
ones corresponding to the positive depths). Thus, if MT =
SO(3)3 × S32, we define the signed trifocal parametrization
as:

M T= (SO(3)3 × S32)/(Hz ×Hxπ) = MT/(Hz ×Hxπ)
(19)

This space admits a smooth manifold structure, as shown
next.

Proposition 5.2. The canonical projection π : MT →M T

is a smooth submersion and M Tis a manifold of dimension
11.

Proof . Since Hz ×Hxπ is a compact Lie group and the ac-
tion is continuous, it follows that the action is proper. More-
over, Sz1Sxπ1R1 = R1 implies Sz1 = I3 and Sxπ1 = I3.

As a result, for any X ∈ SO(3)3 × S32, we have SzSxπX =
X implies that SzSxπ is the identity element of the group.
Thus, the action is also free. Finally, the action is trivially
smooth and we conclude M Tis a manifold of dimension:

dimM T= dim
(
SO(3)3 × S32

)
− dim

(
Hz ×Hxπ

)
= 11

(20)
where we remind the reader that Hxπ is discrete.

Proposition 5.2 implies that the tangent space at a point
X ∈ SO(3)3 × S32 admits the decomposition into vertical
and horizontal spaces

TXMT = VX ⊕HX . (21)

We can give a closed form expression for the vertical space:

Proposition 5.3. The vertical space at a point X =
(R1, R2, R3, T ) ∈MT is given by

VX = {λêz · (R1, R2, R3, T ) : λ ∈ R} (22)

where · denotes component-wise multiplication, ez =

(0, 0, 1)T and (̂·) denotes the usual hat operator of a vector
in R3.

Proof . Let X ∈MT and note that since Hz ×Hxπ is one
dimensional, also VX is one dimensional. Let γ(t) = R(t) ·
X be a curve in the equivalence class of X with R(t) ∈ Hz

for all t and R(0) = I . Then, γ̇(0) = êz · X = êzX . It
follows that VX is spanned by the vector êzX .

At this point, we will endow TXMT with a Riemannian
metric which is necessary for defining the orthogonal projec-
tion of a vector onto the vertical and horizontal spaces, and
of course for defining a metric on the signed trifocal mani-
fold. Let any X = (R1, R2, R3, T ) ∈ MT . A Riemannian
metric g for TXMT can be naturally defined as

g(ξ, ζ) =
1

2

3∑
i=1

tr(ξTi ζi) + tr(ξT4 ζ4) (23)

where ξ = (ξ1, ξ2, ξ3, ξ4), ζ = (ζ1, ζ2, ζ3, ζ4) with ξi, ζi ∈
TRiSO(3) for i ∈ {1, 2, 3} and ξ4, ζ4 ∈ TTS32. Now, the
orthogonal projection of a tangent vector ξ ∈ TXMT onto
the vertical space VX is given by

P vXξ = êzX
g(ξ, êzX)

g(êzX, êzX)
=

1

4
g(ξ, êzX)êzX (24)

and the corresponding orthogonal projection of a tangent
vector ξ ∈ TXMT onto the horizontal HX is simply given
by PhXξ = ξ − P vXξ.

Next, we will endow M Twith a Riemannian metric. We
will need the following proposition relating the horizontal
lifts of the same tangent vector of the quotient space at two
distinct points in the same equivalence class.



Proposition 5.4. Let X ∈MT and ξ ∈ T[X]M T. Then

ξRX = RξX (25)

for all R ∈ Hz ×Hxπ , where ξX denotes the horizontal lift
of a tangent vector ξ at X .

The proof can be found in the supplementary material. It
is based on the proof of Absil et al. [1] for the case of the
real projective space. We then arrive at the desired result.

Proposition 5.5. The signed trifocal manifold M Tadmits
a structure of a Riemannian quotient manifold with the Rie-
mannian metric

g[X](ξ, ζ)
.
= gX(ξX , ζX) (26)

Proof . Let gX be the Riemennian metric of MT at X ∈
MT defined in (23). Then, we have

gRX(ξRX , ζRX) = gRX(RξX , RζX)

=
1

2

3∑
i=1

tr((RξX,i)
T (RζX,i)) + tr((RξX,4)T (RζX,4))

=
1

2

3∑
i=1

tr(ξTX,iζX,i) + tr(ξTX,4ζX,4) = gX(ξX , ζX)

The metric (26) does not depend on the choice of the rep-
resentative of each equivalence class and thus, it is a well-
defined Riemannian metric.

5.3. Geodesics and the exponential map

In this section, we show how to obtain geodesics for
M Tfrom geodesics in the ambient space MT with horizon-
tal tangent. The idea has been repeatedly used in [6] to
obtain geodesics for the Stiefel and Grassmann manifold
from geodesics of the orthogonal group and in [29] to ob-
tain geodesics of the Essential manifold from geodesics of
SO(3)2. Since the projection πM T

: MT → M Tis a Rie-
mannian submersion, i.e. a submersion that preserves the
metric, we have the following proposition [17]:

Proposition 5.6. Let γ(t) be a geodesic on MT such that
γ̇(t) ∈ Hγ(t) for all t. Then, πM T

(γ(t)) = [γ(t)] is a
geodesic on M T.

Moreover, we have the following proposition for
geodesics with horizontal initial tangents.

Proposition 5.7. Let γX,ξ(t) be a geodesic on MT emanat-
ing from X = γX,ξ(0) with initial velocity ξ = γ̇X,ξ(0) . If
ξ = γ̇X,ξ(0) ∈ HX , then γ̇X,ξ(t) ∈ HγX,ξ(t) for all t.

The proof can be found in the supplementary material
and is quite elementary. The above result combined with
Proposition 5.6 shows that if γ(t) is a geodesic on MT with
γ̇(0) ∈ Hγ(0), i.e. initial tangent belonging to the horizontal
space, then [γ(t)] is a geodesic in the quotient space M T.
Thus, the exponential map exp: T[Xa]M T→ M Tis de-
fined as [Xb] = exp[Xa](ξ) and can be computed by Xb =

expXa(ξXa), where ξXa is the horizontal lift of ξ at Xa and
expXa is the exponential map of MT = SO(3)3 × S32.

5.4. The logarithm map and Riemannian distance

In this section, we will determine the logarithm map for
the signed trifocal manifold from its ambient space, and
describe an efficient algorithm for computing it. The Rie-
mannian distance is then given by the norm of the logarithm
map. Intuitively, given two points in MT , we will move
the second point to another representative of its equivalence
class for which the squared Riemannian distance of MT

is minimized. This change of representative will yield a
horizontal vector as we will show in Proposition 5.8.

Let Xa, Xb ∈ MT , Rxπ ∈ Hxπ and Rz(t) denote a
rotation around z axis of angle t. Moreover, let θi(t) =
arccos

(
(tr(RTaiRz(t)RxπRbi)− 1)/2

)
for i ∈ {1, 2, 3}

and θ4(t) = arccos(tr(TTa Rz(t)RxπTb)) (these are the
geodesic distances in SO(3) and in S32). We then have:

Proposition 5.8. Define the cost function

f(t) =

4∑
i=1

fi(t) =

4∑
i=1

1

2
θ2i (t)

=
1

2

3∑
i=1

d2(Rai, Rz(t)RxπRbi) +
1

2
d2(Ta, Rz(t)RxπTb).

(27)

Moreover, let topt = argmint f(t). Then, the logarithm
logXa (Rz(topt)RxπXb) is a horizontal vector in HXaMT .

Proof . By differentiating the functions fi we obtain

ḟi(t) = − θi(t)

2 sin θi(t)
tr(RTaiêzRz(t)RxπRbi) (28)

=
1

2
tr
(
(êzRai)

T logRai(Rz(t)RxπRbi)
)

(29)

for i ∈ {1, 2, 3} and for i = 4 we have

ḟ4(t) = − θ4(t)

sin θ4(t)
tr(TTa êzRz(t)RxπTb) (30)

= tr
(
(êzTa)T logTa(Rz(t)RxπTb)

)
(31)

Comparing the condition ḟ(topt) =
∑4
i=1 ḟi(topt) = 0 with

the basis of VXa in Proposition 5.3 and the definition of
HXa , we deduce that the logarithm logXa

(
Rz(topt)RxπXb

)
must be an horizontal vector.



At this point, we will describe an algorithm for computing
the logarithm map. At a high level, we need to optimize
globally f(t) twice, once for each of the two choices for
Rxπ and choose the solution that gives the lower cost. For
simplicity, we describe here only the optimization for the
component that corresponds to Rxπ = I3 (the optimization
for the other component is analogous).

Although global optimization is generally hard, we can
exploit the special structure of f to efficiently compute its
global minimizer topt. First, the cost function f is continuous
and 2π-periodic, since Rz(t+ 2π) = Rz(t), but it is not ev-
erywhere smooth. For the first three terms in f(t), the deriva-
tive ḟi(t), i ∈ {1, 2, 3}, is not defined when cos θi(t) = −1.
This correspond to discontinuity points tdi, which can be
computed in closed form (see [29, Proposition 5.6]). It can
also be shown [29] that fi(t), i ∈ {1, 2, 3} is convex be-
tween discontinuity points.

It remains to analyze the behavior of f4(t). We have two
distinct cases:

Case 1: Ta = Rz(t0)Tb for some t0 ∈ R. In this special
case f4(t) is simply given by f4(t) = 1

2 (arccos(cos(t −
t0)))2. The derivative ḟ4(t) is not defined for t = t0 + (2k+
1)π, k ∈ Z and f̈4(t) = 1 when defined. So, in this case
f4 is piecewise convex and thus, f is also piecewise convex.
The four points of discontinuity of ḟ can be computed in
closed form and thus, projected Newton method [2] can be
applied to each of four resulting intervals in a way similar
to [29]. Then, the global optimum of f(t) can be computed
as the minimum of the four local minima.

Case 2: Ta 6= Rz(t0)Tb for all t0 ∈ R. This is the
more general case. By differentiating ḟ4(t) we can obtain a
closed form expression for f̈4. Unfortunately, f̈4 can take
negative values and thus, f4(t) is not convex. However, each
period can be divided into two intervals, one at which f4(t)
is convex (thus easy to optimize) and one at which f4(t)
is concave (for which we use a branch-and-bound search).
First, we need to identify these intervals. Let

c14 = (TbT
T
a )1,1 + (TbT

T
a )2,2, (32)

c24 = (TbT
T
a )1,2 − (TbT

T
a )2,1. (33)

Then, ḟ4(t) = 0 for t = arctan(c24/c14). It can be immedi-
ately seen that ḟ4(t) = 0 has two solutions: one correspond-
ing to the minimum over a period and one corresponding
to the maximum. Let tmax and tmin denote these two val-
ues. Since f̈4(t) is continuous, it follows that f̈4(tmin) > 0
and f̈4(tmax) < 0. As a consequence, f4 is convex in an
interval (tc1, tc2) around tmin, and concave in an interval
(tc2, tc1 + 2π) around tmax. The values tc1 and tc2 can be
computed from tmax and tmin using the bisection method
for f̈4(t) = 0. For the interval (tc1, tc2) we have that f(t)
is continuous, convex with up to three discontinuity points
of the first derivative. Thus, a projected Newton method as
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Figure 1: An instance of the cost f(t) (in red) and f4(t) (in
blue) for one period. Black dashed lines correspond to the
three discontinuity points tdi. Shaded region corresponds to
the interval on which f4 is concave and the red circles to the
local minimizers of f(t).

in [29] can be again applied to each of the subintervals. For
the interval (tc2, tc1 + 2π), f(t) is generally neither convex
nor concave, and we implement a branch-and-bound search.
Since we already have a good initial guess from the interval
where f(t) is convex, most of the subintervals are quickly
rejected. Moreover, a lower bound for f in an interval [a, b],
on which f4 is concave, can be efficiently estimated by min-
imizing the following convex underestimate of f(t) using
the Newton method

fl(t) =

3∑
i=1

fi(t) +
f4(b)− f4(a)

b− a
(t− a) + f4(a) (34)

This underestimate is simply the sum of the three piecewise
convex function f1, f2, f3 with a linear underestimate of f4.

In conclusion, using the above described method, the com-
putation of the logarithm log[Xa][Xb] between two equiva-
lence classes [Xa], [Xb] ∈ M Tcan be efficiently carried
out. In our experiments, the average running time is approxi-
mately 5 ms with our preliminary Matlab implementation.

6. Optimization on the trifocal manifold
In this section, we describe how to minimize a cost func-

tion that takes as input a trifocal tensor. For example, assume
we have n point-line-line correspondences x1p ↔ l2p ↔ l3p,
p = 1, 2, . . . , n. Such a cost function is the sum of squared
algebraic errors which is given by

fa(T) =

n∑
p=1

3∑
i=1

(
(x1p)il

T
2pTil3p

)2
. (35)

Another example is the Sampson error [11, 15], i.e., the first
order approximation to the geometric error:

fs(T) =

n∑
p=1

3∑
i=1

(
(x1p)il

T
2pTi l3p

)2
Jp(T)Jp(T)T

(36)



where Jp(T) is the Jacobian of the expression (x1p)il
T
2pTil3p

with respect to x1p, l2p and l3p (note that this is a row vector).
More generally, given a real-valued function

f : R3×3×3 → R, let fMT
: MT → R defined by

fMT
= f ◦ T where T is the map given in Definition 4.2.

Moreover, let Xa, Xb ∈ MT such that Xa ∼ Xb. Since
fMT

is constant in each equivalence class, it induces a
unique function fM T

on M Tsuch that fMT
= fM T

◦ π.
In order to combine the parametrization of M Tgiven

by the exponential map with the trust-region methods de-
scribed in [1] we need to compute grad fM T

([X]) and
Hess fM T

([X])[ξ]. Tangent vectors to quotient manifolds
are represented in a computer program by their horizontal
lifts. In detail, grad fM T

([X]) is represented by its hori-
zontal lift grad fMT

(X) at X . Note that grad fMT
(X) is

guaranteed to be an horizontal vector. Thus, we just have to
compute the (Riemannian) gradient of fMT

. In the rest of
this section, we show how to obtain the expression for the
Riemannian gradient by its Euclidean counterpart.

Let X(t) be a geodesic curve of the form X(t) =
(R1(t), R2(t), R3(t), T (t)). Let T(t)

.
= T(X(t)). The tan-

gent of T(t) is given by

Ṫi = RT2 T12e
T
i Ṙ

T
1 R3 −RT2 Ṙ1eiT

T
13R3 + ṘT2 R2Ti

+ TiR
T
3 Ṙ3 +RT2 Ṫ12e

T
i R

T
1 R3 −RT2 R1eiṪ

T
13R3

(37)

for i = 1, 2, 3. Now, consider the function fMT
(X(t)) =

f(T(t)). At t = 0 we have

g
(
Ẋ, grad fMT

(X)
)

= 〈Ṫ, grad f(T)〉 (38)

where 〈·, ·〉 denotes the usual Euclidean inner product. To
alleviate the notation, let G = grad f(T) ∈ R3×3×3 and
let Gi be i-th slice of G for i = 1, 2, 3. Then 〈Ṫ, G〉 =∑3
i=1 tr

(
GTi Ṫi

)
and

tr
(
GTi Ṫi

)
= tr

(
ṘT1 (R3G

T
i R

T
2 T12e

T
i −R2GiR

T
3 T13e

T
i )
)

+ tr
(
ṘT2 R2TiG

T
i

)
+ tr

(
ṘT3 R3T

T
i Gi

)
+ tr

(
ṪT12R2GiR

T
3 R1ei

)
− tr

(
ṪT13R3G

T
i R

T
2 R1ei

)
Since the manifold MT is a submanifold of a Euclidean
space, it follows that any Euclidean vector ζ ∈ TXMT

can be uniquely orthogonally decomposed as ζ = ζ ′ + ζ ′′

with ζ ′ ∈ TXMT and ζ ′′ ∈ (TXMT)⊥. Hence 〈ξ, ζ〉 =
〈ξ, ζ ′〉 for any ξ ∈ TXMT . Using this fact, we have that
grad fMT

(X) = (ξ1, ξ2, ξ3, ξ4), where

ξ1 =
∑3
i=1 PR1

((
R3G

T
i R

T
2 T12 −RT1 R2GiR

T
3 T13

)
eTi
)

ξ2 =
∑3
i=1 PR2

(
R2TiG

T
i

)
ξ3 =

∑3
i=1 PR3

(
R3T

T
i Gi

)
ξ4 =

∑3
i=1 PT

(
R2GiR

T
3 R1ei,−R3G

T
i R

T
2 R1ei

)
where PRξ = R skew(RT ξ), skew denotes the skew-
symmetric part of a matrix, and PXξ = ξ − Xtr(XT ξ)
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Figure 2: Relative (top) and geodesic (in SO(3)3 × S5,
bottom) mean (dashed) and median (solid) errors before
and after non-linear minimization of either the algebraic or
Sampson cost.

denotes the orthogonal projection of a vector ζ ∈ R3×2

onto the tangent space TTS32. It is possible to also compute
the Riemannian Hessian of fMT

(X), which encodes second-
order information about the function. However, its derivation
is rather lengthy, and we refer the reader to [1] for details.

We evaluate our implementation on the fountain-P11
dataset from [26] which includes the ground-truth camera
poses. We extract SIFT features [30] to obtain point corre-
spondences across different image triplets. We keep only
image triplets with more than 50 point correspondences. To
obtain an initial estimate of the trifocal tensor, we use the
linear algorithm described in [32]. For optimization on the
signed trifocal manifold, we use the trust-region solver of [3].
As error metric, we use the relative error between the esti-
mated tensor and the ground-truth in the Frobenius norm
sense. We also use the geodesic distance of SO(3)3 × S5
since the trifocal tensor can be parametrized by three camera
orientations and two relative translations of unit total length.
To compare with the ground-truth, we align the estimated ro-
tations and relative translations using orthogonal Procrustes
analysis. We vary the number of point correspondences from
9 to 40. For each image triplet and each number of corre-
spondences, we repeat our experiment 50 times by randomly



selecting a different set of correspondences each time.
The results are presented in Figure 2. We compare the so-

lution of the linear algorithm [32] with the solutions obtained
by minimizing the algebraic (35) and the Sampson (36) er-
rors on the trifocal manifold. The proposed optimization
significantly outperforms the linear algorithm and produces
very accurate estimates even with only few correspondences.

7. Pose averaging and the Weiszfeld algorithm

The Weiszfeld algorithm has been traditionally used for
computing the l1-mean (geometric median) of a set of points
in Rn. Recently, Hartley et al. [8] proposed the use of the
Weiszfeld algorithm for the purpose of rotation averaging
under the l1-norm. Instead of using RANSAC for outlier
rejection, they obtain multiple estimates of the relative rota-
tions from the corresponding essential matrices, and average
them using the Weiszfeld algorithm on SO(3). This idea
has been extended in [29] for averaging essential matrices.

A generic form of the Weiszfeld algorithm for an arbitrary
Riemannian manifold M is presented in Algorithm 1. The
new iterate x(t + 1) is obtained by taking the exponential
map of a weighted average of directions on the tangent space
of the current iterate. The weights are inversely proportional
to the geodesic distance between the current iterate and each
sample. Intuitively, points away from the current estimate
have little impact on the update and thus, the algorithm is
robust to outliers.

In this work, we use the Weiszfeld algorithm to average
estimates of trifocal tensors seen as points on the signed
trifocal manifold M T. As in [29], the initial estimate is cho-
sen as the midpoint of the two points having the lower cost.
The sample trifocal tensors were obtained by the linear algo-
rithm described in [32]. Unfortunately, this method does not
perform well for a small number of point correspondences,
resulting in noisy samples. In our experiments we observed
that the algorithm converged in 10 to 15 iterations. We com-
pare our approach with RANSAC and with the Weizsfeld
algorithm on the manifold SO(3)2 × S5, i.e. a manifold
parametrization of the trifocal tensor with R1 = I3. The
purpose of this experiment is to show the advantage of the
quotient versus non-quotient parametrization when using
distances between trifocal tensors. We vary the number of
samples from 10 to 50. The results are shown in Figure 3. Al-

Algorithm 1 Weiszfeld averaging

Require: Points x1, x2, . . . , xn ∈M, initial estimate x(0)
1: for t = 0, . . . , N do
2: wi(t) = d(x(t), xi)

−1

3: x(t+ 1) = expx

(∑
i wi(t) logx(xi)∑

i wi(t)

)
4: end for
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Figure 3: Relative (top) and geodesic (bottom) mean
(dashed) and median (solid) errors for the Weiszfeld (quo-
tient and non-quotient parametrizations) and RANSAC algo-
ritms, without and with non-linear minimization.

though it is hard to beat RANSAC, the Weizsfeld algorithm
can be used to obtain a sufficiently good initial estimate of
the trifocal tensor without the need of tuning a threshold like
RANSAC. Also, the Weiszfeld algorithm performs much
better on the quotient manifold, as anticipated.

8. Conclusions and future work

In this work, we investigated a novel parametrization of
the trifocal tensor for calibrated cameras with non-colinear
pinholes obtained from a quotient Riemannian manifold.
We incorporated techniques for optimization on manifolds
and pose averaging in our approach and we showed that the
resulting distance is meaningful. In future work, we will
focus on a more general parametrization that encompasses
both degenerate and non-degenerate cases.
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